Project

General

Profile

C++TESK Quick Reference » History » Version 4

Alexander Kamkin, 05/22/2014 10:24 AM

1 1 Mikhail Chupilko
h1. C++TESK Quick Reference
2
3 4 Alexander Kamkin
{{toc}}
4
5 1 Mikhail Chupilko
h2. Introduction
6
7
This document is a quick reference of C++TESK Hardware Extension tool (С++TESK, hereafter) included into C++TESK Testing ToolKit and aimed to automated development of test systems for HDL-models (HDL (Hardware Description Language) — class of program languages used for description of hardware) of hardware. The tool architecture bases on general UniTESK (http://www.unitesk.ru) conventions.
8
9
_Test system_ is meant to be a special program which evaluates the functional correctness of _target system_, applying some input data (_stimuli_) and analyzing received results of their application (_reactions_). Typical test system consists of three common components: (1) _stimulus generator_ making sequences of stimuli (_test sequences_), (2) _test oracle_ checking correctness of reactions, and (3) _test completeness evaluator_.
10
11
The document describes facilities of C++TESK aimed to development of mentioned test system components, and consists of four common chapters.
12
* Development of reference model
13
* Development of reference model adapter
14
* Description of test coverage
15
* Development of test scenario
16
17
First two chapters touch upon development of test oracle basic parts: _reference model_ covering functionality of target system, and _reference model adapter_ binding reference model with target system. The third chapter is devoted to the test completeness estimation on the base of _test coverage_. The last chapter concerns development of test scenario which is the main part of stimulus generator.
18
19
More detailed toolkit review is given in _«C++TESK Testing ToolKit: User Guide»_.
20
21
Installation process of C++TESK is described in _«С++TESK Testing ToolKit: Installation Guide»_.
22
23
h2. Supporting obsolete constructions
24
25
Updates of C++TESK do not interfere in the compilation and running of test systems developed for older versions of C++TESK. When the toolkit has incompatible with older versions update, this update is marked by a build number in form of yymmdd, i.e. 110415 – the 15th of April, 2011. The update is available only if macro CPPTESKHW_VERSION (using gcc compiler it can be done by the option –Dmacro_name=value) is appropriately defined. E.g.,
26
-DCPPTESKHW_VERSION=110415 enables usage of incompatible updated having been made by the 15th of April, 2011 (including this date). Each build of the toolkit has the whole list of such changes.
27
28
Obsolete constructions of the toolkit are not described in this document. Possibilities of the toolkit, being incompatible with having become obsolete constructions, are presented with the build number, since which they have been available. E.g., the sentence “the means are supported from 110415 build” means that usage of these means requires two conditions: (1) using toolkit build has the number 110415 or greater, (2) the compilation option -DCPPTESKHW_VERSION=number, where number is not less than 110415, is used.
29
30
If some obsolete constructions are not used or prevent the toolkit from further development, they might become unsupported. In this case, during compilation of test system using these constructions, a message with advices about correction of test system will be shown.
31
32
During compilation of test systems, developed by means of C++TESK, usage of the compiler option -DCPPTESKHW_VERSION=number is highly recommended.
33
34
h2. Naming convention
35
36
The core of the toolkit is developed as a C++ library. Available means are grouped into the following namespaces.
37
38
* cpptesk::hw — means for development of reference models and their adapters;
39
* cpptesk::ts — basic means for test system development;
40
* cpptesk::ts::coverage — means for test coverage description;
41 3 Mikhail Chupilko
* сpptesk::ts::engine  — library with _test engines_ (test engines are toolkit library components used for producing of stimulus sequence, use _test scenario_ (see chapter _“Development of test scenario”_));
42 1 Mikhail Chupilko
* cpptesk::tracer — means for tracing;
43
* cpptesk::tracer::coverage — means for coverage tracing.
44
45
A lot of C++TESK means are implemented in form of macros. To avoid conflicts of names, names of all macros start with prefix CPPTESK_, e.g., CPPTESK_MODEL(name). Generally, each macro has two aliases: shortened name (without CPPTESK_ prefix) and short name, (after additional “compression” of shortened name). E.g., macro CPPTESK_ITERATION_BEGIN has two aliases: ITERATION_BEGIN and IBEGIN. To use shortened and short names, macros CPPTESK_SHORT_NAMES and CPPTESK_SHORT_SHORT_NAMES should be defined, respectively.
