Project

General

Profile

База данных ограничений » History » Version 61

Andrei Tatarnikov, 12/22/2011 12:13 PM

1 3 Andrei Tatarnikov
h1. Constraint Solver
2 1 Alexander Kamkin
3 51 Andrei Tatarnikov
The constraint solver subsystem is aimed to provide the possibility to automatically generate test cases based on specified constraints. A constraint is represented by a set of limitations for input values. Solvers calculate values of input variables which will violate the limitations if there are any such values.
4 6 Andrei Tatarnikov
5 44 Andrei Tatarnikov
The subsystem uses an openly distributed SMT solver as an engine (in the current version, we use the Z3 solver by Microsoft Research). In SMT solvers, a special functional language is used to specify constraints. The constraint solver subsystem generates constructions in the SMT language and runs the engine to process them and produce the results (find values of unknown input variables).
6 3 Andrei Tatarnikov
7 1 Alexander Kamkin
h2. Constraints and Satisfiability Modulo Theories (SMT)
8 44 Andrei Tatarnikov
9 48 Andrei Tatarnikov
Constrains specified as an SMT model are represented by a set of assertions (formulas) that must be satisfied. An SMT solver checks the satisfiability of the model and suggests a solution (variable values) that would satisfy the model. In the example below, we specify a model that should help us create a test that will cause a MIPS processor to generate an exception. We want to find values of the rs and rt general purpose registers that will cause the ADD instruction to raise an integer overflow exception. It should be correct 32-bit signed integers that are not equal to each other. Here is an SMT script:
10 43 Andrei Tatarnikov
11
<pre>
12
(define-sort        Int_t () (_ BitVec 64))
13
14
(define-fun      INT_ZERO () Int_t (_ bv0 64))
15
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))
16
(define-fun INT_SIGN_MASK () Int_t (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))
17
18
(define-fun IsValidPos ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))
19
(define-fun IsValidNeg ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true false))
20
(define-fun IsValidSignedInt ((x!1 Int_t)) Bool (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))
21
22
(declare-const rs Int_t)
23
(declare-const rt Int_t)
24
25
; rt and rs must contain valid sign-extended 32-bit values (bits 63..31 equal)
26
(assert (IsValidSignedInt rs))
27
(assert (IsValidSignedInt rt))
28
29
; the condition for an overflow: the summation result is not a valid sign-extended 32-bit value
30
(assert (not (IsValidSignedInt (bvadd rs rt))))
31
32
; just in case: rs and rt are not equal (to make the results more interesting)
33
(assert (not (= rs rt)))
34
35
(check-sat)
36
37
(echo "Values that lead to an overflow:")
38 35 Andrei Tatarnikov
(get-value (rs rt))
39
</pre>
40
41 56 Andrei Tatarnikov
In an ideal case, each run of an SMT solver should return random values from the set of possible solutions. This should improve test coverage. Unfortunately, the current implementation is limited to a single solution that is constant for all run. This should be improved in the final version.   
42 49 Andrei Tatarnikov
43 59 Andrei Tatarnikov
h2. Tree Representation
44 18 Andrei Tatarnikov
45 57 Andrei Tatarnikov
In our system, we use context-independent syntax trees to represent constraints. These trees are then used to generate a representation that can be understood by a particular SMT solver. Generally, it is an SMT model that uses some limited set of solver features applicable to microprocessor verification. The syntax tree contains nodes of the following types:
46 55 Andrei Tatarnikov
# Constraint. This is the root node of the tree. It holds the list of unknown variables and the list of assertions (limitations) for these variables.
47
# Formula. Represents an assertion expression. Can be combined with other formulas to build a more complex expression (by applying logic OR, AND or NOT to it). The underlying expression must be a logic expression that can be solved to true or false.
48 13 Andrei Tatarnikov
# Operation. Represents an unary or binary operation with some unknown variable, some value or some expression as parameters.
49 14 Andrei Tatarnikov
# Variable.Represents an input variable. It can have an assigned value and, in such case, will be treated as a value. Otherwise, it is an unknown variable. A variable includes a type as an attribute.
50
# Value. Specifies some known value of the specified type which can be accessed as an attribute.
51 17 Andrei Tatarnikov
52 16 Andrei Tatarnikov
Note: Operation, Variables and Value can be treated polymorphically as syntax elements (SyntaxElement). This allows combining them to build complex expressions.
53 1 Alexander Kamkin
54 24 Andrei Tatarnikov
The current implementation supports operations with the following data types:
55 26 Andrei Tatarnikov
# Bit vectors
56
# Booleans
57 16 Andrei Tatarnikov
58 22 Andrei Tatarnikov
h2. Constraint Solver Java Library
59 3 Andrei Tatarnikov
60 58 Andrei Tatarnikov
The Constraint Solver subsystem is implemented in Java. The source code files are located in the "microtesk++/constraint-solver" folder. The Java classes are organized in the following packages:
61
# ru.ispras.microtesk.constraints - contains SMT model generation logic and solver implementations.
62 32 Andrei Tatarnikov
# ru.ispras.microtesk.constraints.syntax - contains classes implementing syntax tree nodes.
63
# ru.ispras.microtesk.constraints.syntax.types - contains code that specifies particular data types and operation types.
64 29 Andrei Tatarnikov
# ru.ispras.microtesk.constraints.tests - contains JUnit test cases.
65 28 Andrei Tatarnikov
66 60 Andrei Tatarnikov
h3. Core classes/interfaces
67 3 Andrei Tatarnikov
68 61 Andrei Tatarnikov
69
70
<pre>
71
class BitVectorIntegerOverflowTestCase implements SolverTestCase
72
{
73
	private static final int BIT_VECTOR_LENGTH = 64;
74
	
