EFSM Building (Related Work) » History » Version 8
Sergey Smolov, 03/28/2017 11:19 AM
1 | 1 | Sergey Smolov | h1. EFSM Building (Related Work) |
---|---|---|---|
2 | |||
3 | 2 | Sergey Smolov | Алгоритмы извлечения EFSM-моделей из исходного кода HDL-описаний. |
4 | |||
5 | 1 | Sergey Smolov | h2. Cheng, Krishnakumar 1996 |
6 | 2 | Sergey Smolov | |
7 | 7 | Sergey Smolov | На вход алгоритму подается описание на языках VHDL или C (BESTMAP-C - см. Jou, J-Y., Rothweiler, S., Ernst, R., Sutarwala, S., and Prabhu, A. 1989. BESTMAP: Behavioral Synthesis from C. In International Workshop on Logic Synthesis (Research Triangle Park, NC, May).) |
8 | 4 | Sergey Smolov | |
9 | *Шаг 1* |
||
10 | 8 | Sergey Smolov | Промежуточное представление кода строится с помощью Bridge AT & T Behaviour Synthesis System. По синхронной части кода (synchronous section) строится _дерево операторов_ (statement tree) _T_. Листовыми вершинами дерева являются базовые блоки (последовательности присваиваний). Ветви дерева снабжены атрибутами. Атрибуты - это выражения булева типа, соответствующие ветвям условных операторов в исходном коде. Не указано, каким образом выбираются переменные состояния (state variables), однако на *Шаге 3* они считаются уже определенными. |
11 | 5 | Sergey Smolov | |
12 | *Шаг 2* |
||
13 | 7 | Sergey Smolov | Строится список всех возможных комбинаций условий на входные сигналы. Условия извлекаются из дерева операторов. Извлеченные комбинации проходят процедуру _ортогонализации_, такую, что каждая исходная комбинация оказывается представимой в виде суперпозиции нескольких ортогональных условий. В результате строится множество ортогонализованных условий _I_. |
14 | 1 | Sergey Smolov | |
15 | *Шаг 3* |
||
16 | 7 | Sergey Smolov | Предыдущий шаг повторяется для всех условий, содержащих переменные состояния. В результате строится множество ортогонализованных условий _C_. |
17 | |||
18 | *Шаг 4* |
||
19 | 8 | Sergey Smolov | Собственно, построение EFSM по дереву T, и множествам C и I. Данный шаг в статье написан в весьма общем виде без каких бы то ни было деталей. Результатом данного шага является _граф переходов между блоками_ (block transition graph), формальное определение которого в статье не приводится. |
20 | 7 | Sergey Smolov | |
21 | *Шаг 5* |
||
22 | 8 | Sergey Smolov | Стабилизация графа переходов между блоками. Алгоритм стабилизации приводится в статье с использованием псевдокода. Идея алгоритма состоит в расщеплении слишком общих условий на более частные и не пересекающиеся, что позволяет исключить недетерминированные переходы в модели. Однако допускаются так называемые _частично стабильные переходы_ (semi-stable transitions). В таких переходах 1) действия (update functions) имеют вид x := x + c, где c - константа, а x - переменная состояния; 2) мощность множества конечных вершин равна 2; 3) одной из конечных вершин является начальная вершина, т.е. имеется цикл. В статье показывается, что для таких вершин в процессе обхода можно вычислить количество итераций, которое потребуется, чтобы выйти из цикла. Утверждается, что это допущение сокращает потребление вычислительных ресурсов (времени и памяти), по сравнению с алгоритмом _стабилизации_. |