46
47
h2. Development of reference model
48
49 3 Mikhail Chupilko
Reference model is a structured set of classes describing functionality of target system at some abstraction level (the toolkit allows developing of both abstract functional models and detailed models describing target system cycle-accurately). Reference model consists of message classes describing format of input and output data (structures of stimuli and reactions), main class and set of auxiliary classes. Hereafter, a main class of reference model will be meant under term reference model.
50 1 Mikhail Chupilko
51
h3. Class of message
52
53
Message classes are declared by macro @CPPTESK_MESSAGE(name)@. Row with macro @CPPTESK_SUPPORT_CLONE(name)@ defining the message clone method @name* clone()@ should be written inside of the each message class declaration.
54
55
Example:
56
<pre><code class="cpp">
57
#include <hw/message.hpp>
58
CPPTESK_MESSAGE(MyMessage) {
59
public:
60
    CPPTESK_SUPPORT_CLONE(MyMessage)
61
    ...
62
};
63
</code></pre>
64
*Notice*: Row @CPPTESK_SUPPORT_CLONE(name)@ is obligatory.
65
66 2 Mikhail Chupilko
h4. Input message randomizer
67 1 Mikhail Chupilko
68
Virtual method @randomize()@ (randomizer of the message) should be overloaded in each input message class. There are two macros @CPPTESK_{DECLARE|DEFINE}_RANDOMIZER@ for this purpose.
69
70
Example:
71
<pre><code class="cpp">
72
CPPTESK_MESSAGE(MyMessage) {
73
    ...
74
    CPPTESK_DECLARE_RANDOMIZER();
75
private:
76
    int data;
77
};
78
79
CPPTESK_DEFINE_RANDOMIZER(MyMessage) {
80
    data = CPPTESK_RANDOM(int);
81
}
82
</code></pre>
83
84
The following macros can be used for randomization of data fields.
85
* @CPPTESK_RANDOM(type)@ — generation of random integer value;
86
* @CPPTESK_RANDOM_WIDTH(type, length)@ — generation of random integer value of given number of bits;
87
* @CPPTESK_RANDOM_FIELD(type, min_bit, max_bit)@ — generation of random integer value with zero bits outside the given range;
88
* @CPPTESK_RANDOM_RANGE(type, min_value, max_value)@ — generation of random integer value from given integer range;
89
* @CPPTESK_RANDOM_CHOICE(type, value_1, ..., value_n)@ — random choice from given set of any type values.
90
91
*Notice*: randomizer may not be defined if all data fields are defined by special macros (see chapter _“Message data fields”_).
92
93 2 Mikhail Chupilko
h4. Comparator of output messages
94 1 Mikhail Chupilko
95
Virtual method @compare()@ (comparator of messages) should  be overloaded in each output message class. There are two macro @CPPTESK_{DECLARE|DEFINE}_COMPARATOR@ for this purpose (build is not less than 110428).
96
97
Example:
98
<pre><code class="cpp">
99
CPPTESK_MESSAGE(MyMessage) {
100
    ...
101
    CPPTESK_DECLARE_COMPARATOR();
102
private:
103
    int data;
104
};
105
106
CPPTESK_DEFINE_COMPARATOR(MyMessage) {
107
    const MyMessage &rhs = CPPTESK_CONST_CAST_MESSAGE(MyMessage);
108
    // in case of difference between messages return not empty string
109
    if(data != rhs.data)
110
        { return "incorrect data"; }
111
    // empty string is interpreted as absence of difference
112
    return COMPARE_OK;
113
}
114
</code></pre>
115
116
*Notice*: comparator may not be defined if all data fields are defined by special macros (see chapter “Message data fields”).
117
118 2 Mikhail Chupilko
h4. Message data fields
119 1 Mikhail Chupilko
120
The following macros are aimed to declaration of integer data fields.
121
* @CPPTESK_DECLARE_FIELD(name, length)@ declares integer field with given name and length.
122
* @CPPTESK_DECLARE_MASKED_FIELD(name, length, mask)@ declares integer field with given name, length, and mask.
123
* @CPPTESK_DECLARE_BIT(name)@ declares bit field with given name.
124
125
Example:
126
<pre><code class="cpp">
127
#include <hw/message.hpp>
128
CPPTESK_MESSAGE(MyMessage) {
129
public:
130
    CPPTESK_DECLARE_MASKED_FIELD(addr, 32, 0xffffFFF0);
131
    CPPTESK_DECLARE_FIELD(data, 32);
132
    CPPTESK_DECLARE_BIT(flag);
133
    ...
134
};
135
</code></pre>
136
137
*Notice*: length of the data fields should not exceed 64 bits.
