MMU description » History » Revision 131
« Previous |
Revision 131/132
(diff)
| Next »
Alexander Kamkin, 02/13/2015 10:07 AM
MMU Description¶
By Alexander Kamkin, Taya Sergeeva, and Andrei Tatarnikov
- Table of contents
- MMU Description
A memory management unit (MMU) is known to be one of the most complex and error-prone components of a modern microprocessor. MicroTESK has a special subsystem, called MMU subsystem, intended for (1) specifying memory devices and (2) deriving testing knowledge from such specifications. The subsystem provides unified facilities for describing memory buffers (like L1 and L2 caches, translation look-aside buffers (TLBs), etc.) as well as a means for connecting several buffers into a memory hierarchy.
Grammar¶
startRule : declaration* EOF! ; declaration : address | segment | buffer | mmu ;
The expression syntax is derived from nML/Sim-nML (see Sim-nML Language Reference).
Address Description (address)¶
A buffer is accessed by an address, which is typically a bit vector of a fixed length (width). Different buffers are allowed to have a common address space (e.g., L1 and L2 are usually both addressed by physical addresses). However, in general case, each buffer has its own domain.
An address space is described using a keyword address
. The description includes the address type identifier and the address width. The latter is specified in brackets. Its value should be non-negative (zero-length addresses are permitted).
Grammar¶
address : ''address'' addressTypeID ''('' expr '')'' ;
Examples¶
// A 64-bit virtual address (VA). address VA(64)
// A 36-bit physical address (PA). address PA(36)
Address Space Segment Description (segment)¶
An address space segment is specified using the segment
keyword. A segment is associated with a specific address type. It is possible to specify any number (≥ 0) of segments (with different names) for one address type. Each segment is characterized by its identifier and address range. Different segments should have different names, but address ranges are allowed to overlap, and moreover, to be the same.
Grammar¶
segment : ''segment'' segmentID ''('' argumentID '':'' addressTypeID '')'' ''range'' ''='' ''('' expr '','' expr '')'' ;
Examples¶
segment USEG (va: VA) range = (0x0000000000000000, 0x000000007fffffff)
Buffer Description (buffer)¶
A buffer is described using a keyword buffer
. The description specifies a set of parameters, including ways
, sets
, entry
, index
, match
and policy
. All of the parameters except index
(if sets = 1
) and policy
are obligatory.
Grammar¶
buffer : ''buffer'' bufferTypeID ''('' addressArgID '':'' addressTypeID '')'' (bufferParameter)* ; bufferParameter : ways | sets | entry | index | match | policy ;
Buffer Associativity (ways)¶
The ways
parameter specifies the buffer associativity (the number of lines in a set). The parameter is obligatory; its value should be positive.
Grammar¶
ways : ''ways'' ''='' expr ;
Buffer Length (sets)¶
The sets
parameter specifies the buffer length (the number of sets a cache). The parameter is obligatory; its value should be positive.
Grammar¶
sets : ''sets'' ''='' expr ;
Buffer Line Format (entry)¶
The entry
parameter specifies the buffer line format (a number of named fields). A field has three attributes: a name, a width and, optionally, an initial value.
Grammar¶
format : ''entry'' ''='' ''('' field ('','' field)* '')'' ; field : fieldID '':'' expr (''='' expr)? ;
Buffer Index Function (index)¶
The index
parameter specifies the address-to-index function, which maps an address into the set index. The function may be omitted if the number of sets is 1
.
Grammar¶
index : ''index'' ''='' expr ;
Buffer Match Predicate (match)¶
The match
parameter specifies the address-line match predicate, which checks if an address matches a line. The parameter is obligatory.
Grammar¶
index : ''match'' ''='' expr ;
Buffer Data Replacement Policy (policy)¶
The policy
parameters specifies the data replacement (eviction) policy. The parameter is optional. The list of supported policies includes: RANDOM
, FIFO
, PLRU
and LRU
.
