Project

General

Profile

База данных ограничений » History » Version 72

Andrei Tatarnikov, 12/26/2011 10:47 AM

1 3 Andrei Tatarnikov
h1. Constraint Solver
2 1 Alexander Kamkin
3 69 Andrei Tatarnikov
The constraint solver subsystem is aimed to provide the possibility to automatically generate test cases based on specified constraints. A constraint is represented by a set of limitations for input values. Solvers calculate values of input variables which will violate the limitations if there are any such values.
4 6 Andrei Tatarnikov
5 44 Andrei Tatarnikov
The subsystem uses an openly distributed SMT solver as an engine (in the current version, we use the Z3 solver by Microsoft Research). In SMT solvers, a special functional language is used to specify constraints. The constraint solver subsystem generates constructions in the SMT language and runs the engine to process them and produce the results (find values of unknown input variables).
6 3 Andrei Tatarnikov
7 1 Alexander Kamkin
h2. Constraints and Satisfiability Modulo Theories (SMT)
8 44 Andrei Tatarnikov
9 48 Andrei Tatarnikov
Constrains specified as an SMT model are represented by a set of assertions (formulas) that must be satisfied. An SMT solver checks the satisfiability of the model and suggests a solution (variable values) that would satisfy the model. In the example below, we specify a model that should help us create a test that will cause a MIPS processor to generate an exception. We want to find values of the rs and rt general purpose registers that will cause the ADD instruction to raise an integer overflow exception. It should be correct 32-bit signed integers that are not equal to each other. Here is an SMT script:
10 43 Andrei Tatarnikov
11
<pre>
12
(define-sort        Int_t () (_ BitVec 64))
13
14
(define-fun      INT_ZERO () Int_t (_ bv0 64))
15
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))
16
(define-fun INT_SIGN_MASK () Int_t (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))
17
18
(define-fun IsValidPos ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))
19
(define-fun IsValidNeg ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true false))
20
(define-fun IsValidSignedInt ((x!1 Int_t)) Bool (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))
21
22
(declare-const rs Int_t)
23
(declare-const rt Int_t)
24
25
; rt and rs must contain valid sign-extended 32-bit values (bits 63..31 equal)
26
(assert (IsValidSignedInt rs))
27
(assert (IsValidSignedInt rt))
28
29
; the condition for an overflow: the summation result is not a valid sign-extended 32-bit value
30
(assert (not (IsValidSignedInt (bvadd rs rt))))
31
32
; just in case: rs and rt are not equal (to make the results more interesting)
33
(assert (not (= rs rt)))
34
35
(check-sat)
36
37
(echo "Values that lead to an overflow:")
38 35 Andrei Tatarnikov
(get-value (rs rt))
39
</pre>
40
41 56 Andrei Tatarnikov
In an ideal case, each run of an SMT solver should return random values from the set of possible solutions. This should improve test coverage. Unfortunately, the current implementation is limited to a single solution that is constant for all run. This should be improved in the final version.   
42 49 Andrei Tatarnikov
43 59 Andrei Tatarnikov
h2. Tree Representation
44 18 Andrei Tatarnikov
45 57 Andrei Tatarnikov
In our system, we use context-independent syntax trees to represent constraints. These trees are then used to generate a representation that can be understood by a particular SMT solver. Generally, it is an SMT model that uses some limited set of solver features applicable to microprocessor verification. The syntax tree contains nodes of the following types:
46 69 Andrei Tatarnikov
# Constraint. This is the root node of the tree. It holds the list of unknown variables and the list of assertions (formulas) for these variables.
47 55 Andrei Tatarnikov
# Formula. Represents an assertion expression. Can be combined with other formulas to build a more complex expression (by applying logic OR, AND or NOT to it). The underlying expression must be a logic expression that can be solved to true or false.
48 13 Andrei Tatarnikov
# Operation. Represents an unary or binary operation with some unknown variable, some value or some expression as parameters.
49 69 Andrei Tatarnikov
# Variable.Represents an input variable. It can have an assigned value and, in such a case, will be treated as a value. Otherwise, it is an unknown variable. A variable includes a type as an attribute.
50 14 Andrei Tatarnikov
# Value. Specifies some known value of the specified type which can be accessed as an attribute.
51 17 Andrei Tatarnikov
52 69 Andrei Tatarnikov
Note: Operation, Variables and Value are designed to be treated polymorphically. This allows combining them to build complex expressions.
53 16 Andrei Tatarnikov
54 22 Andrei Tatarnikov
h2. Constraint Solver Java Library
55 3 Andrei Tatarnikov
56 58 Andrei Tatarnikov
The Constraint Solver subsystem is implemented in Java. The source code files are located in the "microtesk++/constraint-solver" folder. The Java classes are organized in the following packages:
57
# ru.ispras.microtesk.constraints - contains SMT model generation logic and solver implementations.
58 1 Alexander Kamkin
# ru.ispras.microtesk.constraints.syntax - contains classes implementing syntax tree nodes.
59
# ru.ispras.microtesk.constraints.syntax.types - contains code that specifies particular data types and operation types.
60
# ru.ispras.microtesk.constraints.tests - contains JUnit test cases.
61
62 32 Andrei Tatarnikov
h3. Core classes/interfaces
63 66 Andrei Tatarnikov
64 70 Andrei Tatarnikov
The syntax tree nodes are implemented in the following classes:
65 72 Andrei Tatarnikov
* Constraint. Parameterized by unknown Variables and Formulas.
66
* Formula. Parameterized by an Operation object.
67
* Operation. Implements SyntaxElement. Parameterized by operand objects implementing SyntaxElement and an operation type object implementing OperationType.
68
* Variable. Implements SyntaxElement.  
69
* Value. Implements SyntaxElement.
70 71 Andrei Tatarnikov
71
The SyntaxElement interface provides the ability to combine different kinds of elements into expressions.
72 72 Andrei Tatarnikov
73
Also, Operation objects are parameterized by objects   
74 70 Andrei Tatarnikov
75 66 Andrei Tatarnikov
The current implementation supports operations with the following data types:
76
# Bit vectors
77
# Booleans
78 60 Andrei Tatarnikov
79 64 Andrei Tatarnikov
Example ..... :
80 61 Andrei Tatarnikov
81
<pre>
82
class BitVectorIntegerOverflowTestCase implements SolverTestCase
83
{
84 65 Andrei Tatarnikov
	private static final int      BIT_VECTOR_LENGTH = 64;
85
	private static final DataType   BIT_VECTOR_TYPE = DataType.getBitVector(BIT_VECTOR_LENGTH);
86
	private static final Value             INT_ZERO = new Value(new BigInteger("0"), BIT_VECTOR_TYPE);
87
	private static final Value        INT_BASE_SIZE = new Value(new BigInteger("32"), BIT_VECTOR_TYPE);
88
89
	private static final Operation    INT_SIGN_MASK =
90
		new Operation(BitVectorOperation.BVSHL, new Operation(BitVectorOperation.BVNOT, INT_ZERO, null), INT_BASE_SIZE);
91 61 Andrei Tatarnikov
	