138
139
All declared data fields should be registered in message class constructor by means of macro @CPPTESK_ADD_FIELD(full_name)@ or, when the data field should not be taken into account by comparator, by means of @CPPTESK_ADD_INCOMPARABLE_FIELD(full_name)@.
140
141
Example:
142
<pre><code class="cpp">
143
MyMessage::MyMessage() {
144
    CPPTESK_ADD_FIELD(MyMessage::addr);
145
    CPPTESK_ADD_FIELD(MyMessage::data);
146
    CPPTESK_ADD_INCOMPARABLE_FIELD(MyMessage::flag);
147
    ...
148
}
149
</code></pre>
150
151
*Notice*: full_name means usage both name of method and name of class.
152
153 2 Mikhail Chupilko
h4. Optional messages
154 1 Mikhail Chupilko
155
Output message can be declared to be optional (not obligatory for receiving) if the following method is used.
156
<pre><code class="cpp">void setOptional(optional_or_not_optional);</code></pre>
157
*Notice*: Default value of the parameter “optional_or_not_optional” is true, i.e. if there has not been correspondent implementation output message by a certain timeout, the message will be simply deleted without showing of an error. At the same time, the optional message is added to the interface arbiter and might affect to the matching of other output messages. If correspondent implementation reactions are received after the timeout and they are to be ignored, the flag of the message being optional should be set in message class constructor.
158
159
h2. Reference model
160
161 2 Mikhail Chupilko
Reference model (main class of the reference model) is declared by macro @CPPTESK_MODEL(name)@.
162
163 1 Mikhail Chupilko
Example:
164 2 Mikhail Chupilko
<pre><code class="cpp">
165 1 Mikhail Chupilko
#include <hw/model.hpp>
166
CPPTESK_MODEL(MyModel) {
167
    ...
168
};
169 2 Mikhail Chupilko
</code></pre>
170
171 1 Mikhail Chupilko
Reference model contains declaration of input and output interfaces, operations, auxiliary processes, and data necessary for operation description.
172 2 Mikhail Chupilko
173
h3. Interface
174
175
Input and output interfaces of the reference model are declared by means of two macros @CPPTESK_DECLARE_{INPUT|OUTPUT}(name)@, respectively.
176
177 1 Mikhail Chupilko
Example:
178 2 Mikhail Chupilko
<pre><code class="cpp">
179 1 Mikhail Chupilko
#include <hw/model.hpp>
180
CPPTESK_MODEL(MyModel) {
181
public:
182
    CPPTESK_DECLARE_INPUT(input_iface);
183
    CPPTESK_DECLARE_OUTPUT(output_iface);
184
    ...
185
};
186 2 Mikhail Chupilko
</code></pre>
187
188
All declared interfaces should be registered in reference model constructor by means of two macros @CPPTESK_ADD_{INPUT|OUTPUT}(name)@.
189
190 1 Mikhail Chupilko
Example:
191 2 Mikhail Chupilko
<pre><code>
192 1 Mikhail Chupilko
MyModel::MyModel() {
193
    CPPTESK_ADD_INPUT(input_iface);
194
    CPPTESK_ADD_OUTPUT(output_iface);
195
    ...
196
}
197 2 Mikhail Chupilko
</code></pre>
198
199
h3. Setting up ignoring of failures on output interface
200
201 1 Mikhail Chupilko
To disable showing errors of a certain type on a given interface is possible by means of the method:
202 2 Mikhail Chupilko
<pre><code class="cpp">
203 1 Mikhail Chupilko
void setFailureIgnoreTypes(disabling_error_types_mask);
204 2 Mikhail Chupilko
</code></pre>
205
206
Disabling error types include errors of implementation reaction absence (@MISSING_REACTION@) and specification reaction absence (@UNEXPECTED_REACTION@) on the given interface. Error types can be grouped by bit operation “or”.
207
208
h3. Process
209
210
Processes are the main means of functional specification of hardware. Processes are subdivided into operations (see chapter _“Operation”_) and internal processes. Operations describe processing of stimuli of a certain types by the target system. Internal processes are used for definition of the other, more complex processes, including operations.
211
212
Declaration and definition of reference model processes are made by means of macros @CPPTESK_{DECLARE|DEFINE}_PROCESS(name)@. Definition of the process should be started by calling macro @CPPTESK_START_PROCESS()@, and finished by calling macro @CPPTESK_STOP_PROCESS()@.
213
214 1 Mikhail Chupilko
Example:
215 2 Mikhail Chupilko
<pre><code class="cpp">
216 1 Mikhail Chupilko
#include <hw/model.hpp>
217
CPPTESK_MODEL(MyModel) {
218
public:
219
    ...