Grammar¶
policy : ''policy'' ''='' policyID ;
Examples¶
// A 4-way set associative cache (L1) addressed by physical addresses (PA). buffer L1(addr: PA) // The cache associativity. ways = 4 // The number of sets. sets = 128 // The line format. entry = ( V : 1 = 0, // The validity flag (by default, the line is invalid). TAG : 24, // The tag (the <35..12> address bits). DATA : 256 // The data (4 double words). ) // The address-to-index function (example: using address fields). index = addr.INDEX // The address-line predicate (example: using address bits). match = addr<35..12> == TAG // The data replacement policy (example: using predefined policy LRU - Least Recently Used). policy = LRU
MMU Description (mmu)¶
Memory management unit logic is described using the mmu
keyword. The description includes two obligatory parameters read
and write
that describe the semantics of memory read and memory write actions respectively.
Grammar¶
mmu : ''mmu'' memoryTypeID ''('' addressArgID '':'' addressTypeID '')'' = dataArgID (mmuVariable)* (mmuParameter)* ; mmuVariable : ''var'' variableID '':'' variableTypeID (''.'' ''entry'')? '';'' ; mmuParameter : read | write ;
Memory Read Action (read)¶
The read
parameter specifies the read action, which is a sequence of statements describing how the read operation is to be performed (by means of data transfers between buffers). The parameter is obligatory.
Grammar¶
read : ''read'' ''='' ''{'' sequence ''}'' ;
Memory Write Action (write)¶
The write
parameter specifies the read action, which is a sequence of statements describing how the write operation is to be performed (by means of data transfers between buffers). The parameter is obligatory.
Grammar¶
write : ''write'' ''='' ''{'' sequence ''}'' ;
Examples¶
// A memory unit addressed by virtual addresses (VA). mmu Memory(addr: VA) = data // The read action. read = { // Some statements. ... } // The write action. write = { // Some statements. ... }
Simplified Specification of MIPS''s MMU¶
//================================================================================================== // Virtual Address (VA) //================================================================================================== address VA(64) //-------------------------------------------------------------------------------------------------- // User Mode Segments //-------------------------------------------------------------------------------------------------- segment USEG (va: VA) range = (0x0000000000000000, 0x000000007fffffff) segment XUSEG(va: VA) range = (0x0000000080000000, 0x000000ffffffffff) //-------------------------------------------------------------------------------------------------- // Supervisor Mode Segments //-------------------------------------------------------------------------------------------------- segment SUSEG(va: VA) range = (0x0000000000000000, 0x000000007fffffff) segment XSUSEG(va: VA) range = (0x0000000080000000, 0x000000ffffffffff) segment XSSEG(va: VA) range = (0x4000000000000000, 0x400000ffffffffff) segment CSSEG(va: VA) range = (0xffffffffc0000000, 0xffffffffdfffffff) //-------------------------------------------------------------------------------------------------- // Kernel Mode Segments //-------------------------------------------------------------------------------------------------- segment KUSEG (va: VA) range = (0x0000000000000000, 0x000000007fffffff) segment XKUSEG (va: VA) range = (0x0000000080000000, 0x000000ffffffffff) segment XKSSEG (va: VA) range = (0x4000000000000000, 0x400000ffffffffff) segment XKSEG (va: VA) range = (0xc000000000000000, 0xc00000ff7fffffff) segment CKSSEG (va: VA) range = (0xffffffffc0000000, 0xffffffffdfffffff) segment CKSEG3(va: VA) range = (0xffffffffe0000000, 