Getting Started with x86¶
Prerequisite¶
MicroTESK should be installed.
Demo Specifications¶
Specifications of the x86 (8086) instruction set architecture (ISA) can be found in $MICROTESK_HOME/arch/demo/x86/model/x86.nml.
Instruction are described in nML by means of the following constructs (move r16/r16 is taken as an example):
- the signature
op mov_r16r16 (dst: R16, src: R16)
- the assembly format
syntax = format("mov %s, %s", dst.syntax, src.syntax)
- the binary encoding
image = format("1000101111%s%s", dst.image, src.image)
- the semantics
action = { dst = src; ... }
To compile the ISA model, run the following command:
sh $MICROTESK_HOME/bin/compile.sh x86.nml
Demo Templates¶
Test templates for the x86 (8086) ISA can be found in $MICROTESK_HOME/arch/demo/x86/templates.
The directory contains a number of demo templates including the following ones:
block.rb | demonstrates how to use block constructs |
block_random.rb | demonstrates how to create randomized instruction sequences using block constructs |
euclid.rb | demonstrates test program simulation to predict the resulting microprocessor state |
random.rb | demonstrates how to randomize tests by using biases and distributions |
random_immediate.rb | demonstrates how to randomize immediate values |
random_registers.rb | demonstrates how to randomize registers (dependencies) |
Test templates are written in Ruby extended with specific constructs (let us look at block.rb):
- the code in the beginning includes the x86_base.rb file where a base template
X86BaseTemplate
is defined and declares aBlockTemplate
template:require_relative 'x86_base' class BlockTemplate < X86BaseTemplate # BlockTemplate is a heir of @X86BaseTemplate@
- here is a template entry point:
def run
- this block produces a sequence consisting of three instructions:
sequence { # {{mov, sub, add}} mov_r16r16 ax, bx sub_r16r16 cx, dx add_r16r16 r16(_), r16(_) }.run
- this block produces an atomic sequence consisting of three instructions (atomic sequences are not interrupted while being merged with other ones):
atomic { # {{mov, add, sub}} mov_r16r16 ax, bx add_r16r16 cx, dx sub_r16r16 r16(_), r16(_) }.run
- this block produces three sequences each consisting of one instruction:
iterate { # {{mov}, {sub}, {add}} mov_r16r16 ax, bx sub_r16r16 cx, dx add_r16r16 r16(_), r16(_) }.run
- this block produces four sequences each consisting of two instructions
the combinator constructs the Cartesian product of the nested sets of sequences; the compositor randomly merges each tuple of the product into one sequence:block(:combinator => 'product', # {({sub}, {mov}), ({sub}, {sub}), ({add}, {mov}), ({add}, {sub})} :compositor => 'random') { # { {mov, sub}, {sub, sub}, {add, mov}, {add, sub} } iterate { # {{sub}, {add}} sub_r16r16 cx, dx add_r16r16 ax, bx } iterate { # {{mov}, {sub}} mov_r16r16 ax, bx sub_r16r16 r16(_), r16(_) } }.run
- this block merges two sequences in a random fashion
the combinator constructs the diagonal of the Cartesian product; the compositor randomly merges the tuples into sequences; the obfuscator reorders the sequences:block(:combinator => 'diagonal', # {({sub, or}, {start, and, end})} :compositor => 'random', # { {sub, start, and, end, or} } :obfuscator => 'random') { # { {or, start, and, end, sub} } sequence { # {sub, or} sub_r16r16 bx, ax or_r16r16 cx, dx } atomic { # {start, add, end} prologue { comment 'Atomic starts' } epilogue { comment 'Atomic ends' } and_r16r16 r16(_), r16(_) } }.run
To generate a test program from a test template (in our case, from block.rb
), run the following command:
sh $MICROTESK_HOME/bin/generate.sh x86 block.rb --code-file-prefix block --code-file-extension s -v
When generation is finished, the resulting assembly code can be found in $MICROTESK_HOME
:
;================================================================================================== ; Prologue section .text global _start _start: ;================================================================================================== ; Test Case 0 (block.rb:28) ; Preparation mov BX, 43715 ; Stimulus mov AX, BX sub CX, DX add SI, DX ...
To compile the test program, run, for example, the following commands:
nasm -f elf block_0000.s ld -m i386pe -s -o block_0000 block_0000.o
The test program can be executed in the simulator
Updated by Alexander Kamkin almost 8 years ago ยท 87 revisions