Project

General

Profile

C++TESK Quick Reference » History » Version 6

Alexander Kamkin, 05/22/2014 10:35 AM

1 1 Mikhail Chupilko
h1. C++TESK Quick Reference
2
3 4 Alexander Kamkin
{{toc}}
4
5 1 Mikhail Chupilko
h2. Introduction
6
7
This document is a quick reference of C++TESK Hardware Extension tool (С++TESK, hereafter) included into C++TESK Testing ToolKit and aimed to automated development of test systems for HDL-models (HDL (Hardware Description Language) — class of program languages used for description of hardware) of hardware. The tool architecture bases on general UniTESK (http://www.unitesk.ru) conventions.
8
9
_Test system_ is meant to be a special program which evaluates the functional correctness of _target system_, applying some input data (_stimuli_) and analyzing received results of their application (_reactions_). Typical test system consists of three common components: (1) _stimulus generator_ making sequences of stimuli (_test sequences_), (2) _test oracle_ checking correctness of reactions, and (3) _test completeness evaluator_.
10
11
The document describes facilities of C++TESK aimed to development of mentioned test system components, and consists of four common chapters.
12
* Development of reference model
13
* Development of reference model adapter
14
* Description of test coverage
15
* Development of test scenario
16
17
First two chapters touch upon development of test oracle basic parts: _reference model_ covering functionality of target system, and _reference model adapter_ binding reference model with target system. The third chapter is devoted to the test completeness estimation on the base of _test coverage_. The last chapter concerns development of test scenario which is the main part of stimulus generator.
18
19
More detailed toolkit review is given in _«C++TESK Testing ToolKit: User Guide»_.
20
21
Installation process of C++TESK is described in _«С++TESK Testing ToolKit: Installation Guide»_.
22
23
h2. Supporting obsolete constructions
24
25
Updates of C++TESK do not interfere in the compilation and running of test systems developed for older versions of C++TESK. When the toolkit has incompatible with older versions update, this update is marked by a build number in form of yymmdd, i.e. 110415 – the 15th of April, 2011. The update is available only if macro CPPTESKHW_VERSION (using gcc compiler it can be done by the option –Dmacro_name=value) is appropriately defined. E.g.,
26
-DCPPTESKHW_VERSION=110415 enables usage of incompatible updated having been made by the 15th of April, 2011 (including this date). Each build of the toolkit has the whole list of such changes.
27
28
Obsolete constructions of the toolkit are not described in this document. Possibilities of the toolkit, being incompatible with having become obsolete constructions, are presented with the build number, since which they have been available. E.g., the sentence “the means are supported from 110415 build” means that usage of these means requires two conditions: (1) using toolkit build has the number 110415 or greater, (2) the compilation option -DCPPTESKHW_VERSION=number, where number is not less than 110415, is used.
29
30
If some obsolete constructions are not used or prevent the toolkit from further development, they might become unsupported. In this case, during compilation of test system using these constructions, a message with advices about correction of test system will be shown.
31
32
During compilation of test systems, developed by means of C++TESK, usage of the compiler option -DCPPTESKHW_VERSION=number is highly recommended.
33
34
h2. Naming convention
35
36
The core of the toolkit is developed as a C++ library. Available means are grouped into the following namespaces.
37
38
* cpptesk::hw — means for development of reference models and their adapters;
39
* cpptesk::ts — basic means for test system development;
40
* cpptesk::ts::coverage — means for test coverage description;
41 3 Mikhail Chupilko
* сpptesk::ts::engine  — library with _test engines_ (test engines are toolkit library components used for producing of stimulus sequence, use _test scenario_ (see chapter _“Development of test scenario”_));
42 1 Mikhail Chupilko
* cpptesk::tracer — means for tracing;
43
* cpptesk::tracer::coverage — means for coverage tracing.
44
45
A lot of C++TESK means are implemented in form of macros. To avoid conflicts of names, names of all macros start with prefix CPPTESK_, e.g., CPPTESK_MODEL(name). Generally, each macro has two aliases: shortened name (without CPPTESK_ prefix) and short name, (after additional “compression” of shortened name). E.g., macro CPPTESK_ITERATION_BEGIN has two aliases: ITERATION_BEGIN and IBEGIN. To use shortened and short names, macros CPPTESK_SHORT_NAMES and CPPTESK_SHORT_SHORT_NAMES should be defined, respectively.
46
47
h2. Development of reference model
48
49 3 Mikhail Chupilko
Reference model is a structured set of classes describing functionality of target system at some abstraction level (the toolkit allows developing of both abstract functional models and detailed models describing target system cycle-accurately). Reference model consists of message classes describing format of input and output data (structures of stimuli and reactions), main class and set of auxiliary classes. Hereafter, a main class of reference model will be meant under term reference model.
50 1 Mikhail Chupilko
51
h3. Class of message
52
53
Message classes are declared by macro @CPPTESK_MESSAGE(name)@. Row with macro @CPPTESK_SUPPORT_CLONE(name)@ defining the message clone method @name* clone()@ should be written inside of the each message class declaration.
54
55
Example:
56
<pre><code class="cpp">
57
#include <hw/message.hpp>
58
CPPTESK_MESSAGE(MyMessage) {
59
public:
60
    CPPTESK_SUPPORT_CLONE(MyMessage)
61
    ...
62
};
63
</code></pre>
64
*Notice*: Row @CPPTESK_SUPPORT_CLONE(name)@ is obligatory.
65
66 2 Mikhail Chupilko
h4. Input message randomizer
67 1 Mikhail Chupilko
68
Virtual method @randomize()@ (randomizer of the message) should be overloaded in each input message class. There are two macros @CPPTESK_{DECLARE|DEFINE}_RANDOMIZER@ for this purpose.
69
70
Example:
71
<pre><code class="cpp">
72
CPPTESK_MESSAGE(MyMessage) {
73
    ...
74
    CPPTESK_DECLARE_RANDOMIZER();
75
private:
76
    int data;
77
};
78
79
CPPTESK_DEFINE_RANDOMIZER(MyMessage) {
80
    data = CPPTESK_RANDOM(int);
81
}
82
</code></pre>
83
84
The following macros can be used for randomization of data fields.
85
* @CPPTESK_RANDOM(type)@ — generation of random integer value;
86
* @CPPTESK_RANDOM_WIDTH(type, length)@ — generation of random integer value of given number of bits;
87
* @CPPTESK_RANDOM_FIELD(type, min_bit, max_bit)@ — generation of random integer value with zero bits outside the given range;
88
* @CPPTESK_RANDOM_RANGE(type, min_value, max_value)@ — generation of random integer value from given integer range;
89
* @CPPTESK_RANDOM_CHOICE(type, value_1, ..., value_n)@ — random choice from given set of any type values.
90
91
*Notice*: randomizer may not be defined if all data fields are defined by special macros (see chapter _“Message data fields”_).
92
93 2 Mikhail Chupilko
h4. Comparator of output messages
94 1 Mikhail Chupilko
95
Virtual method @compare()@ (comparator of messages) should  be overloaded in each output message class. There are two macro @CPPTESK_{DECLARE|DEFINE}_COMPARATOR@ for this purpose (build is not less than 110428).
96
97
Example:
98
<pre><code class="cpp">
99
CPPTESK_MESSAGE(MyMessage) {
100
    ...
101
    CPPTESK_DECLARE_COMPARATOR();
102
private:
103
    int data;
104
};
105
106
CPPTESK_DEFINE_COMPARATOR(MyMessage) {
107
    const MyMessage &rhs = CPPTESK_CONST_CAST_MESSAGE(MyMessage);
108
    // in case of difference between messages return not empty string
109
    if(data != rhs.data)
110
        { return "incorrect data"; }
111
    // empty string is interpreted as absence of difference
112
    return COMPARE_OK;
113
}
114
</code></pre>
115
116
*Notice*: comparator may not be defined if all data fields are defined by special macros (see chapter “Message data fields”).
