Project

General

Profile

База данных ограничений » History » Version 75

Andrei Tatarnikov, 12/26/2011 10:55 AM

1 3 Andrei Tatarnikov
h1. Constraint Solver
2 1 Alexander Kamkin
3 69 Andrei Tatarnikov
The constraint solver subsystem is aimed to provide the possibility to automatically generate test cases based on specified constraints. A constraint is represented by a set of limitations for input values. Solvers calculate values of input variables which will violate the limitations if there are any such values.
4 6 Andrei Tatarnikov
5 44 Andrei Tatarnikov
The subsystem uses an openly distributed SMT solver as an engine (in the current version, we use the Z3 solver by Microsoft Research). In SMT solvers, a special functional language is used to specify constraints. The constraint solver subsystem generates constructions in the SMT language and runs the engine to process them and produce the results (find values of unknown input variables).
6 3 Andrei Tatarnikov
7 1 Alexander Kamkin
h2. Constraints and Satisfiability Modulo Theories (SMT)
8 44 Andrei Tatarnikov
9 48 Andrei Tatarnikov
Constrains specified as an SMT model are represented by a set of assertions (formulas) that must be satisfied. An SMT solver checks the satisfiability of the model and suggests a solution (variable values) that would satisfy the model. In the example below, we specify a model that should help us create a test that will cause a MIPS processor to generate an exception. We want to find values of the rs and rt general purpose registers that will cause the ADD instruction to raise an integer overflow exception. It should be correct 32-bit signed integers that are not equal to each other. Here is an SMT script:
10 43 Andrei Tatarnikov
11
<pre>
12
(define-sort        Int_t () (_ BitVec 64))
13
14
(define-fun      INT_ZERO () Int_t (_ bv0 64))
15
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))
16
(define-fun INT_SIGN_MASK () Int_t (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))
17
18
(define-fun IsValidPos ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))
19
(define-fun IsValidNeg ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true false))
20
(define-fun IsValidSignedInt ((x!1 Int_t)) Bool (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))
21
22
(declare-const rs Int_t)
23
(declare-const rt Int_t)
24
25
; rt and rs must contain valid sign-extended 32-bit values (bits 63..31 equal)
26
(assert (IsValidSignedInt rs))
27
(assert (IsValidSignedInt rt))
28
29
; the condition for an overflow: the summation result is not a valid sign-extended 32-bit value
30
(assert (not (IsValidSignedInt (bvadd rs rt))))
31
32
; just in case: rs and rt are not equal (to make the results more interesting)
33
(assert (not (= rs rt)))
34
35
(check-sat)
36
37
(echo "Values that lead to an overflow:")
38 35 Andrei Tatarnikov
(get-value (rs rt))
39
</pre>
40
41 56 Andrei Tatarnikov
In an ideal case, each run of an SMT solver should return random values from the set of possible solutions. This should improve test coverage. Unfortunately, the current implementation is limited to a single solution that is constant for all run. This should be improved in the final version.   
42 49 Andrei Tatarnikov
43 59 Andrei Tatarnikov
h2. Tree Representation
44 18 Andrei Tatarnikov
45 57 Andrei Tatarnikov
In our system, we use context-independent syntax trees to represent constraints. These trees are then used to generate a representation that can be understood by a particular SMT solver. Generally, it is an SMT model that uses some limited set of solver features applicable to microprocessor verification. The syntax tree contains nodes of the following types:
46 69 Andrei Tatarnikov
# Constraint. This is the root node of the tree. It holds the list of unknown variables and the list of assertions (formulas) for these variables.
47 55 Andrei Tatarnikov
# Formula. Represents an assertion expression. Can be combined with other formulas to build a more complex expression (by applying logic OR, AND or NOT to it). The underlying expression must be a logic expression that can be solved to true or false.
48 13 Andrei Tatarnikov
# Operation. Represents an unary or binary operation with some unknown variable, some value or some expression as parameters.
49 69 Andrei Tatarnikov
# Variable.Represents an input variable. It can have an assigned value and, in such a case, will be treated as a value. Otherwise, it is an unknown variable. A variable includes a type as an attribute.
50 14 Andrei Tatarnikov
# Value. Specifies some known value of the specified type which can be accessed as an attribute.
51 17 Andrei Tatarnikov
52 69 Andrei Tatarnikov
Note: Operation, Variables and Value are designed to be treated polymorphically. This allows combining them to build complex expressions.
53 16 Andrei Tatarnikov
54 22 Andrei Tatarnikov
h2. Constraint Solver Java Library
55 3 Andrei Tatarnikov
56 58 Andrei Tatarnikov
The Constraint Solver subsystem is implemented in Java. The source code files are located in the "microtesk++/constraint-solver" folder. The Java classes are organized in the following packages:
57
# ru.ispras.microtesk.constraints - contains SMT model generation logic and solver implementations.
58 1 Alexander Kamkin
# ru.ispras.microtesk.constraints.syntax - contains classes implementing syntax tree nodes.
59
# ru.ispras.microtesk.constraints.syntax.types - contains code that specifies particular data types and operation types.
60
# ru.ispras.microtesk.constraints.tests - contains JUnit test cases.
61
62 32 Andrei Tatarnikov
h3. Core classes/interfaces
63 66 Andrei Tatarnikov
64 70 Andrei Tatarnikov
The syntax tree nodes are implemented in the following classes:
65 74 Andrei Tatarnikov
* Constraint. Parameterized by a collection of Variable objects and a collection of Formula objects.
66 72 Andrei Tatarnikov
* Formula. Parameterized by an Operation object.
67
* Operation. Implements SyntaxElement. Parameterized by operand objects implementing SyntaxElement and an operation type object implementing OperationType.
68 75 Andrei Tatarnikov
* Variable. Implements SyntaxElement. Parameterized by the variable name string, a data type object implemeting DataType and a BigInteger value object.   
69 74 Andrei Tatarnikov
* Value. Implements SyntaxElement. Parameterized a data type object implemeting DataType and a BigInteger value object.
70 71 Andrei Tatarnikov
71
The SyntaxElement interface provides the ability to combine different kinds of elements into expressions.
72 72 Andrei Tatarnikov
73
Also, Operation objects are parameterized by objects   
74 70 Andrei Tatarnikov
75 66 Andrei Tatarnikov
The current implementation supports operations with the following data types:
76
# Bit vectors
77
# Booleans
78 60 Andrei Tatarnikov
79 73 Andrei Tatarnikov
80
81
The code below demonstrates how we can build a syntax tree representation for the integer overflow constraint:
82 61 Andrei Tatarnikov
83
<pre>
84
class BitVectorIntegerOverflowTestCase implements SolverTestCase
85
{
86 65 Andrei Tatarnikov
	private static final int      BIT_VECTOR_LENGTH = 64;
87
	private static final DataType   BIT_VECTOR_TYPE = DataType.getBitVector(BIT_VECTOR_LENGTH);
88
	private static final Value             INT_ZERO = new Value(new BigInteger("0"), BIT_VECTOR_TYPE);
89
	private static final Value        INT_BASE_SIZE = new Value(new BigInteger("32"), BIT_VECTOR_TYPE);
90
91
	private static final Operation    INT_SIGN_MASK =
92
		new Operation(BitVectorOperation.BVSHL, new Operation(BitVectorOperation.BVNOT, INT_ZERO, null), INT_BASE_SIZE);
93 61 Andrei Tatarnikov
	