92
	private Operation IsValidPos(SyntaxElement arg)
93
	{
94
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_ZERO);
95
	}
96
	
97
	private Operation IsValidNeg(SyntaxElement arg)
98
	{
99
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_SIGN_MASK);
100
	}
101
	
102
	private Operation IsValidSignedInt(SyntaxElement arg)
103
	{
104
		return new Operation(LogicBooleanOperation.OR, IsValidPos(arg), IsValidNeg(arg));
105
	}
106
	
107
	public Constraint getConstraint()
108
	{
109
		Constraint constraint = new Constraint();
110
		
111
		Variable rs = new Variable("rs", BIT_VECTOR_TYPE, null);
112
		constraint.addVariable(rs);
113
		
114
		Variable rt = new Variable("rt", BIT_VECTOR_TYPE, null);
115
		constraint.addVariable(rt);
116
		
117
		
118
		constraint.addFormula(
119
			new Formula(
120
				IsValidSignedInt(rs)
121
			)
122
		);
123
		
124
		constraint.addFormula(
125
			new Formula(
126
				IsValidSignedInt(rt)
127
			)
128
		);
129
130
		constraint.addFormula(
131
			new Formula(
132
				new Operation(
133
					LogicBooleanOperation.NOT,
134
					IsValidSignedInt(new Operation(BitVectorOperation.BVADD, rs, rt)),
135
					null
136
				) 
137
			)
138
		);
139
140
		constraint.addFormula(
141
			new Formula(
142
				new Operation(LogicBooleanOperation.NOT, new Operation(LogicBooleanOperation.EQ, rs, rt), null)
143
			)
144
		);
145
146
		return constraint;
147
	}
148
	
149
	public Vector<Variable> getExpectedVariables()	
150
	{
151
		Vector<Variable> result = new Vector<Variable>();
152
		
153
		result.add(new Variable("rs", BIT_VECTOR_TYPE, new BigInteger("000000009b91b193", 16)));
154
		result.add(new Variable("rt", BIT_VECTOR_TYPE, new BigInteger("000000009b91b1b3", 16)));
155
		
156
		return result;	
157
	}
158
}
159
</pre>
160
161
162 3 Andrei Tatarnikov
h1. База данных ограничений
163
164
База данных ограничений строится автоматически в результате анализа формализованных спецификаций системы команд микропроцессора, выполненной на одном из ADL-языков (например, nML). Некоторые ситуации могут описываться вручную и добавляться в базу данных ограничений.