117
118 2 Mikhail Chupilko
h4. Message data fields
119 1 Mikhail Chupilko
120 6 Alexander Kamkin
The following macros are aimed at declaring integer data fields.
121
* @CPPTESK_DECLARE_FIELD(name, length)@ declares an integer field with given name and length.
122
* @CPPTESK_DECLARE_TYPED_FIELD(type, name, length)@ declares a typed field with given name and length.
123
* @CPPTESK_DECLARE_MASKED_FIELD(name, length, mask)@ declares an integer field with given name, length, and mask.
124
* @CPPTESK_DECLARE_BIT(name)@ declares a single-bit field with a given name.
125 1 Mikhail Chupilko
126
Example:
127
<pre><code class="cpp">
128 6 Alexander Kamkin
#include <iostream>
129 1 Mikhail Chupilko
#include <hw/message.hpp>
130 6 Alexander Kamkin
131
enum Cop {
132
  READ,
133
  WRITE
134
};
135
136
std::ostream& operator << (std::ostream &out, Cop cop) {
137
    switch(cop) {
138
        case READ:
139
            return out << "read";
140
        default:
141
            return out << "write";
142
    }
143
}
144
145 1 Mikhail Chupilko
CPPTESK_MESSAGE(MyMessage) {
146
public:
147 6 Alexander Kamkin
    CPPTESK_DECLARE_TYPED_FIELD(Cop, cop, 2);
148 1 Mikhail Chupilko
    CPPTESK_DECLARE_MASKED_FIELD(addr, 32, 0xffffFFF0);
149
    CPPTESK_DECLARE_FIELD(data, 32);
150
    CPPTESK_DECLARE_BIT(flag);
151
    ...
152
};
153
</code></pre>
154
155 6 Alexander Kamkin
*Notice 1*: length of the data fields should not exceed 64 bits (the basic type is @uint64_t@).
156
*Notice 2*: types of the typed fields should be compatible with @uint64_t@.
157 1 Mikhail Chupilko
158
All declared data fields should be registered in message class constructor by means of macro @CPPTESK_ADD_FIELD(full_name)@ or, when the data field should not be taken into account by comparator, by means of @CPPTESK_ADD_INCOMPARABLE_FIELD(full_name)@.
159
160
Example:
161
<pre><code class="cpp">
162
MyMessage::MyMessage() {
163 6 Alexander Kamkin
    CPPTESK_ADD_FIELD(MyMessage::cop);
164 1 Mikhail Chupilko
    CPPTESK_ADD_FIELD(MyMessage::addr);
165
    CPPTESK_ADD_FIELD(MyMessage::data);
166
    CPPTESK_ADD_INCOMPARABLE_FIELD(MyMessage::flag);
167
    ...
168
}
169
</code></pre>
170
171
*Notice*: full_name means usage both name of method and name of class.
172
173 2 Mikhail Chupilko
h4. Optional messages
174 1 Mikhail Chupilko
175
Output message can be declared to be optional (not obligatory for receiving) if the following method is used.
176
<pre><code class="cpp">void setOptional(optional_or_not_optional);</code></pre>
177
*Notice*: Default value of the parameter “optional_or_not_optional” is true, i.e. if there has not been correspondent implementation output message by a certain timeout, the message will be simply deleted without showing of an error. At the same time, the optional message is added to the interface arbiter and might affect to the matching of other output messages. If correspondent implementation reactions are received after the timeout and they are to be ignored, the flag of the message being optional should be set in message class constructor.
178
179
h2. Reference model
180
181 2 Mikhail Chupilko
Reference model (main class of the reference model) is declared by macro @CPPTESK_MODEL(name)@.
182
183 1 Mikhail Chupilko
Example:
184 2 Mikhail Chupilko
<pre><code class="cpp">
185 1 Mikhail Chupilko
#include <hw/model.hpp>
186
CPPTESK_MODEL(MyModel) {
187
    ...
188
};
189 2 Mikhail Chupilko
</code></pre>
190
191 1 Mikhail Chupilko
Reference model contains declaration of input and output interfaces, operations, auxiliary processes, and data necessary for operation description.
192 2 Mikhail Chupilko
193
h3. Interface
194
195
Input and output interfaces of the reference model are declared by means of two macros @CPPTESK_DECLARE_{INPUT|OUTPUT}(name)@, respectively.
196
197 1 Mikhail Chupilko
Example:
198 2 Mikhail Chupilko
<pre><code class="cpp">
199 1 Mikhail Chupilko
#include <hw/model.hpp>
200
CPPTESK_MODEL(MyModel) {
201
public:
202
    CPPTESK_DECLARE_INPUT(input_iface);
203
    CPPTESK_DECLARE_OUTPUT(output_iface);
204
    ...
205
};
206 2 Mikhail Chupilko
</code></pre>
207
208
All declared interfaces should be registered in reference model constructor by means of two macros @CPPTESK_ADD_{INPUT|OUTPUT}(name)@.
209
210 1 Mikhail Chupilko
Example:
211 2 Mikhail Chupilko
<pre><code>
212 1 Mikhail Chupilko
MyModel::MyModel() {
213
    CPPTESK_ADD_INPUT(input_iface);
214
    CPPTESK_ADD_OUTPUT(output_iface);
215
    ...
216
}
217 2 Mikhail Chupilko
</code></pre>
218
219
h3. Setting up ignoring of failures on output interface
220
221 1 Mikhail Chupilko
To disable showing errors of a certain type on a given interface is possible by means of the method:
222 2 Mikhail Chupilko
<pre><code class="cpp">
223 1 Mikhail Chupilko
void setFailureIgnoreTypes(disabling_error_types_mask);
224 2 Mikhail Chupilko
</code></pre>
225
226
Disabling error types include errors of implementation reaction absence (@MISSING_REACTION@) and specification reaction absence (@UNEXPECTED_REACTION@) on the given interface. Error types can be grouped by bit operation “or”.
227
228
h3. Process
229
230
Processes are the main means of functional specification of hardware. Processes are subdivided into operations (see chapter _“Operation”_) and internal processes. Operations describe processing of stimuli of a certain types by the target system. Internal processes are used for definition of the other, more complex processes, including operations.
231
232
Declaration and definition of reference model processes are made by means of macros @CPPTESK_{DECLARE|DEFINE}_PROCESS(name)@. Definition of the process should be started by calling macro @CPPTESK_START_PROCESS()@, and finished by calling macro @CPPTESK_STOP_PROCESS()@.
233
234 1 Mikhail Chupilko
Example:
235 2 Mikhail Chupilko
<pre><code class="cpp">
236 1 Mikhail Chupilko
#include <hw/model.hpp>
237
CPPTESK_MODEL(MyModel) {
238
public:
239
    ...
240
    CPPTESK_DECLARE_PROCESS(internal_process);
241
    ...
242
};
243
244
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
245
    CPPTESK_START_PROCESS();
246
    ...
247
    CPPTESK_STOP_PROCESS();
248
}
249 2 Mikhail Chupilko
</code></pre>
250
251
*Notice*: macro @CPPTESK_START_PROCESS()@ may be used only once in definition of the process, and usually precedes the main process code. Semantics of @CPPTESK_STOP_PROCESS()@ is similar to the semantics of operator return — when the macro is called, the process finished.
252
253
*Notice*: keyword process is reserved and cannot be used for naming of processes.
254
255
h3. Process parameters
256
257 1 Mikhail Chupilko
Process should have three obligatory parameters: (1) process execution context, (2) associated with process interface, and (3) message. To access process parameters is possible by means of the following macros.
258 2 Mikhail Chupilko
* @CPPTESK_GET_PROCESS()@ — get process context;
259
* @CPPTESK_GET_IFACE()@ — get process interface;
260
* @CPPTESK_GET_MESSAGE()@ — get message.
261
262 1 Mikhail Chupilko
To cast message parameter to the necessary type is possible by means of the following macros.
263 2 Mikhail Chupilko
* @CPPTESK_CAST_MESSAGE(message_class)@;
264
* @CPPTESK_CONST_CAST_MESSAGE(message_class)@.