220
    CPPTESK_DECLARE_PROCESS(internal_process);
221
    ...
222
};
223
224
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
225
    CPPTESK_START_PROCESS();
226
    ...
227
    CPPTESK_STOP_PROCESS();
228
}
229 2 Mikhail Chupilko
</code></pre>
230
231
*Notice*: macro @CPPTESK_START_PROCESS()@ may be used only once in definition of the process, and usually precedes the main process code. Semantics of @CPPTESK_STOP_PROCESS()@ is similar to the semantics of operator return — when the macro is called, the process finished.
232
233
*Notice*: keyword process is reserved and cannot be used for naming of processes.
234
235
h3. Process parameters
236
237 1 Mikhail Chupilko
Process should have three obligatory parameters: (1) process execution context, (2) associated with process interface, and (3) message. To access process parameters is possible by means of the following macros.
238 2 Mikhail Chupilko
* @CPPTESK_GET_PROCESS()@ — get process context;
239
* @CPPTESK_GET_IFACE()@ — get process interface;
240
* @CPPTESK_GET_MESSAGE()@ — get message.
241
242 1 Mikhail Chupilko
To cast message parameter to the necessary type is possible by means of the following macros.
243 2 Mikhail Chupilko
* @CPPTESK_CAST_MESSAGE(message_class)@;
244
* @CPPTESK_CONST_CAST_MESSAGE(message_class)@.
245
246 1 Mikhail Chupilko
Example:
247 2 Mikhail Chupilko
<pre><code class="cpp">
248 1 Mikhail Chupilko
#include <hw/model.hpp>
249
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
250
    // copy message to the local variable
251
    MyMessage msg = CPPTESK_CAST_MESSAGE(MyMessage);
252
    // get reference to the message
253
    MyMessage &msg_ref = CPPTESK_CAST_MESSAGE(MyMessage);
254
    // get constant reference to the message
255
    const MyMessage &const_msg_ref = CPPTESK_CONST_CAST_MESSAGE(MyMessage);
256
    ...
257
}
258 2 Mikhail Chupilko
</code></pre>
259
260
h3. Process priority
261
262
During execution, each process is assigned with a priority, unsigned integer value from range @[1, 255]@ (0 is reserved). Priority affects the order of process execution inside of one cycle (processes with higher priority run first). Priorities may be used in matching of implementation and specification reactions (see chapter _“Reaction arbiter”_). When started, all processes are assigned with the same priority (@NORMAL_PRIORITY@). To change the priority is possible by means of the following macros.
263
* @CPPTESK_GET_PRIORITY()@ — get process priority.
264
* @CPPTESK_SET_PRIORITY(priority)@ — set process priority.
265
266
Some priority values are defined in the enumeration type @priority_t (cpptesk::hw namespace)@. The most general of them are the following ones.
267
* @NORMAL_PRIORITY@ — normal priority;
268
* @LOWEST_PRIORITY@ — the lowest priority;
269
* @HIGHEST_PRIORITY@ — the highest priority.
270
271 1 Mikhail Chupilko
Example:
272 2 Mikhail Chupilko
<pre><code class="cpp">
273 1 Mikhail Chupilko
#include <hw/model.hpp>
274
#include <iostream>
275
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
276
    ...
277
    std::cout << "process priority is " << std::dec
278
              << CPPTESK_GET_PRIORITY() << std::end;
279
    ...
280
    CPPTESK_SET_PRIORITY(cpptesk::hw::HIGHEST_PRIORITY);
281
    ...
282
}
283 2 Mikhail Chupilko
</code></pre>
284
285
h3. Modeling of delays
286
287 1 Mikhail Chupilko
To model delays in processes is possible by means of the following macros.
288 2 Mikhail Chupilko
* @CPPTESK_CYCLE()@ - delay of one cycle.
289
* @CPPTESK_DELAY(number_of_cycles)@ - delay of several cycles.
290
* @CPPTESK_WAIT(condition)@ - delay till condition is satisfied.
291
* @CPPTESK_WAIT_TIMEOUT(condition, timeout)@ - limited in time delay till condition is satisfied.
292
293 1 Mikhail Chupilko
Example:
294 2 Mikhail Chupilko
<pre><code class="cpp">
295 1 Mikhail Chupilko
#include <hw/model.hpp>
296
#include <iostream>
297
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
298
    ...