75
	private static final DataType BIT_VECTOR_TYPE =	DataType.getBitVector(BIT_VECTOR_LENGTH);
76
	private static final Value           INT_ZERO =	new Value(new BigInteger("0"), BIT_VECTOR_TYPE);
77
	private static final Value      INT_BASE_SIZE = new Value(new BigInteger("32"), BIT_VECTOR_TYPE);
78
	private static final Operation  INT_SIGN_MASK = new Operation(BitVectorOperation.BVSHL, new Operation(BitVectorOperation.BVNOT, INT_ZERO, null), INT_BASE_SIZE);
79
	
80
	private Operation IsValidPos(SyntaxElement arg)
81
	{
82
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_ZERO);
83
	}
84
	
85
	private Operation IsValidNeg(SyntaxElement arg)
86
	{
87
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_SIGN_MASK);
88
	}
89
	
90
	private Operation IsValidSignedInt(SyntaxElement arg)
91
	{
92
		return new Operation(LogicBooleanOperation.OR, IsValidPos(arg), IsValidNeg(arg));
93
	}
94
	
95
	public Constraint getConstraint()
96
	{
97
		Constraint constraint = new Constraint();
98
		
99
		Variable rs = new Variable("rs", BIT_VECTOR_TYPE, null);
100
		constraint.addVariable(rs);
101
		
102
		Variable rt = new Variable("rt", BIT_VECTOR_TYPE, null);
103
		constraint.addVariable(rt);
104
		
105
		
106
		constraint.addFormula(
107
			new Formula(
108
				IsValidSignedInt(rs)
109
			)
110
		);
111
		
112
		constraint.addFormula(
113
			new Formula(
114
				IsValidSignedInt(rt)
115
			)
116
		);
117
118
		constraint.addFormula(
119
			new Formula(
120
				new Operation(
121
					LogicBooleanOperation.NOT,
122
					IsValidSignedInt(new Operation(BitVectorOperation.BVADD, rs, rt)),
123
					null
124
				) 
125
			)
126
		);
127
128
		constraint.addFormula(
129
			new Formula(
130
				new Operation(LogicBooleanOperation.NOT, new Operation(LogicBooleanOperation.EQ, rs, rt), null)
131
			)
132
		);
133
134
		return constraint;
135
	}
136
	
137
	public Vector<Variable> getExpectedVariables()	
138
	{
139
		Vector<Variable> result = new Vector<Variable>();
140
		
141
		result.add(new Variable("rs", BIT_VECTOR_TYPE, new BigInteger("000000009b91b193", 16)));
142
		result.add(new Variable("rt", BIT_VECTOR_TYPE, new BigInteger("000000009b91b1b3", 16)));
143
		
144
		return result;	
145
	}
146
}
147
</pre>
148
149
150 3 Andrei Tatarnikov
h1. База данных ограничений
151
152
База данных ограничений строится автоматически в результате анализа формализованных спецификаций системы команд микропроцессора, выполненной на одном из ADL-языков (например, nML). Некоторые ситуации могут описываться вручную и добавляться в базу данных ограничений.