

MicroTESK is a reconfigurable (retargetable and extendable) model-based test program generator

for microprocessors and other programmable devices. Lightweight formal specifications customize

the generator for a particular architecture and provide knowledge about situations to be covered by

tests. A convenient test template framework allows rapid development of complex verification

scenarios. Being retargetable, MicroTESK is able to support various RISC and CISC architectures.

Open Source | http://forge.ispras.ru/projects/microtesk

Advanced Verification Program

Generator for Microprocessors

The MicroTESK test program generator is being developed at the Software Engineering Department of the Institute for System Programming, Russian Academy of Sciences

(ISPRAS). The institute performs both academic research and industrial development projects as well as provides advanced services and consulting in various areas of

software engineering, information technologies and computer science.

We gratefully acknowledge Indian Institute of Technology Kanpur (IIT Kanpur) provided us with Sim-nML documentation and examples.

Copyright © 2012-2013 Institute for System Programming of the Russian Academy of Sciences (ISPRAS) | http://www.ispras.ru

MicroTESK

Target Architectures

 MicroTESK is retargetable

o RISC

o CISC wide range of ISA

o DSP

 Primary focus on RISC architectures

o ARM

o MIPS + custom designs

o SPARC

Microprocessor Specification

 Specifications in nML/Sim-nML (TU Berlin/IIT Kanpur)

o memory structure and addressing modes

o behavioral description of instructions

o assembler/binary instruction formats

 Configurations in domain specific languages

o memory management (TLB, L1 and L2)

o pipeline logic (microarchitectural networks)

o branch processing (prediction, etc.)

Test Program Generation

 Test program templates in Ruby

o focus on simplicity and productivity

o transparent access to processor model

o integration with test generators

 MicroTESK is extendable

o randomized generation

o combinatorial generation + custom methods

o model-based generation

assembler format

instruction behavior

(processor model)

testing knowledge

(coverage model)

op ADD(c:C, s:S, r1:REG, r2:REG, d3:DATA)

 syntax = format("ADD%s%s %s, %s, %s", ...)

 image = format("%s0000100%s%s%s%s", ...)

 action = {

 c.action; d3.action;

 if (X == 1) then

 carry::ALU_OUT = GPR[r2] + d3;

 if (s == 1) && (r1 == 15) then

 CPSR = SPSR;

 else

 if (s == 1) then

 CPSR<31..31> = ALU_OUT<31..31>;

 if (ALU_OUT == 0) then

 CPSR<30..30> = 1;

 else

 CPSR<30..30> = 0;

 endif;

 CPSR<29..29> = carry;

 if (GPR[r2]<31..31> == d3<31..31>) &&

 (ALU_OUT != GPR[r2]<31..31>) then

 CPSR<28..28> = 1;

 else

 CPSR<28..28> = 0;

 endif;

 endif;

 endif;

 GPR[r1] = ALU_OUT;

 endif;

 }

Instruction Description in

Sim-nML Language

Basic MicroTESK Use-Case

Verification

Engineer

Test Program Template in

Ruby Language

...

add r[1], r[2], r[3]

sub r[4], r[1], r[5] do overflow end

newline

text "// Text be placed in a test"

newline

sub r[i=rand(8..16)], r[10..20], r[i]

newline

3.times do

 ld r[1], r[2] do hit end

 add r[3], r[1], r[4] do normal end

 newline

end

(1..5).each do |i|

 ori r[i], r[i+1], r[0]

 newline

end

...

processor model access

coverage model access

test code formatting

test randomization

test sequence control

http://www.ispras.ru/