265
266 1 Mikhail Chupilko
Example:
267 2 Mikhail Chupilko
<pre><code class="cpp">
268 1 Mikhail Chupilko
#include <hw/model.hpp>
269
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
270
    // copy message to the local variable
271
    MyMessage msg = CPPTESK_CAST_MESSAGE(MyMessage);
272
    // get reference to the message
273
    MyMessage &msg_ref = CPPTESK_CAST_MESSAGE(MyMessage);
274
    // get constant reference to the message
275
    const MyMessage &const_msg_ref = CPPTESK_CONST_CAST_MESSAGE(MyMessage);
276
    ...
277
}
278 2 Mikhail Chupilko
</code></pre>
279
280
h3. Process priority
281
282
During execution, each process is assigned with a priority, unsigned integer value from range @[1, 255]@ (0 is reserved). Priority affects the order of process execution inside of one cycle (processes with higher priority run first). Priorities may be used in matching of implementation and specification reactions (see chapter _“Reaction arbiter”_). When started, all processes are assigned with the same priority (@NORMAL_PRIORITY@). To change the priority is possible by means of the following macros.
283
* @CPPTESK_GET_PRIORITY()@ — get process priority.
284
* @CPPTESK_SET_PRIORITY(priority)@ — set process priority.
285
286
Some priority values are defined in the enumeration type @priority_t (cpptesk::hw namespace)@. The most general of them are the following ones.
287
* @NORMAL_PRIORITY@ — normal priority;
288
* @LOWEST_PRIORITY@ — the lowest priority;
289
* @HIGHEST_PRIORITY@ — the highest priority.
290
291 1 Mikhail Chupilko
Example:
292 2 Mikhail Chupilko
<pre><code class="cpp">
293 1 Mikhail Chupilko
#include <hw/model.hpp>
294
#include <iostream>
295
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
296
    ...
297
    std::cout << "process priority is " << std::dec
298
              << CPPTESK_GET_PRIORITY() << std::end;
299
    ...
300
    CPPTESK_SET_PRIORITY(cpptesk::hw::HIGHEST_PRIORITY);
301
    ...
302
}
303 2 Mikhail Chupilko
</code></pre>
304
305
h3. Modeling of delays
306
307 1 Mikhail Chupilko
To model delays in processes is possible by means of the following macros.
308 2 Mikhail Chupilko
* @CPPTESK_CYCLE()@ - delay of one cycle.
309
* @CPPTESK_DELAY(number_of_cycles)@ - delay of several cycles.
310
* @CPPTESK_WAIT(condition)@ - delay till condition is satisfied.
311
* @CPPTESK_WAIT_TIMEOUT(condition, timeout)@ - limited in time delay till condition is satisfied.
312
313 1 Mikhail Chupilko
Example:
314 2 Mikhail Chupilko
<pre><code class="cpp">
315 1 Mikhail Chupilko
#include <hw/model.hpp>
316
#include <iostream>
317
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
318
    ...
319
    std::cout << "cycle: " << std::dec << time() << std::end;
320
    // delay of one cycle
321
    CPPTESK_CYCLE();
322
    std::cout << "cycle: " << std::dec << time() << std::end;
323
    ...
324
    // wait till outputs.ready is true,
325
    // but not more than 100 cycles
326
    CPPTESK_WAIT_TIMEOUT(outputs.ready, 100);
327
    ...
328
}
329 2 Mikhail Chupilko
</code></pre>
330
331
h3. Process calling
332
333
Reference model process calling from another process is made by means of macro @CPPTESK_CALL_PROCESS(mode, process_name, interface, message)@, where mode might be either @PARALLEL@ or @SEQUENTIAL@. In the first case separated process is created, which is executed in parallel with the parent process. In the second case consequent execution is performed, where returning to the parent process execution is possible only after child process has been finished.
334
335 1 Mikhail Chupilko
Example:
336 2 Mikhail Chupilko
<pre><code class="cpp">
337 1 Mikhail Chupilko
#include <hw/model.hpp>
338
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
339
    ...
340
    // call separated process
341
    CPPTESK_CALL_PROCESS(PARALLEL, internal_process,
342
        CPPTESK_GET_IFACE(), CPPTESK_GET_MESSAGE());
343
    ...
344
    // call process and wait till it has been finished
345
    CPPTESK_CALL_PROCESS(SEQUENTIAL, internal_process,
346
        CPPTESK_GET_IFACE(), CPPTESK_GET_MESSAGE());
347
    ...
348
}
349 2 Mikhail Chupilko
</code></pre>
350
351
*Notice*: to call new processes is possible from any reference model methods, not only from methods describing processes. Macro @CPPTESK_CALL_PARALLEL(process_name, interface, message)@ should be used in this case. Calling process with mode @SEQUENTIAL@ from the method not being a process is prohibited.
352
353
h3. Stimulus receiving
354
355
Inside of the process, receiving of stimulus on one of the input interfaces can be modeled. It is possible by means of macro @CPPTESK_RECV_STIMULUS(mode, interface, message)@. Executing this macro, test system applies the stimulus to the target system via adapter of the correspondent input interface (see chapter _«Input interface adapter»_). Semantics of the mode parameter is described in the chapter _«Process calling»_.
356
357 1 Mikhail Chupilko
Example:
358 2 Mikhail Chupilko
<pre><code class="cpp">
359 1 Mikhail Chupilko
#include <hw/model.hpp>
360
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
361
    // modeling of stimulus receiving
362
    CPPTESK_RECV_STIMULUS(PARALLEL, input_iface, input_msg);
363
    ...
364
}
365 2 Mikhail Chupilko
</code></pre>
366
367
h3. Reaction sending
368
369
Modeling of reaction sending is done by the macro @CPPTESK_SEND_REACTION(mode, interface, message)@. Executing this macro, test system calls adapter of the correspondent output interface. The adapter starts waiting for the proper implementation reaction. When being received, the reaction is transformed into object of the correspondent message class (see chapter _“Adapter of the output interface”_). Then test system compares reference message with received message by means of comparator (see chapter _“Comparator of output messages”_). Semantics of the mode parameter is described in the chapter _“Process calling”_.
370
371 1 Mikhail Chupilko
Example:
372 2 Mikhail Chupilko
<pre><code class="cpp">
373 1 Mikhail Chupilko
#include <hw/model.hpp>
374
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
375
    // modeling of reaction sending
376
    CPPTESK_SEND_REACTION(SEQUENTIAL, output_iface, output_msg);
377
    ...
378
}
379 2 Mikhail Chupilko
</code></pre>
380
381
h3. Operation
382
383
Declaration and definition of interface operations of reference model is made by means of macros @CPPTESK_{DECLARE|DEFINE}_STIMULUS(name)@. The definition should start from macro @CPPTESK_START_STIMULUS(mode)@, and stop by macro @CPPTESK_STOP_STIMULUS()@.
384
385 1 Mikhail Chupilko
Example:
386 2 Mikhail Chupilko
<pre><code class="cpp">
387 1 Mikhail Chupilko
#include <hw/model.hpp>
388
CPPTESK_MODEL(MyModel) {
389
public:
390
    CPPTESK_DECLARE_STIMULUS(operation);
391
    ...
392
};
393
394
CPPTESK_DEFINE_STIMULUS(MyModel::operation) {
395
    CPPTESK_START_STIMULUS(PARALLEL);
396
    ...
397
    CPPTESK_STOP_STIMULUS();
398
}
399 2 Mikhail Chupilko
</code></pre>
400
401
*Notice*: operations are particular cases of processes, so that all the constructions from chapter _“Process”_ can be used in them.
402
403
*Notice*: calling macro @CPPTESK_START_STIMULUS(mode)@ is equivalent to the calling macro @CPPTESK_RECV_STIMULUS(mode, ...)@, where interface and message parameters are assigned with correspondent operation parameters.
