EFSM Building (Related Work) » History » Revision 16
« Previous |
Revision 16/40
(diff)
| Next »
Sergey Smolov, 03/28/2017 05:10 PM
EFSM Building (Related Work)¶
Алгоритмы извлечения EFSM-моделей из исходного кода HDL-описаний.
Cheng K., Krishnakumar A. 1996 Automatic generation of functional vectors using the extended finite state machine model.¶
На вход алгоритму подается описание на языках VHDL или C (BESTMAP-C - см. Jou, J-Y., Rothweiler, S., Ernst, R., Sutarwala, S., and Prabhu, A. 1989. BESTMAP: Behavioral Synthesis from C. In International Workshop on Logic Synthesis (Research Triangle Park, NC, May).)
Шаг 1
Промежуточное представление кода строится с помощью Bridge AT & T Behaviour Synthesis System. По синхронной части кода (synchronous section) строится дерево операторов (statement tree) T. Листовыми вершинами дерева являются базовые блоки (последовательности присваиваний). Ветви дерева снабжены атрибутами. Атрибуты - это выражения булева типа, соответствующие ветвям условных операторов в исходном коде. Не указано, каким образом выбираются переменные состояния (state variables), однако на Шаге 3 они считаются уже определенными.
Шаг 2
Строится список всех возможных комбинаций условий на входные сигналы. Условия извлекаются из дерева операторов. Извлеченные комбинации проходят процедуру ортогонализации, такую, что каждая исходная комбинация оказывается представимой в виде суперпозиции нескольких ортогональных условий. В результате строится множество ортогонализованных условий I.
Шаг 3
Предыдущий шаг повторяется для всех условий, содержащих переменные состояния. В результате строится множество ортогонализованных условий C.
Шаг 4
Собственно, построение EFSM по дереву T, и множествам C и I. Данный шаг в статье написан в весьма общем виде, псевдокод отсутствует. Результатом данного шага является граф переходов между блоками (block transition graph), формальное определение которого в статье не приводится.
Шаг 5
Стабилизация графа переходов между блоками. Алгоритм стабилизации приводится в статье с использованием псевдокода. Идея алгоритма состоит в расщеплении слишком общих условий на более частные и не пересекающиеся, что позволяет исключить недетерминированные переходы в модели (Lee, D., Yannakakis, M. 1992. Online minimization of transition systems). Однако допускаются так называемые частично стабильные переходы (semi-stable transitions). В таких переходах 1) действия (update functions) имеют вид x := x + c, где c - константа, а x - переменная состояния; 2) мощность множества конечных вершин равна 2; 3) одной из конечных вершин является начальная вершина, т.е. имеется цикл. В статье показывается, что для таких вершин в процессе обхода можно вычислить количество итераций, которое потребуется, чтобы выйти из цикла. Утверждается, что это допущение сокращает потребление вычислительных ресурсов (времени и памяти), по сравнению с алгоритмом стабилизации.
Guglielmo G.D., Guglielmo L.D., Fummi F., Pravadelli G.. 2011 Efficient Generation of Stimuli for Functional Verification by Backjumping Across Extended FSMs.¶
Целью метода является построение EFSM-моделей, которые легко обходить (easy-to-traverse). Обход EFSM-модели является основной техникой для генерации тестов.
Шаг 1
Построение "эталонной" EFSM-модели (Reference EFSM, REFSM).
На вход алгоритму подается HDL-описание в виде конечного автомата с потоком данных (FSM with Datapath, FSMD). FSMD-модель - это комбинация FSM (control path) и конвейера данных (data path). Как правило, FSM-компонент осуществляет прием входных сигналов, чтение переменных состояния и формирование запроса на обработку данных. Запрос передается конвейеру, который его выполняет и возвращает результат FSM-компоненту. FSMD-модель строится методом Giomi ( Giomi J. 1995 Finite state machine extraction from hardware description languages).
Шаг 2
Построение "наибольшей" EFSM-модели (Largest EFSM, LEFSM). На данном шаге выполняется преобразование переходов REFSM, содержащих условные операторы, в переходы LEFSM, не содержащие таковых. Процесс завершается построением LEFSM, количество состояний в которой является наибольшим среди всех шагов алгоритма.
Шаг 3
Построение "наименьшей" EFSM-модели (Smallest EFSM, SEFSM). На данном шаге выполняется группировка совместимых переходов LEFSM. Процесс завершается построением SEFSM, количество состояний в которой является наименьшим среди всех шагов алгоритма.
Шаг 4
Дополнительные оптимизации, приводящие к построению "полу-стабилизированной" EFSM (Semi-Stabilized EFSM, (S^2)EFSM)
Updated by Sergey Smolov over 7 years ago · 40 revisions