0xffffffffffffffff) //================================================================================================== // Physical Address (PA) //================================================================================================== address PA(36) //================================================================================================== // Translation Lookaside Buffer (TLB) //================================================================================================== buffer DTLB (va: VA) ways = 4 sets = 1 entry = (ASID: 8, VPN2: 27, R: 2, // EntryHi G0: 1, V0: 1, D0: 1, C0: 3, PFN0: 24, // EntryLo0 G1: 1, V1: 1, D1: 1, C1: 3, PFN1: 24) // EntryLo1 index = 0 match = VPN2 == va<39..13> // ASID, G and non-4KB pages are unsupported policy = PLRU buffer JTLB (va: VA) ways = 64 sets = 1 entry = (ASID: 8, VPN2: 27, R: 2, // EntryHi G0: 1, V0: 1, D0: 1, C0: 3, PFN0: 24, // EntryLo0 G1: 1, V1: 1, D1: 1, C1: 3, PFN1: 24) // EntryLo1 index = 0 match = VPN2 == va<39..13> // ASID, G and non-4KB pages are unsupported policy = NONE //================================================================================================== // Cache Memory (L1 and L2) //================================================================================================== buffer L1 (pa: PA) ways = 4 sets = 128 entry = (V: 1 = 0, TAG: 24, DATA: 256) index = pa<11..5> match = V == 1 && TAG == pa<35..12> policy = PLRU buffer L2 (pa: PA) ways = 4 sets = 4096 entry = (V: 1 = 0, TAG: 19, DATA: 256) index = pa<16..5> match = V == 1 && TAG == pa<35..17> policy = PLRU //================================================================================================== // MMU Logic (Interaction between TLB, L1 and L2) //================================================================================================== mmu pmem(va: VA) = (data: 64) var tlbEntry: JTLB.entry; var l1Entry: L1.entry; var l2Entry: L2.entry; var evenOddBit: 5; var g: 1; var v: 1; var d: 1; var c: 3; var pfn: 24; var pa: PA; var cachePA: PA; var cacheData: 256; read = { // The address is unaligned. if va<0..2> != 0 then exception("AddressError"); endif; // If the address is unaligned. // The default cache policy. c = 3; // The address is from the USEG segment (only USEG and KSEG segments are supported). if USEG(va).hit then // The address hits the DTLB. if DTLB(va).hit then tlbEntry = DTLB(va); // The address hits the JTLB. elif JTLB(va).hit then tlbEntry = JTLB(va); // The address does not hit the TLB. else exception("TLBMiss"); endif; // If the address hits the DTLB. // Only 4KB pages are supported. evenOddBit = 12; // The VPN is even. if va<evenOddBit> == 0 then g = tlbEntry.G0; v = tlbEntry.V0; d = tlbEntry.D0; c = tlbEntry.C0; pfn = tlbEntry.PFN0; // The VPN is odd. else g = tlbEntry.G1; v = tlbEntry.V1; d = tlbEntry.D1; c = tlbEntry.C1; pfn = tlbEntry.PFN1; endif; // If the VPN is even. // The EntryLo is valid. if v == 1 then pa = pfn<24..(evenOddBit - 12)>::va<(evenOddBit - 1)..0>; // The EntryLo is invalid. else exception("TLBInvalid"); endif; // If the EntryLo is valid. // The address is from the KSEG0 or KSEG1 segment. else pa = va<28..0>; endif; // If the address is from the USEG segment. // The address is cacheable. if c<1..0> != 2 then cachePA = pa; cachePA<4..0> = 0; // The address hits the L1. if L1(pa).hit then l1Entry = L1(pa); cacheData = l1Entry.DATA; data = cacheData<(8 * pa<4..0> + 63)..(8 * pa<4..0>)>; // The address does not hit the L1. else // The L2 cache is used. if c<1..0> == 3 then // The address hits the L2. if L2(pa).hit then l2Entry = L2(pa); cacheData = l2Entry.DATA; data = cacheData<(8 * pa<4..0> + 63)..(8 * pa<4..0>)>; // Fill the L1. l1Entry.V = 1; l1Entry.TAG = pa<35..12>; l1Entry.DATA = cacheData; L1(pa) = l1Entry; // The address does not hit the L2. else cacheData = pmem[cachePA + 24]::pmem[cachePA + 16]::pmem[cachePA + 8]::pmem[cachePA]; data = cacheData<(8 * pa<4..0> + 63)..