Project

General

Profile

Getting Started with x86 » History » Revision 70

Revision 69 (Alexander Kamkin, 04/06/2017 08:16 PM) → Revision 70/87 (Alexander Kamkin, 04/06/2017 08:17 PM)

h1. Getting Started with x86 

 {{toc}} 

 h2. Prerequisite 

 MicroTESK should be [[Installation Guide|installed]]. 

 h2. Demo Specifications 

 Specifications of the x86 (8086) instruction set architecture (ISA) can be found in "$MICROTESK_HOME/arch/demo/x86/model/x86.nml":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/model/x86.nml. 

 Instruction are described in [[nML Language Reference|nML]] by means of the following constructs (_move r16/r16_ is taken as an example): 

 ## the signature 
 <pre><code class="c">op mov_r16r16 (dst: R16, src: R16)</code></pre> 
 ## the assembly format 
 <pre><code class="c">syntax = format("mov %s, %s", dst.syntax, src.syntax)</code></pre> 
 ## the binary encoding 
 <pre><code class="c">image = format("1000101111%s%s", dst.image, src.image)</code></pre> 
 ## the semantics 
 <pre><code class="c"> 
   action = { 
     dst = src; 
     ... 
   } 
 </code></pre> 

 To compile the ISA model, run the following command: 
 <pre>sh $MICROTESK_HOME/bin/compile.sh x86.nml</pre> 

 h2. Demo Templates 

 Test templates for the x86 (8086) ISA can be found in "$MICROTESK_HOME/arch/demo/x86/templates":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates. 

 The directory contains a number of demo templates including the following ones: 

 {background:#f6fcff}. | "block.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/block.rb | demonstrates how to use block constructs | 
                       | "block_random.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/block_random.rb | demonstrates how to create randomized instruction sequences using block constructs | 
 {background:#f6fcff}. | "euclid.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/euclid.rb | demonstrates test program simulation to predict the resulting microprocessor state | 
                       | "random.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/random.rb | demonstrates how to randomize tests by using biases and distributions | 
 {background:#f6fcff}. | "random_immediate.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/random_immediate.rb | demonstrates how to randomize immediate values | 
                       | "random_registers.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/random_registers.rb | demonstrates how to randomize registers (dependencies) | 

 Test templates are written in "Ruby":http://www.ruby-lang.org extended with specific [[Template_Description_Language|constructs]] (let us look at "block.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/block.rb): 

 # the code in the beginning includes the "x86_base.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/x86_base.rb file where a base template @X86BaseTemplate@ is defined and declares a @BlockTemplate@ template: 
 <pre><code class="ruby"> 
 require_relative ''x86_base'' 

 class BlockTemplate < X86BaseTemplate    # BlockTemplate is a heir of @X86BaseTemplate@ 
 </code></pre> 
 # here comes a @run@ method, which is a template entry point: 
 <pre><code class="ruby"> def run</code></pre> 
 # this block produces a sequence consisting of three instructions: 
 <pre><code class="ruby"> 
   sequence {                     # sequence: {mov, sub, add} 
     mov_r16r16 ax, bx 
     sub_r16r16 cx, dx            # registers: fixed 
     add_r16r16 r16(_), r16(_)    # registers: randomized 
   }.run 
 </code></pre> 
 # this block produces an atomic sequence consisting of three instructions (atomic sequences are not interrupted while being merged with other ones): 
 <pre><code class="ruby"> 
   atomic {                       # atomic sequence: {mov, add, sub} 
     mov_r16r16 ax, bx 
     add_r16r16 cx, dx 
     sub_r16r16 r16(_), r16(_) 
   }.run 
 </code></pre> 
 # this block produces three sequences each consisting of one instruction: 
 <pre><code class="ruby"> 
   iterate {                      # sequences: {{mov}, {sub}, {add}} 
     mov_r16r16 ax, bx 
     sub_r16r16 cx, dx 
     add_r16r16 r16(_), r16(_) 
   }.run 
 </code></pre> 
 # this block produces four sequences each consisting of two instructions 
 ~the the combinator constructs the Cartesian product of the nested sets of sequences;~ sequences; 
 ~for for each tuple of the product, the compositor randomly merges the tuple''s sequences into one):~ one): 
 <pre><code class="ruby"> 
   block(:combinator => ''product'', :compositor => ''random'') { 
     # combinator: {({sub}, {mov}), ({sub}, {sub}), ({add}, {mov}), ({add}, {sub})} 
     # compositor: {    {mov, sub},       {sub, sub},       {add, mov},       {sub, add}    } 

     iterate {                    # sequences: {{sub}, {add}} 
       sub_r16r16 cx, dx 
       add_r16r16 ax, bx 
     } 
     iterate {                    # sequences: {{mov}, {sub}} 
       mov_r16r16 ax, bx 
       sub_r16r16 r16(_), r16(_) 
     } 
   }.run 
 </code></pre> 
 # merges two sequences in random fashion; atomic sequences are unmodifiable 
 <pre><code class="ruby"> 
   block(:combinator => ''diagonal'', :compositor => ''random'', :obfuscator => ''random'') { 
     sequence { 
       sub_r16r16 bx, ax 
       or_r16r16 cx, dx 
     } 

     atomic { 
       prologue { comment ''Atomic starts'' } 
       epilogue { comment ''Atomic ends'' } 

       and_r16r16 r16(_), r16(_) 
     } 
   }.run 
 </code></pre> 

 To generate test program(s) from a test template (in our case, from @block.rb@), run the following command: 
 <pre>sh $MICROTESK_HOME/bin/generate.sh x86 block.rb --code-file-prefix block --code-file-extension s -v</pre> 

 When generation is finished, the resulting assembly code can be found in @$MICROTESK_HOME@. 

 To compile "the output file":http://forge.ispras.ru/attachments/download/5127/block_0000.s, run the following commands: 
 <pre> 
 nasm -f elf block_0000.s 
 ld -m i386pe -s -o block_0000 block_0000.o 
 </pre> 

 To execute resulted test cases is possible by means of the "online simulator":https://www.tutorialspoint.com/compile_assembly_online.php 
 !Example_block.png!