404
405
h3. Callback function
406
407
In the main class of reference model, several callback functions are defined. The functions can be overloaded in the reference model. The main callback function is @onEveryCycle()@.
408
409
h4. Function onEveryCycle
410
411
Function @onEveryCycle()@ is called at the beginning of each reference model execution cycle.
412
413 1 Mikhail Chupilko
Example:
414 2 Mikhail Chupilko
<pre><code class="cpp">
415 1 Mikhail Chupilko
#include <hw/model.hpp>
416
CPPTESK_MODEL(MyModel) {
417
public:
418
    virtual void onEveryCycle();
419
    ...
420
};
421
422
void MyModel::onEveryCycle() {
423
    std::cout << "onEveryCycle: time=" << std::dec << time() << std::endl;
424
}
425 2 Mikhail Chupilko
</code></pre>
426
427
h2. Development of reference model adapter
428
429
_Reference model adapter_ (_mediator_) is a component of test system, binding reference model with target system. The adapter _serializes_ input message objects into sequences of input signal values, _deserializes_ sequences of output signal values into output message objects, and matches received from target system reactions with reference values.
430
431
h3. Reference model adapter
432
433
Reference model adapter is a subclass of reference model class. It is declared by means of the macro @CPPTESK_ADAPTER(adapter_name, model_name)@.
434
435 1 Mikhail Chupilko
Example:
436 2 Mikhail Chupilko
<pre><code class="cpp">
437 1 Mikhail Chupilko
#include <hw/media.hpp>
438
CPPTESK_ADAPTER(MyAdapter, MyModel) {
439
    ...
440
};
441 2 Mikhail Chupilko
</code></pre>
442
443
_Synchronization methods_, _input_ and _output interface adapters_, _output interface listeners_, and _reaction arbiters_ are declared in reference model adapter.
444
445
h4. Synchronizer
446
447 1 Mikhail Chupilko
Synchronizer is a low-level part of reference model adapter, responsible for synchronization of test system with being tested HDL-model. Synchronizer is implemented by overloading the following five methods of reference model adapter.
448 2 Mikhail Chupilko
* @void initialize()@ — test system initialization;
449
* @void finialize()@ — test system finalization;
450
* @void setInputs()@ — synchronization of inputs;
451
* @void getOutputs()@ — synchronization of outputs;
452
* @void simulate()@ — synchronization of time.
453
454 3 Mikhail Chupilko
When hardware models written in Verilog being verified, these methods can be implemented by standard interface VPI (Verilog Procedural Interface). Also, tool VeriTool (http://forge.ispras.ru/projects/veritool) can be used for automation of synchronizer development. In this case, macro @CPPTESK_VERITOOL_ADAPTER(adapter_name, model_name)@ can be used for facilitating of the efforts.
455 2 Mikhail Chupilko
456 1 Mikhail Chupilko
Example:
457 2 Mikhail Chupilko
<pre><code class="cpp">
458 1 Mikhail Chupilko
#include <hw/veritool/media.hpp>
459
// file generated by tool VeriTool
460
#include <interface.h>
461
CPPTESK_VERITOOL_ADAPTER(MyAdapter, MyModel) {
462
    ...
463
};
464
</code></pre>
465
466
Used for definition of synchronization methods functions and data structures (fields inputs and outputs) are generated automatically by tool VeriTool analyzing Verilog hardware model interface.
467 3 Mikhail Chupilko
468
*Notice*: when macro @CPPTESK_VERITOOL_ADAPTER@ being used, fields inputs и outputs should not be declared and methods and methods of synchronizer should not be overloaded.
469
470
*Notice*: tool VeriTool provides access to values of all HDL-model signals, including internal ones. To get access is possible by means of macros @CPPTESK_GET_SIGNAL(signal_type, signal_name)@ for getting value of signal @testbench.target.signal_name@ (@signal_type@ is meant to be from the following list: int, uint64_t, etc.), and @CPPTESK_SET_SIGNAL(signal_type, signal_name, new_value)@ for setting to a new value the signal @testbench.target.signal_name@ (@signal_type@ is meant to be the same as for getting value macro).
471
472
h4. Input interface adapter
473
474
_Input interface adapter_ is a process defined in reference model adapter and bound with one of the input interfaces. Input interface adapter is called by @CPPTESK_START_STIMULUS(mode)@ macro (see chapter _“Operation”_) or by @CPPTESK_RECV_STIMULUS(mode, interface, message)@ macro (see chapter _“Stimulus receiving”_). Declaration and definition of input interface adapters are done in typical for processes way.
475
476
It should be noticed, that just before the serialization, the input interface adapter should capture the interface. Capturing is made by macro @CPPTESK_CAPTURE_IFACE()@. Correspondingly, after the serialization, the interface should be released by macro @CPPTESK_RELEASE_IFACE()@.
477
478 1 Mikhail Chupilko
Example:
479 3 Mikhail Chupilko
<pre><code class="cpp">
480 1 Mikhail Chupilko
#include <hw/media.hpp>
481
CPPTESK_ADAPTER(MyAdapter, MyModel) {
482
    CPPTESK_DECLARE_PROCESS(serialize_input);
483
    ...
484
};
485
486
CPPTESK_DEFINE_PROCESS(MyAdapter::serialize_input) {
487
    MyMessage msg = CPPTESK_CAST_MESSAGE(MyMessage);
488
    // start serialization process
489
    CPPTESK_START_PROCESS();
490
    // capture input interface
491
    CPPTESK_CAPTURE_IFACE();
492
    // set operation start strobe
493
    inputs.start = 1;
494
    // set information signals
495
    inputs.addr  = msg.get_addr();
496
    inputs.data  = msg.get_data();
497
    // one cycle delay
498
    CPPTESK_CYCLE();
499
    // reset of operation strobe
500
    inputs.start = 0;
501
    // release input interface
502
    CPPTESK_RELEASE_IFACE();
503
    // stop serialization process
504
    CPPTESK_STOP_PROCESS();
505
}
506 3 Mikhail Chupilko
</code></pre>
507
508
Binding of adapter and interface is made in reference model constructor by means of macro @CPPTESK_SET_INPUT_ADAPTER(interface_name, adapter_full_name)@.
509
510 1 Mikhail Chupilko
Example:
511 3 Mikhail Chupilko
<pre><code class="cpp">
512 1 Mikhail Chupilko
MyAdapter::MyAdapter{
513
    CPPTESK_SET_INPUT_ADAPTER(input_iface, MyAdater::serialize_input);
514
    ...
515
};
516 3 Mikhail Chupilko
</code></pre>
517
518
*Notice*: when input interface adapter being registered, its full name (including the name of reference model adapter class) should be used.
519
520
h4. Output interface adapter
521
522
Output interface adapter is a process defined in reference model adapter and bound with one of the output interfaces, Output interface adapter is called by @CPPTESK_SEND_REACTION(mode, interface, message)@ macro (see chapter _“Reaction sending”_). Declaration and definition of output interface adapters are done by means of the following macros.
523
* @CPPTESK_WAIT_REACTION(condition)@ - wait for reaction and allow reaction arbiter to access the reaction;
524
* @CPPTESK_NEXT_REACTION()@ - releasing of reaction arbiter (see chapter _“Reaction arbiter”_).
525
526 1 Mikhail Chupilko
Example:
527 3 Mikhail Chupilko
<pre><code class="cpp">
528 1 Mikhail Chupilko
#include <hw/media.hpp>
529
CPPTESK_ADAPTER(MyAdapter, MyModel) {
530
    CPPTESK_DECLARE_PROCESS(deserialize_output);
531
    ...