(8 * pa<4..0>)>; // Fill L2. l2Entry.V = 1; l2Entry.TAG = pa<35..17>; l2Entry.DATA = cacheData; L2(pa) = l2Entry; // Fill L1. l1Entry.V = 1; l1Entry.TAG = pa<35..12>; l1Entry.DATA = cacheData; L1(pa) = l1Entry; endif; // If the address hits the L2. // The L2 cache is bypassed. else cacheData = pmem[cachePA + 24]::pmem[cachePA + 16]::pmem[cachePA + 8]::pmem[cachePA]; data = cacheData<(8 * pa<4..0> + 63)..(8 * pa<4..0>)>; l1Entry.V = 1; l1Entry.TAG = pa<35..12>; l1Entry.DATA = cacheData; L1(pa) = l1Entry; endif; // If the L2 cache is used. endif; // If the address hits the L1. // The address is uncacheable. else data = pmem[pa]; endif; // If the address is cacheable. } write = { // The address is unaligned. if va<0..2> != 0 then exception("AddressError"); endif; // If the address is unaligned. // The default cache policy. c = 3; // The address is from the USEG segment (only USEG and KSEG segments are supported). if USEG(va).hit then // The address hits the DTLB. if DTLB(va).hit then tlbEntry = DTLB(va); // The address hits the JTLB. elif JTLB(va).hit then tlbEntry = JTLB(va); // The address does not hit the TLB. else exception("TLBMiss"); endif; // If the address hits the DTLB. // Only 4KB pages are supported. evenOddBit = 12; // The VPN is even. if va<evenOddBit> == 0 then g = tlbEntry.G0; v = tlbEntry.V0; d = tlbEntry.D0; c = tlbEntry.C0; pfn = tlbEntry.PFN0; // The VPN is odd. else g = tlbEntry.G1; v = tlbEntry.V1; d = tlbEntry.D1; c = tlbEntry.C1; pfn = tlbEntry.PFN1; endif; // If the VPN is even. // The EntryLo is valid. if v == 1 then // The EntryLo is clean. if d == 1 then pa = pfn<24..(evenOddBit - 12)>::va<(evenOddBit - 1)..0>; // The EntryLo is dirty. else exception("TLBModified"); endif; // If the EntryLo is clean. // The EntryLo is invalid. else exception("TLBInvalid"); endif; // If the EntryLo is valid. // The address is from the KSEG0 or KSEG1 segment. else pa = va<28..0>; endif; // If the address is from the USEG segment. // The address is cacheable. if c<1..0> != 2 then cachePA = pa; cachePA<4..0> = 0; // The address hits the L1. if L1(pa).hit then // Update the L1. l1Entry = L1(pa); l1Entry.DATA<(8 * pa<4..0> + 63)..(8 * pa<4..0>)> = data; L1(pa) = l1Entry; // Only the write-through policy is supported. pmem[pa] = data; // The address does not hit the L1. else // The L2 cache is used. if c<1..0> == 3 then // The address hits the L2. if L2(pa).hit then // Update the L2. l2Entry = L2(pa); l2Entry.DATA<(8 * pa<4..0> + 63)..(8 * pa<4..0>)> = data; L2(pa) = l2Entry; // Fill the L1. l1Entry.V = 1; l1Entry.TAG = pa<35..12>; l1Entry.DATA = l2Entry.DATA; L1(pa) = l1Entry; // Only the write-through policy is supported. pmem[pa] = data; // The address does not hit the L2. else pmem[pa] = data; cacheData = pmem[cachePA + 24]::pmem[cachePA + 16]::pmem[cachePA + 8]::pmem[cachePA]; // Fill the L2. l2Entry.V = 1; l2Entry.TAG = pa<35..17>; l2Entry.DATA = cacheData; L2(pa) = l2Entry; // Fill the L1. l1Entry.V = 1; l1Entry.TAG = pa<35..12>; l1Entry.DATA = cacheData; L1(pa) = l1Entry; endif; // If the address hits the L2. // The L2 cache is bypassed. else pmem[pa] = data; cacheData = pmem[cachePA + 24]::pmem[cachePA + 16]::pmem[cachePA + 8]::pmem[cachePA]; // Fill the L2 l1Entry.V = 1; l1Entry.TAG = pa<35..12>; l1Entry.DATA = cacheData; L1(pa) = l1Entry; endif; // If the L2 cache is used. endif; // If the address hits the L1. // The address is uncacheable. else pmem[pa] = data; endif; // If the address is cacheable. } //================================================================================================== // The End //==================================================================================================
Updated by Alexander Kamkin almost 10 years ago · 132 revisions