Getting Started with x86 » History » Revision 74
Revision 73 (Alexander Kamkin, 04/06/2017 08:25 PM) → Revision 74/87 (Alexander Kamkin, 04/06/2017 08:28 PM)
h1. Getting Started with x86 {{toc}} h2. Prerequisite MicroTESK should be [[Installation Guide|installed]]. h2. Demo Specifications Specifications of the x86 (8086) instruction set architecture (ISA) can be found in "$MICROTESK_HOME/arch/demo/x86/model/x86.nml":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/model/x86.nml. Instruction are described in [[nML Language Reference|nML]] by means of the following constructs (_move r16/r16_ is taken as an example): ## the signature <pre><code class="c">op mov_r16r16 (dst: R16, src: R16)</code></pre> ## the assembly format <pre><code class="c">syntax = format("mov %s, %s", dst.syntax, src.syntax)</code></pre> ## the binary encoding <pre><code class="c">image = format("1000101111%s%s", dst.image, src.image)</code></pre> ## the semantics <pre><code class="c"> action = { dst = src; ... } </code></pre> To compile the ISA model, run the following command: <pre>sh $MICROTESK_HOME/bin/compile.sh x86.nml</pre> h2. Demo Templates Test templates for the x86 (8086) ISA can be found in "$MICROTESK_HOME/arch/demo/x86/templates":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates. The directory contains a number of demo templates including the following ones: {background:#f6fcff}. | "block.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/block.rb | demonstrates how to use block constructs | | "block_random.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/block_random.rb | demonstrates how to create randomized instruction sequences using block constructs | {background:#f6fcff}. | "euclid.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/euclid.rb | demonstrates test program simulation to predict the resulting microprocessor state | | "random.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/random.rb | demonstrates how to randomize tests by using biases and distributions | {background:#f6fcff}. | "random_immediate.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/random_immediate.rb | demonstrates how to randomize immediate values | | "random_registers.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/random_registers.rb | demonstrates how to randomize registers (dependencies) | Test templates are written in "Ruby":http://www.ruby-lang.org extended with specific [[Template_Description_Language|constructs]] (let us look at "block.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/block.rb): # the code in the beginning includes the "x86_base.rb":http://forge.ispras.ru/projects/microtesk/repository/entry/trunk/microtesk/src/main/arch/demo/x86/templates/x86_base.rb file where a base template @X86BaseTemplate@ is defined and declares a @BlockTemplate@ template: <pre><code class="ruby"> require_relative ''x86_base'' class BlockTemplate < X86BaseTemplate # BlockTemplate is a heir of @X86BaseTemplate@ </code></pre> # here is a template entry point: <pre><code class="ruby"> def run</code></pre> # this block produces a sequence consisting of three instructions: <pre><code class="ruby"> sequence { # sequence: {mov, sub, add} mov_r16r16 ax, bx sub_r16r16 cx, dx # registers: fixed add_r16r16 r16(_), r16(_) # registers: randomized }.run </code></pre> # this block produces an atomic sequence consisting of three instructions (atomic sequences are not interrupted while being merged with other ones): <pre><code class="ruby"> atomic { # atomic sequence: {mov, add, sub} mov_r16r16 ax, bx add_r16r16 cx, dx sub_r16r16 r16(_), r16(_) }.run </code></pre> # this block produces three sequences each consisting of one instruction: <pre><code class="ruby"> iterate { # sequences: {{mov}, {sub}, {add}} mov_r16r16 ax, bx sub_r16r16 cx, dx add_r16r16 r16(_), r16(_) }.run </code></pre> # this block produces four sequences each consisting of two instructions ~the combinator constructs the Cartesian product of the nested sets of sequences; the compositor randomly merges each tuple of the product into one sequence:~ <pre><code class="ruby"> block(:combinator => ''product'', :compositor => ''random'') { # combinator: {({sub}, {mov}), ({sub}, {sub}), ({add}, {mov}), ({add}, {sub})} # compositor: { {mov, sub}, {sub, sub}, {add, mov}, {add, sub} } iterate { # sequences: {{sub}, {add}} sub_r16r16 cx, dx add_r16r16 ax, bx } iterate { # sequences: {{mov}, {sub}} mov_r16r16 ax, bx sub_r16r16 r16(_), r16(_) } }.run </code></pre> # this block merges two sequences in a random fashion ~the combinator constructs the diagonal of the Cartesian product; the compositor randomly merges the tuples into sequences; tuples; the obfuscator reorders the sequences:~ <pre><code class="ruby"> block(:combinator => ''diagonal'', :compositor => ''random'', :obfuscator => ''random'') { # combinator: {({sub, or}, {start, and, end})} {({sub}, {mov}), ({sub}, {sub}), ({add}, {mov}), ({add}, {sub})} # compositor: { {mov, sub}, {sub, start, and, end, or} sub}, {add, mov}, {sub, add} } # obfuscator: { {or, start, and, end, sub} } sequence { # sequence {sub, or} sub_r16r16 bx, ax or_r16r16 cx, dx } atomic { # sequence {start, {comment1, add, end} comment2} prologue { comment ''Atomic starts'' } epilogue { comment ''Atomic ends'' } and_r16r16 r16(_), r16(_) } }.run </code></pre> To generate test program(s) from a test template (in our case, from @block.rb@), run the following command: <pre>sh $MICROTESK_HOME/bin/generate.sh x86 block.rb --code-file-prefix block --code-file-extension s -v</pre> When generation is finished, the resulting assembly code can be found in @$MICROTESK_HOME@. To compile "the output file":http://forge.ispras.ru/attachments/download/5127/block_0000.s, run the following commands: <pre> nasm -f elf block_0000.s ld -m i386pe -s -o block_0000 block_0000.o </pre> To execute resulted test cases is possible by means of the "online simulator":https://www.tutorialspoint.com/compile_assembly_online.php !Example_block.png!