Project

General

Profile

База данных ограничений » History » Version 66

Andrei Tatarnikov, 12/22/2011 12:19 PM

1 3 Andrei Tatarnikov
h1. Constraint Solver
2 1 Alexander Kamkin
3 51 Andrei Tatarnikov
The constraint solver subsystem is aimed to provide the possibility to automatically generate test cases based on specified constraints. A constraint is represented by a set of limitations for input values. Solvers calculate values of input variables which will violate the limitations if there are any such values.
4 6 Andrei Tatarnikov
5 44 Andrei Tatarnikov
The subsystem uses an openly distributed SMT solver as an engine (in the current version, we use the Z3 solver by Microsoft Research). In SMT solvers, a special functional language is used to specify constraints. The constraint solver subsystem generates constructions in the SMT language and runs the engine to process them and produce the results (find values of unknown input variables).
6 3 Andrei Tatarnikov
7 1 Alexander Kamkin
h2. Constraints and Satisfiability Modulo Theories (SMT)
8 44 Andrei Tatarnikov
9 48 Andrei Tatarnikov
Constrains specified as an SMT model are represented by a set of assertions (formulas) that must be satisfied. An SMT solver checks the satisfiability of the model and suggests a solution (variable values) that would satisfy the model. In the example below, we specify a model that should help us create a test that will cause a MIPS processor to generate an exception. We want to find values of the rs and rt general purpose registers that will cause the ADD instruction to raise an integer overflow exception. It should be correct 32-bit signed integers that are not equal to each other. Here is an SMT script:
10 43 Andrei Tatarnikov
11
<pre>
12
(define-sort        Int_t () (_ BitVec 64))
13
14
(define-fun      INT_ZERO () Int_t (_ bv0 64))
15
(define-fun INT_BASE_SIZE () Int_t (_ bv32 64))
16
(define-fun INT_SIGN_MASK () Int_t (bvshl (bvnot INT_ZERO) INT_BASE_SIZE))
17
18
(define-fun IsValidPos ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_ZERO) true false))
19
(define-fun IsValidNeg ((x!1 Int_t)) Bool (ite (= (bvand x!1 INT_SIGN_MASK) INT_SIGN_MASK) true false))
20
(define-fun IsValidSignedInt ((x!1 Int_t)) Bool (ite (or (IsValidPos x!1) (IsValidNeg x!1)) true false))
21
22
(declare-const rs Int_t)
23
(declare-const rt Int_t)
24
25
; rt and rs must contain valid sign-extended 32-bit values (bits 63..31 equal)
26
(assert (IsValidSignedInt rs))
27
(assert (IsValidSignedInt rt))
28
29
; the condition for an overflow: the summation result is not a valid sign-extended 32-bit value
30
(assert (not (IsValidSignedInt (bvadd rs rt))))
31
32
; just in case: rs and rt are not equal (to make the results more interesting)
33
(assert (not (= rs rt)))
34
35
(check-sat)
36
37
(echo "Values that lead to an overflow:")
38 35 Andrei Tatarnikov
(get-value (rs rt))
39
</pre>
40
41 56 Andrei Tatarnikov
In an ideal case, each run of an SMT solver should return random values from the set of possible solutions. This should improve test coverage. Unfortunately, the current implementation is limited to a single solution that is constant for all run. This should be improved in the final version.   
42 49 Andrei Tatarnikov
43 59 Andrei Tatarnikov
h2. Tree Representation
44 18 Andrei Tatarnikov
45 57 Andrei Tatarnikov
In our system, we use context-independent syntax trees to represent constraints. These trees are then used to generate a representation that can be understood by a particular SMT solver. Generally, it is an SMT model that uses some limited set of solver features applicable to microprocessor verification. The syntax tree contains nodes of the following types:
46 55 Andrei Tatarnikov
# Constraint. This is the root node of the tree. It holds the list of unknown variables and the list of assertions (limitations) for these variables.
47
# Formula. Represents an assertion expression. Can be combined with other formulas to build a more complex expression (by applying logic OR, AND or NOT to it). The underlying expression must be a logic expression that can be solved to true or false.
48 13 Andrei Tatarnikov
# Operation. Represents an unary or binary operation with some unknown variable, some value or some expression as parameters.
49 14 Andrei Tatarnikov
# Variable.Represents an input variable. It can have an assigned value and, in such case, will be treated as a value. Otherwise, it is an unknown variable. A variable includes a type as an attribute.
50
# Value. Specifies some known value of the specified type which can be accessed as an attribute.
51 17 Andrei Tatarnikov
52 66 Andrei Tatarnikov
Note: Operation, Variables and Value must be treated polymorphically. This allows combining them to build complex expressions.
53 16 Andrei Tatarnikov
54 22 Andrei Tatarnikov
h2. Constraint Solver Java Library
55 3 Andrei Tatarnikov
56 58 Andrei Tatarnikov
The Constraint Solver subsystem is implemented in Java. The source code files are located in the "microtesk++/constraint-solver" folder. The Java classes are organized in the following packages:
57
# ru.ispras.microtesk.constraints - contains SMT model generation logic and solver implementations.
58 1 Alexander Kamkin
# ru.ispras.microtesk.constraints.syntax - contains classes implementing syntax tree nodes.
59
# ru.ispras.microtesk.constraints.syntax.types - contains code that specifies particular data types and operation types.
60
# ru.ispras.microtesk.constraints.tests - contains JUnit test cases.
61
62 32 Andrei Tatarnikov
h3. Core classes/interfaces
63 66 Andrei Tatarnikov
64
The current implementation supports operations with the following data types:
65
# Bit vectors
66
# Booleans
67 60 Andrei Tatarnikov
68 64 Andrei Tatarnikov
Example ..... :
69 61 Andrei Tatarnikov
70
<pre>
71
class BitVectorIntegerOverflowTestCase implements SolverTestCase
72
{
73 65 Andrei Tatarnikov
	private static final int      BIT_VECTOR_LENGTH = 64;
74
	private static final DataType   BIT_VECTOR_TYPE = DataType.getBitVector(BIT_VECTOR_LENGTH);
75
	private static final Value             INT_ZERO = new Value(new BigInteger("0"), BIT_VECTOR_TYPE);
76
	private static final Value        INT_BASE_SIZE = new Value(new BigInteger("32"), BIT_VECTOR_TYPE);
77
78
	private static final Operation    INT_SIGN_MASK =
79
		new Operation(BitVectorOperation.BVSHL, new Operation(BitVectorOperation.BVNOT, INT_ZERO, null), INT_BASE_SIZE);
80 61 Andrei Tatarnikov
	