532
};
533
534
CPPTESK_DEFINE_PROCESS(MyAdapter::deserialize_input) {
535
    // get reference to the message object
536
    MyMessage &msg = CPPTESK_CAST_MESSAGE(MyMessage);
537
    // start deserialization process
538
    CPPTESK_START_PROCESS();
539
    // wait for result strobe
540
    CPPTESK_WAIT_REACTION(outputs.result);
541
    // read data
542
    msg.set_data(outputs.data);
543
    // release reaction arbiter
544
    CPPTESK_NEXT_REACTION();
545
    // stop deserialization process
546
    CPPTESK_STOP_PROCESS();
547
}
548 3 Mikhail Chupilko
</code></pre>
549
550
The waiting for the implementation reaction time is restricted by a timeout. The timeout is set by macro @CPPTESK_SET_REACTION_TIMEOUT(timeout)@, which as well as macro @CPPTESK_SET_OUTPUT_ADAPTER(interface_name, adapter_full_name)@ is called in constructor of reference model adapter.
551
552 1 Mikhail Chupilko
Example:
553 3 Mikhail Chupilko
<pre><code class="cpp">
554 1 Mikhail Chupilko
MyAdapter::MyAdapter{
555
    CPPTESK_SET_OUTPUT_ADAPTER(output_iface, MyAdater::deserialize_output);
556
    CPPTESK_SET_REACTION_TIMEOUT(100);
557
    ...
558
};
559 3 Mikhail Chupilko
</code></pre>
560
561
*Notice*: when output interface adapter being registered, its full name (including the name of reference model adapter class) should be used.
562
563
h4. Output interface listener (deprecated feature)
564
565
_Output interface listener_ is a special-purpose process, waiting for appearing of implementation reactions at the beginning of each cycle, and registering error in case of unexpected reactions. Definition of listeners is made by @CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(name, interface_name, condition)@ macro.
566
567 1 Mikhail Chupilko
Example:
568 3 Mikhail Chupilko
<pre><code class="cpp">
569 1 Mikhail Chupilko
#include <hw/media.hpp>
570
CPPTESK_ADAPTER(MyAdapter, MyModel) {
571
    CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(output_listener,
572
        output_iface, outputs.result);
573
    ...
574
};
575 3 Mikhail Chupilko
</code></pre>
576
577
Output interface listener is started in constructor of reference model adapter by macro @CPPTESK_CALL_OUTPUT_LISTENER(listener_full_name, interface_name)@.
578
579 1 Mikhail Chupilko
Example:
580 3 Mikhail Chupilko
<pre><code class="cpp">
581 1 Mikhail Chupilko
MyAdapter::MyAdapter{
582
    ...
583
    CPPTESK_CALL_OUTPUT_LISTENER(MyAdapter::output_listener, output_iface);
584
    ...
585
};
586 3 Mikhail Chupilko
</code></pre>
587
588
h4. Reaction arbiter
589
590
_Reaction arbiter_ (_output interface arbiter_) is aimed for matching implementation reactions (received from HDL-model) with specification reactions (calculated by reference model). Having been matched, the reaction pairs are sent to comparator, showing an error if there is difference in data between two reactions (see chapter _“Comparator of output messages”_).
591
592 1 Mikhail Chupilko
The common types of arbiters are the following.
593 3 Mikhail Chupilko
* @CPPTESK_FIFO_ARBITER@ — implementation reaction having been received, the arbiter prefers specification reaction which was created by the earliest among the other reactions call of macro @CPPTESK_SEND_REACTION()@ (see chapter _“Reaction sending”_).
594
* @CPPTESK_PRIORITY_ARBITER@ — the arbiter prefers specification reaction which was created with the highest priority by macro @CPPTESK_SEND_REACTION()@ (see chapter _“Process priority”_).
595
596
To declare reaction arbiter in reference model adapter class is possible by means of macro @CPPTESK_DECLARE_ARBITER(type, name)@. To bind arbiter with output interface is possible by means of macro @CPPTESK_SET_ARBITER(interface, arbiter)@, which should be called in constructor of reference model adapter.
597
598 1 Mikhail Chupilko
Example:
599 3 Mikhail Chupilko
<pre><code class="cpp">
600 1 Mikhail Chupilko
#include <hw/media.hpp>
601
CPPTESK_ADAPTER(MyAdapter, MyModel) {
602
    CPPTESK_DECLARE_ARBITER(CPPTESK_FIFO_ARBITER, output_iface_arbiter);
603
    ...
604
};
605
606
MyAdapter::MyAdapter() {
607
    CPPTESK_SET_ARBITER(output_iface, output_iface_arbiter);
608
    ...
609
}
610 3 Mikhail Chupilko
</code></pre>
611
612
h2. Test coverage description
613
614
_Test coverage_ is aimed for evaluation of _test completeness_. As a rule, test coverage structure is described explicitly by enumerating of all possible in the test situations (test situations). To describe complex test situations, composition of simpler test coverage structures is used.
615
616
Test coverage can be described in the main class of reference model or moved to external class (test coverage class). In the second case, the class with test coverage description should have a reference to the reference model (see chapter _“Test coverage class”_).
617
618
h3. Class of test coverage
619
620
Class of test coverage is a class containing definition of test coverage structure and functions calculating test situations. As test coverage is defined in terms of reference model, test coverage class should have a reference to the main class of reference model. To trace test situations, test coverage class has test situation tracer — an object of @CoverageTracker@ class (@namespace cpptesk::tracer::coverage@) and function tracing test situations.
621
622 1 Mikhail Chupilko
Example:
623 3 Mikhail Chupilko
<pre><code class="cpp">
624 1 Mikhail Chupilko
#include <ts/coverage.hpp>
625
#include <tracer/tracer.hpp>
626
class MyModel;
627
628
// Declaration of test coverage class
629
class MyCoverage {
630
public:
631
    MyCoverage(MyModel &model): model(model) {}
632
633
    // Test situation tracer
634
    CoverageTracker tracker;
635
636
    // Description of test coverage structure
637
    CPPTESK_DEFINE_ENUMERATED_COVERAGE(MY_COVERAGE, "My coverage", (
638
         (SITUATION_1, "Situation 1"),
639
         ...
640
         (SITUATION_N, "Situation N")
641
    ));
642
643
    // Function calculating test situation: signature of the function
644
    // contains all necessary for it parameters
645
    MY_COVERAGE cov_MY_COVERAGE(...) const;
646
647
    // Function tracing test situations: signature of the function
648
    // is the same as signature of the previous function
649
    void trace_MY_COVERAGE(...);
650
    ...
651
private:
652
    // Reference to the reference model
653
    MyModel &model;
654
};
655 3 Mikhail Chupilko
</code></pre>
656
657
h3. Test coverage structure
658
659
Test coverage structure is described by means of _enumerated coverage_, _coverage compositions_, _excluded coverage composition_, and _test coverage aliases_.
660
661
h4. Enumerated coverage
662
663
_Enumerated coverage_, as it goes from the coverage name, is defined by explicit enumeration of all possible test situations by macro @CPPTESK_DEFINE_ENUMERATED_COVERAGE(coverage, description, situations)@, where coverage is an identifier of the coverage type, description is a string, and situations is the list of situations like @((id, description), ...)@.
664
665 1 Mikhail Chupilko
Example:
666 3 Mikhail Chupilko
<pre><code class="cpp">
667 1 Mikhail Chupilko
#include <ts/coverage.hpp>
668
CPPTESK_DEFINE_ENUMERATED_COVERAGE(FIFO_FULLNESS, "FIFO fullness", (
669
    (FIFO_EMPTY, "Empty"),
670
     ...
671
    (FIFO_FULL, "Full")
672
));
673 3 Mikhail Chupilko
</code></pre>
674
675
h4. Coverage composition
676 5 Alexander Kamkin
677 3 Mikhail Chupilko
_Coverage composition_ allows creation of test situation structure basing on two test coverage structures, containing Cartesian product of situations from both initial structures. Coverage composition is made by means of macro @CPPTESK_DEFINE_COMPOSED_COVERAGE(type, description, coverage_1, coverage_2)@. Description of new test situations is made according to the pattern @"%s,%s"@.