94
	private Operation IsValidPos(SyntaxElement arg)
95
	{
96
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_ZERO);
97
	}
98
	
99
	private Operation IsValidNeg(SyntaxElement arg)
100
	{
101
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_SIGN_MASK);
102
	}
103
	
104
	private Operation IsValidSignedInt(SyntaxElement arg)
105
	{
106
		return new Operation(LogicBooleanOperation.OR, IsValidPos(arg), IsValidNeg(arg));
107
	}
108
	
109
	public Constraint getConstraint()
110
	{
111
		Constraint constraint = new Constraint();
112
		
113
		Variable rs = new Variable("rs", BIT_VECTOR_TYPE, null);
114
		constraint.addVariable(rs);
115
		
116
		Variable rt = new Variable("rt", BIT_VECTOR_TYPE, null);
117
		constraint.addVariable(rt);
118
		
119
		
120
		constraint.addFormula(
121
			new Formula(
122
				IsValidSignedInt(rs)
123
			)
124
		);
125
		
126
		constraint.addFormula(
127
			new Formula(
128
				IsValidSignedInt(rt)
129
			)
130
		);
131
132
		constraint.addFormula(
133
			new Formula(
134
				new Operation(
135
					LogicBooleanOperation.NOT,
136
					IsValidSignedInt(new Operation(BitVectorOperation.BVADD, rs, rt)),
137
					null
138
				) 
139
			)
140
		);
141
142
		constraint.addFormula(
143
			new Formula(
144
				new Operation(LogicBooleanOperation.NOT, new Operation(LogicBooleanOperation.EQ, rs, rt), null)
145
			)
146
		);
147
148
		return constraint;
149
	}
150
	
151
	public Vector<Variable> getExpectedVariables()	
152
	{
153
		Vector<Variable> result = new Vector<Variable>();
154
		
155
		result.add(new Variable("rs", BIT_VECTOR_TYPE, new BigInteger("000000009b91b193", 16)));
156
		result.add(new Variable("rt", BIT_VECTOR_TYPE, new BigInteger("000000009b91b1b3", 16)));
157
		
158
		return result;	
159
	}
160
}
161
</pre>
162
163
164 3 Andrei Tatarnikov
h1. База данных ограничений
165
166
База данных ограничений строится автоматически в результате анализа формализованных спецификаций системы команд микропроцессора, выполненной на одном из ADL-языков (например, nML). Некоторые ситуации могут описываться вручную и добавляться в базу данных ограничений.