81
	private Operation IsValidPos(SyntaxElement arg)
82
	{
83
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_ZERO);
84
	}
85
	
86
	private Operation IsValidNeg(SyntaxElement arg)
87
	{
88
		return new Operation(LogicBooleanOperation.EQ, new Operation(BitVectorOperation.BVAND, arg, INT_SIGN_MASK), INT_SIGN_MASK);
89
	}
90
	
91
	private Operation IsValidSignedInt(SyntaxElement arg)
92
	{
93
		return new Operation(LogicBooleanOperation.OR, IsValidPos(arg), IsValidNeg(arg));
94
	}
95
	
96
	public Constraint getConstraint()
97
	{
98
		Constraint constraint = new Constraint();
99
		
100
		Variable rs = new Variable("rs", BIT_VECTOR_TYPE, null);
101
		constraint.addVariable(rs);
102
		
103
		Variable rt = new Variable("rt", BIT_VECTOR_TYPE, null);
104
		constraint.addVariable(rt);
105
		
106
		
107
		constraint.addFormula(
108
			new Formula(
109
				IsValidSignedInt(rs)
110
			)
111
		);
112
		
113
		constraint.addFormula(
114
			new Formula(
115
				IsValidSignedInt(rt)
116
			)
117
		);
118
119
		constraint.addFormula(
120
			new Formula(
121
				new Operation(
122
					LogicBooleanOperation.NOT,
123
					IsValidSignedInt(new Operation(BitVectorOperation.BVADD, rs, rt)),
124
					null
125
				) 
126
			)
127
		);
128
129
		constraint.addFormula(
130
			new Formula(
131
				new Operation(LogicBooleanOperation.NOT, new Operation(LogicBooleanOperation.EQ, rs, rt), null)
132
			)
133
		);
134
135
		return constraint;
136
	}
137
	
138
	public Vector<Variable> getExpectedVariables()	
139
	{
140
		Vector<Variable> result = new Vector<Variable>();
141
		
142
		result.add(new Variable("rs", BIT_VECTOR_TYPE, new BigInteger("000000009b91b193", 16)));
143
		result.add(new Variable("rt", BIT_VECTOR_TYPE, new BigInteger("000000009b91b1b3", 16)));
144
		
145
		return result;	
146
	}
147
}
148
</pre>
149
150
151 3 Andrei Tatarnikov
h1. База данных ограничений
152
153
База данных ограничений строится автоматически в результате анализа формализованных спецификаций системы команд микропроцессора, выполненной на одном из ADL-языков (например, nML). Некоторые ситуации могут описываться вручную и добавляться в базу данных ограничений.