678
679 1 Mikhail Chupilko
Example:
680 3 Mikhail Chupilko
<pre><code class="cpp">
681 1 Mikhail Chupilko
#include <ts/coverage.hpp>
682
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
683
    (A1, "A one"),
684
    (A2, "A two")
685
));
686
687
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
688
    (B1, "B one"),
689
    (B2, "B two")
690
));
691
692
// Product of structures A and B makes the following situations:
693
// (COVERAGE_AxB::Id(A1, B1), "A one, B one")
694
// (COVERAGE_AxB::Id(A1, B2), "A one, B two")
695
// (COVERAGE_AxB::Id(A2, B1), "A two, B one")
696
// (COVERAGE_AxB::Id(A2, B2), "A two, B two")
697
CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AxB, "Coverage AxB",
698
    COVERAGE_A, COVERAGE_B);
699 3 Mikhail Chupilko
</code></pre>
700
701
h4. Excluded coverage composition
702
703
To make product of test coverage structures and exclude unreachable test situations is possible by macro @CPPTESK_DEFINE_COMPOSED_COVERAGE_EXCLUDING(type, description, coverage_1, coverage_2, excluded)@, where excluded is the list like @({coverage_1::id, coverage_2::id}, ... )@. Instead of test situation identifier, macro @ANY()@ can be used. To product coverage structures being products themselves, correspondent tuples should be used instead of pairs.
704
705 1 Mikhail Chupilko
Example:
706 3 Mikhail Chupilko
<pre><code class="cpp">
707 1 Mikhail Chupilko
#include <ts/coverage.hpp>
708
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
709
    (A1, "A one"),
710
    (A2, "A two")
711
));
712
713
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
714
    (B1, "B one"),
715
    (B2, "B two")
716
));
717
718
// The following composition makes the following test situations:
719
// (COVERAGE_AxB::Id(A1, B2), "A one, B two")
720
// (COVERAGE_AxB::Id(A2, B1), "A two, B one")
721
// (COVERAGE_AxB::Id(A2, B2), "A two, B two")
722
CPPTESK_DEFINE_COMPOSED_COVERAGE_EXCLUDING(COVERAGE_AxB, "Coverage AxB",
723
    COVERAGE_A, COVERAGE_B, ({COVERAGE_A::A1, COVERAGE_B::B1}));
724 3 Mikhail Chupilko
</code></pre>
725
726
h4. Test coverage alias
727
728
To make a test coverage alias (test coverage with different name, but with the same test situations), macro @CPPTESK_DEFINE_ALIAS_COVERAGE(alias, description, coverage)@ should be used.
729
730 1 Mikhail Chupilko
Example:
731 3 Mikhail Chupilko
<pre><code class="cpp">
732 1 Mikhail Chupilko
#include <ts/coverage.hpp>
733
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
734
    (A1, "A one"),
735
    (A2, "A two")
736
));
737
738
// COVERAGE_B – alias of COVERAGE_A
739
CPPTESK_DEFINE_ALIAS_COVERAGE(COVERAGE_B, "Coverage B", COVERAGE_A);
740 3 Mikhail Chupilko
</code></pre>
741
742
h3. Calculating current test situation function
743
744
_Calculating current test situation function_ is a function, which returns identifier of the current test situation (see chapter _“Structure of the test coverage”_), having analyzed the reference model state and (possibly) input parameters of the operation. Identifier of test situation for enumerated coverage looks like @coverage::identifier@ and @class::coverage::identifier@ when used outside of test coverage class. Calculating current test situation function for production of coverage structures can be obtained by calling functions for particular coverage structures and “production” of their results (operator @*@ should be appropriately overloaded).
745
746 1 Mikhail Chupilko
Example:
747 3 Mikhail Chupilko
<pre><code class="cpp">
748 1 Mikhail Chupilko
#include <ts/coverage.hpp>
749
class MyCoverage {
750
    // definition of the enumerated coverage structure COVERAGE_A
751
    CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
752
        (A1, "A one"),
753
        (A2, "A two")
754
    ));
755
    // test situation calculating function for coverage COVERAGE_A
756
    COVERAGE_A cov_COVERAGE_A(int a) const {
757
        switch(a) {
758
        case 1: return COVERAGE_A::A1;
759
        case 2: return COVERAGE_A::A2;
760
        }
761
        assert(false);
762
    }
763
    
764
    // definition of COVERAGE_B – alias of COVERAGE_A
765
    CPPTESK_DEFINE_ALIAS_COVERAGE(COVERAGE_B, "Coverage B", COVERAGE_A);
766
    // test situation calculating function for coverage COVERAGE_B
767
    COVERAGE_B cov_COVERAGE_B(int b) const {
768
        return cov_COVERAGE_A(b);
769
    }
770
771
    // definition of COVERAGE_AxB – production of COVERAGE_A and COVERAGE_B
772
    CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AxB, "Coverage AxB",
773
        COVERAGE_A, COVERAGE_B);s
774
    // test situation calculating function of coverage COVERAGE_AxB
775
    COVERAGE_AxB cov_COVERAGE_AxB(int a, int b) const {
776
        return cov_COVERAGE_A(a) * cov_COVERAGE_B(b);
777
    }
778
    ...
779
};
780 3 Mikhail Chupilko
</code></pre>
781
782
h3. Tracing test situation function
783
784
_Tracing test situation function_ is defined for each upper-level test coverage structure. As tracing function calls test situation calculating function, their parameters usually coincide. Implementation of this function is based on test situation tracer, being an object of class @CoverageTracker@ (@namespace cpptesk::tracer::coverage@).
785
786 1 Mikhail Chupilko
Example:
787 3 Mikhail Chupilko
<pre><code class="cpp">
788 1 Mikhail Chupilko
#include <ts/coverage.hpp>
789
#include <tracer/tracer.hpp>
790
CoverageTracker tracer;
791
void trace_COVERAGE_A(int a) {
792
    tracer << cov_COVERAGE_A(a);
793
}
794 3 Mikhail Chupilko
</code></pre>
795
796
h2. Development of test scenario
797
798
_Test scenario_ is a high-level specification of test, which being interpreted by test engine (see chapter _“Test scenario running”_) is used by test system for test sequence generation. Test scenario is developed as a special class named scenario class.
799
800
h3. Class of scenario
801
802
Scenario class is declared by macro @CPPTESK_SCENARIO(name)@.
803
804 1 Mikhail Chupilko
Example:
805 3 Mikhail Chupilko
<pre><code class="cpp">
806 1 Mikhail Chupilko
#include <ts/scenario.hpp>
807
CPPTESK_SCENARIO(MyScenario) {
808
    ...
809
private:
810
    // testing is done via reference model adapter
811
    MyAdapter dut;
812
};
813 3 Mikhail Chupilko
</code></pre>
814
815
_Test scenario initialization_ and _finalization methods_, _scenario methods_, and _current state function_ are declared in scenario class.
816
817
h4. Test scenario initialization method
818
819
_Test scenario initialization method_ includes actions which should have been made right before test start. It is defined by overloading of base class virtual method @bool init(int argc, char **argv)@. It returns true in case of successful initialization and false in case of some problem.
820
821
Example:
822
<pre><code class="cpp">
823 1 Mikhail Chupilko
#include <ts/scenario.hpp>
824
CPPTESK_SCENARIO(MyScenario) {
825
public:
826
    virtual bool init(int argc, char **argv) {
827
        dut.initialize();
828
        std::cout << "Test has started..." << std::endl;
829
    }
830
    ...
831
};
832 3 Mikhail Chupilko
</code></pre>
833
834
h4. Test scenario finalizing method
835
836
_Test scenario finalizing method_ contains actions which should be done right after test finish. It is defined by overloading of base class virtual method @void finish()@.
837
838 1 Mikhail Chupilko
Example:
839 3 Mikhail Chupilko
<pre><code class="cpp">
840 1 Mikhail Chupilko
#include <ts/scenario.hpp>
841
CPPTESK_SCENARIO(MyScenario) {
842
public:
843
    virtual void finish() {
844
        dut.finalize();	
845
        std::cout << "Test has finished..." << std::endl;
846
    }
847
    ...
848
};
849 3 Mikhail Chupilko
</code></pre>
850
851
h4. Scenario method
852
853
_Scenario methods_ iterate parameters of input messages and run operations by means of reference model adapter. One scenario class may contain several scenario method declarations. Scenario method returns value of bool type, which is interpreted as a flag of some problem. The only parameter of scenario method is an iteration context, which is an object containing variables to be iterated by scenario method (iteration variables). Definition of scenario method starts from calling  macro @CPPTESK_ITERATION_BEGIN@, and finishes with @CPPTESK_ITERATION_END@.
854
855 1 Mikhail Chupilko
Example:
856 3 Mikhail Chupilko
<pre><code class="cpp">
857 1 Mikhail Chupilko
#include <ts/scenario.hpp>
858
CPPTESK_SCENARIO(MyScenario) {
859
public:
860
    bool scenario(cpptesk::ts::IntCtx &ctx);
861
    ...
862
};
863
864
bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx) {
865
    CPPTESK_ITERATION_BEGIN
866
    ...
867
    CPPTESK_ITERATION_END
868
}
869 3 Mikhail Chupilko
</code></pre>
870
871
Scenario methods are registered by macro @CPPTESK_ADD_SCENARIO_METHOD(full_name)@ in scenario class constructor.
872
873 1 Mikhail Chupilko
Example:
874 3 Mikhail Chupilko
<pre><code class="cpp">
875 1 Mikhail Chupilko
MyScenario::MyScenario() {
876
    CPPTESK_ADD_SCENARIO_METHOD(MyScenario::scenario);
877
    ...
878
}
879 3 Mikhail Chupilko
</code></pre>
880
881
h4. Access to iteration variables
882
883
_Iteration variables_ are fields of _iteration context_, which is a parameter of scenario method. To access iteration variables is possible by macro @CPPTESK_ITERATION_VARIABLE(name)@, where name is a name of one of the iteration context fields.
884
885 1 Mikhail Chupilko
Example:
886 3 Mikhail Chupilko
<pre><code class="cpp">
887 1 Mikhail Chupilko
#include <ts/scenario.hpp>
888
bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx) {
889
    // get reference to iteration variable
890
    int &i = CPPTESK_ITERATION_VARIABLE(i);
891
    CPPTESK_ITERATION_BEGIN
892
    for(i = 0; i < 10; i++) {
893
        ...
894
    }
895
    CPPTESK_ITERATION_END
896
}
897 3 Mikhail Chupilko
</code></pre>
898
899
h4. Test action block
900
901
_Test action_ (preparation of input message and start of operation) is made in a code block @CPPTESK_ITERATION_ACTION{...}@ located in scenario method.
902
903 1 Mikhail Chupilko
Example:
904 3 Mikhail Chupilko
<pre><code class="cpp">
905 1 Mikhail Chupilko
#include <ts/scenario.hpp>
906
...
907
CPPTESK_ITERATION_BEGIN
908
for(i = 0; i < 10; i++) {
909
     ...
910
     // test action block
911
     CPPTESK_ITERATION_ACTION {
912
         // input message randomization
913
         CPPTESK_RANDOMIZE_MESSAGE(input_msg);
914
         input_msg.set_addr(i);
915
         // start operation
916
         CPPTESK_CALL_STIMULUS_OF(dut, MyModel::operation,
917
             dut.input_iface, input_msg);
918
         ...
919
     }
920
}
921
CPPTESK_ITERATION_END
922 3 Mikhail Chupilko
</code></pre>
923
924
h4. Scenario action finishing
925
926
Each iteration of scenario method is finished by @CPPTESK_ITERATION_YIELD(verdict)@ macro, quitting from scenario method. When being called next time, scenario method will continue its execution from next iteration.
927
928 1 Mikhail Chupilko
Example:
929 3 Mikhail Chupilko
<pre><code class="cpp">
930 1 Mikhail Chupilko
#include <ts/scenario.hpp>
931
...
932
CPPTESK_ITERATION_BEGIN
933
for(i = 0; i < 10; i++) {
934
     ...
935
     // test action block
936
     CPPTESK_ITERATION_ACTION {
937
         ...
938
         // quit from scenario method and return verdict
939
         CPPTESK_ITERATION_YIELD(dut.verdict());
940
     }
941
}
942
CPPTESK_ITERATION_END
943 3 Mikhail Chupilko
</code></pre>
944
945
h4. Delays
946
947
Making _delays_ (sending of stimuli at different time of HDL-model simulation) in tests requires development of at least one method with calling reference model method @cycle()@. In case of possibility of parallel stimulus running, the most convenient way of usage method @cycle()@ is to call this method from purposely created scenario method @nop()@ (name of this method is unrestricted). Notice that in this case method @cycle()@ should not be called from any other method.
948
949
Example:
950
<pre><code class="cpp">
951 1 Mikhail Chupilko
#include <ts/scenario.hpp>
952
bool MyScenario::nop(cpptesk::ts::IntCtx& ctx) {
953
    CPPTESK_ITERATION_BEGIN
954
    CPPTESK_ITERATION_ACTION {
955
        dut.cycle();
956
        CPPTESK_ITERATION_YIELD(dut.verdict());
957
    }
958
    CPPTESK_ITERATION_END
959
}
960 3 Mikhail Chupilko
</code></pre>
961
962
*Notice*: scenario method @nop()@ should be registered before any other scenario methods.
963
964
h3. Calculating current state function
965
966
_Calculating current state function_ is needed for test engines, using exploration of target system state graph for creation of test sequences. Returning by function value is interpreted as system state. Type of the returning value and function name are unrestricted. Method does not allow parameters.
967
968 1 Mikhail Chupilko
Example:
969 3 Mikhail Chupilko
<pre><code class="cpp">
970 1 Mikhail Chupilko
#include <ts/scenario.hpp>
971
CPPTESK_SCENARIO(MyScenario) {
972
public:
973
    ...
974
    int get_model_state() {
975
        return dut.buffer.size();
976
    }
977
};
978 3 Mikhail Chupilko
</code></pre>
979
980
Setting up of calculating current state function is made by method @void setup(...)@. in test scenario constructor.
981
982 1 Mikhail Chupilko
Example:
983 3 Mikhail Chupilko
<pre><code class="cpp">
984 1 Mikhail Chupilko
#include <ts/scenario.hpp>
985
MyScenario::MyScenario() {
986
    setup("My scenario",
987
    UseVirtual::init,
988
    UseVirtual::finish,
989
    &MyScenario::get_model_state);
990
    ...
991
}
992 3 Mikhail Chupilko
</code></pre>
993
994
h3. Test scenario running
995
996
Test scenario running at local computer is made by calling function @localmain(engine, scenario.getTestScenario(), argc, argv)@ (namespace @cpptesk::ts@).
997
998
Available test engines are the following (namespace @cpptesk::ts::engine@).
999
* @fsm@ — generator of test sequence based on state graph exploration;
1000
* @rnd@ — generator of randomized test sequence.
1001
1002 1 Mikhail Chupilko
Example:
1003 3 Mikhail Chupilko
<pre><code class="cpp">
1004 1 Mikhail Chupilko
#include <netfsm/engines.hpp>
1005
using namespace cpptesk::ts;
1006
using namespace cpptesk::ts::engine;
1007
...
1008
MyScenario scenario;
1009
localmain(fsm, scenario.getTestScenario(), argc, argv);
1010 3 Mikhail Chupilko
</code></pre>
1011
1012
h2. Auxiliary possibilities
1013
1014 1 Mikhail Chupilko
C++TESK toolkit includes the following auxiliary possibilities: assertions and debug print. These possibilities can be used in reference models and in all test system components (adapters, test scenarios, etc). Their main aim is to facilitate debug of test system.
1015 3 Mikhail Chupilko
1016
h3. Assertions
1017
1018
_Assertions_ are predicates (logic constructions) used for description of program properties and, as a rule, checked during runtime. If assertion is violated (predicate shows false), error is fixed and program is stopped. To make assertions is possible by @CPPTESK_ASSERTION(predicate, description)@ macro, where predicate is a checking property, and description is a string describing error bound with violation of this property.
1019
1020 1 Mikhail Chupilko
Example:
1021 3 Mikhail Chupilko
<pre><code class="cpp">
1022 1 Mikhail Chupilko
#include <hw/assertion.hpp>
1023
...
1024
CPPTESK_ASSERTION(pointer, "pointer is null");
1025 3 Mikhail Chupilko
</code></pre>
1026
1027
h3. Debug print
1028
1029
_Debug print_ is devoted to debug of test system. In contrast to typical printing by means of, e.g., STL streams, adjustment of debug print is easier (turning on/off, changing of printing color, etc).
1030
1031
h4. Debug print macros
1032
1033
Debug print is commonly made by macro @CPPTESK_DEBUG_PRINT(level, message)@, where level is a level of debug print (see chapter _“Debug print levels”_) and message is a printing debug message, and macro @CPPTESK_DEBUG_PRINTF(level, formal, parameters)@, where @(format, parameters)@ is a formatted string and values of used in the string parameters in the same format as they are used by C library function @printf()@.
1034
1035 1 Mikhail Chupilko
Example:
1036 3 Mikhail Chupilko
<pre><code class="cpp">
1037 1 Mikhail Chupilko
#include <hw/debug.hpp>
1038
using namespace cpptesk::hw;
1039
...
1040
CPPTESK_DEBUG_PRINT(DEBUG_USER, "The input message is "
1041
    << CPPTESK_GET_MESSAGE());
1042
...
1043
CPPTESK_DEBUG_PRINTF(DEBUG_USER, "counter=%d", counter);
1044 3 Mikhail Chupilko
</code></pre>
1045
1046
*Notice*: as a debug message in macro @CPPTESK_DEBUG_PRINT()@ any “stream expression” (allowed for usage in standard C++ STL output streams expressions) can be used.
1047
1048
To add location information of debug macro to debug message (file name and string number) is possible by means of macros @CPPTESK_DEBUG_PRINT_FILE_LINE()@ and @CPPTESK_DEBUG_PRINTF_FILE_LINE()@. Their parameters are the same as of macros mentioned above.
1049
1050
h3. Process call stack printing
1051
1052
To print process call stack of reference model is possible by macro @CPPTESK_CALL_STACK()@, which can be used inside and instead of debug message of macro @CPPTESK_DEBUG_PRINT()@.
1053
1054 1 Mikhail Chupilko
Example:
1055 3 Mikhail Chupilko
<pre><code class="cpp">
1056 1 Mikhail Chupilko
#include <hw/model.hpp>
1057
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
1058
    CPPTESK_START_PROCESS();
1059
1060
    CPPTESK_DEBUG_PRINT(DEBUG_USER, "Call stack is "
1061
        << CPPTESK_CALL_STACK());
1062
    ...
1063
    CPPTESK_STOP_PROCESS();
1064
}
1065 3 Mikhail Chupilko
</code></pre>
1066
1067
*Notice*: macro @CPPTESK_CALL_STACK()@ can be used only inside on reference model.
1068
1069
h3. Colored debug print
1070
1071
To facilitate manual search of debug messages of a certain type among all debug print is possible by means of colored debug print macros @CPPTESK_COLORED_DEBUG_PRINT(level, color, background_color, message)@, @CPPTESK_COLORED_DEBUG_PRINTF(level, color, background_color, format, parameters)@, and also macros @CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE()@ and @CPPTESK_COLORED_DEBUG_PRINTF_FILE_LINE()@.
1072
1073
The following color constants are defined (namespace @cpptesk::hw@):
1074
* @BLACK@ — black;
1075
* @RED@ — red;
1076
* @GREEN@ — green;
1077
* @YELLOW@ — yellow;
1078
* @BLUE@ — blue;
1079
* @MAGENTA@ — purple;
1080
* @CYAN@ — cyan;
1081
* @WHITE@ — white.
1082
1083 1 Mikhail Chupilko
Example:
1084 3 Mikhail Chupilko
<pre><code class="cpp">
1085 1 Mikhail Chupilko
#include <hw/debug.hpp>
1086
using namespace cpptesk::hw;
1087
...
1088
CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE(DEBUG_USER, RED, BLACK,
1089
    "The input message is " << CPPTESK_GET_MESSAGE());
1090
...
1091
CPPTESK_COLORED_DEBUG_PRINTF(DEBUG_USER, WHITE, BLACK,
1092
    "counter=%d", counter);
1093 3 Mikhail Chupilko
</code></pre>
1094
1095
h3. Controlling indents in debug print
1096
1097
To control indents in debug print is possible by @CPPTESK_SET_DEBUG_INDENT(indent)@, @CPPTESK_BEGIN_DEBUG_INDENT@, and @CPPTESK_END_DEBUG_INDENT@ macros. Macro @CPPTESK_SET_DEBUG_INDENT@ sets indent value (not negative integer) returning its old value. Macros @CPPTESK_BEGIN_DEBUG_INDENT@ and @CPPTESK_END_DEBUG_INDENT@ are used in complementary way: the first one increases indent, the second one decreases indent by one point.
1098
1099 1 Mikhail Chupilko
Example:
1100 3 Mikhail Chupilko
<pre><code class="cpp">
1101 1 Mikhail Chupilko
#include <hw/debug.hpp>
1102
using namespace cpptesk::hw;
1103
...
1104
unsigned old_indent = CPPTESK_SET_DEBUG_INDENT(2);
1105
...
1106
CPPTESK_BEGIN_DEBUG_INDENT
1107
{
1108
    CPPTESK_DEBUG_PRINT(DEBUG_USER, "Some message");
1109
    ...
1110
}
1111
CPPTESK_END_DEBUG_INDENT
1112 3 Mikhail Chupilko
</code></pre>
1113
1114
h3. Debug print levels
1115
1116
There is a level of debug message parameter among other debug print parameters. Level characterizes importance of the message. Usually, debug messages of different levels are colored differently. The following debug levels are defined (namespace @cpptesk::hw@):
1117
* @DEBUG_MORE@ — detailed debug messages produced by toolkit itself;
1118
* @DEBUG_INFO@ — basic debug messages produced by toolkit itself;
1119
* @DEBUG_USER@ — user’s debug messages;
1120
* @DEBUG_WARN@ — warnings (typically, produced by toolkit itself);
1121
* @DEBUG_FAIL@ — messages about failures (typically, produced by toolkit itself).
1122
1123
The most “important” level is @DEBUG_FAIL@, then @DEBUG_WARN@, etc. @DEBUG_USER@ is the only one level for user’s messages.
1124
1125
h3. Debug print setting up
1126
1127
To set up the volume of debug print messages is possible by selection of debug print level, and only those messages will be printed, which has debug level being not less than selected one. It is done by macro @CPPTESK_SET_DEBUG_LEVEL(debug_level, colored)@. This macro has an additional Boolean parameter colored, turning on/off coloring. Debug level @DEBUG_INFO@ is set by default. Special level @DEBUG_NONE@ can be used to switch off debug print totally.
1128
1129
Each debug print level can be assigned with colors for messages of this level. It is done by macro @CPPTESK_SET_DEBUG_STYLE(level, tag_color, tag_background_color, color, background_color)@.
1130
1131 1 Mikhail Chupilko
Example:
1132 3 Mikhail Chupilko
<pre><code class="cpp">
1133 1 Mikhail Chupilko
#include <hw/model.hpp>
1134
using namespace cpptesk::hw;
1135
...
1136
// reference model constructor
1137
MyModel::MyModel() {
1138
    // print messages with failures only,
1139
    // switch on message coloring
1140
    CPPTESK_SET_DEBUG_LEVEL(DEBUG_FAIL, true);
1141
    // [FAIL] Error message style.
1142
    CPPTESK_SET_DEBUG_STYLE(DEBUG_FAIL, BLACK, RED, RED, BLACK);
1143
}
1144 3 Mikhail Chupilko
</code></pre>