299
    std::cout << "cycle: " << std::dec << time() << std::end;
300
    // delay of one cycle
301
    CPPTESK_CYCLE();
302
    std::cout << "cycle: " << std::dec << time() << std::end;
303
    ...
304
    // wait till outputs.ready is true,
305
    // but not more than 100 cycles
306
    CPPTESK_WAIT_TIMEOUT(outputs.ready, 100);
307
    ...
308
}
309 2 Mikhail Chupilko
</code></pre>
310
311
h3. Process calling
312
313
Reference model process calling from another process is made by means of macro @CPPTESK_CALL_PROCESS(mode, process_name, interface, message)@, where mode might be either @PARALLEL@ or @SEQUENTIAL@. In the first case separated process is created, which is executed in parallel with the parent process. In the second case consequent execution is performed, where returning to the parent process execution is possible only after child process has been finished.
314
315 1 Mikhail Chupilko
Example:
316 2 Mikhail Chupilko
<pre><code class="cpp">
317 1 Mikhail Chupilko
#include <hw/model.hpp>
318
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
319
    ...
320
    // call separated process
321
    CPPTESK_CALL_PROCESS(PARALLEL, internal_process,
322
        CPPTESK_GET_IFACE(), CPPTESK_GET_MESSAGE());
323
    ...
324
    // call process and wait till it has been finished
325
    CPPTESK_CALL_PROCESS(SEQUENTIAL, internal_process,
326
        CPPTESK_GET_IFACE(), CPPTESK_GET_MESSAGE());
327
    ...
328
}
329 2 Mikhail Chupilko
</code></pre>
330
331
*Notice*: to call new processes is possible from any reference model methods, not only from methods describing processes. Macro @CPPTESK_CALL_PARALLEL(process_name, interface, message)@ should be used in this case. Calling process with mode @SEQUENTIAL@ from the method not being a process is prohibited.
332
333
h3. Stimulus receiving
334
335
Inside of the process, receiving of stimulus on one of the input interfaces can be modeled. It is possible by means of macro @CPPTESK_RECV_STIMULUS(mode, interface, message)@. Executing this macro, test system applies the stimulus to the target system via adapter of the correspondent input interface (see chapter _«Input interface adapter»_). Semantics of the mode parameter is described in the chapter _«Process calling»_.
336
337 1 Mikhail Chupilko
Example:
338 2 Mikhail Chupilko
<pre><code class="cpp">
339 1 Mikhail Chupilko
#include <hw/model.hpp>
340
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
341
    // modeling of stimulus receiving
342
    CPPTESK_RECV_STIMULUS(PARALLEL, input_iface, input_msg);
343
    ...
344
}
345 2 Mikhail Chupilko
</code></pre>
346
347
h3. Reaction sending
348
349
Modeling of reaction sending is done by the macro @CPPTESK_SEND_REACTION(mode, interface, message)@. Executing this macro, test system calls adapter of the correspondent output interface. The adapter starts waiting for the proper implementation reaction. When being received, the reaction is transformed into object of the correspondent message class (see chapter _“Adapter of the output interface”_). Then test system compares reference message with received message by means of comparator (see chapter _“Comparator of output messages”_). Semantics of the mode parameter is described in the chapter _“Process calling”_.
350
351 1 Mikhail Chupilko
Example:
352 2 Mikhail Chupilko
<pre><code class="cpp">
353 1 Mikhail Chupilko
#include <hw/model.hpp>
354
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
355
    // modeling of reaction sending
356
    CPPTESK_SEND_REACTION(SEQUENTIAL, output_iface, output_msg);
357
    ...
358
}
359 2 Mikhail Chupilko
</code></pre>
360
361
h3. Operation
362
363
Declaration and definition of interface operations of reference model is made by means of macros @CPPTESK_{DECLARE|DEFINE}_STIMULUS(name)@. The definition should start from macro @CPPTESK_START_STIMULUS(mode)@, and stop by macro @CPPTESK_STOP_STIMULUS()@.
364
365 1 Mikhail Chupilko
Example:
366 2 Mikhail Chupilko
<pre><code class="cpp">
367 1 Mikhail Chupilko
#include <hw/model.hpp>
368
CPPTESK_MODEL(MyModel) {
369
public:
370
    CPPTESK_DECLARE_STIMULUS(operation);
371
    ...
372
};
373
374
CPPTESK_DEFINE_STIMULUS(MyModel::operation) {
375
    CPPTESK_START_STIMULUS(PARALLEL);
376
    ...
377
    CPPTESK_STOP_STIMULUS();
378
}
379 2 Mikhail Chupilko
</code></pre>
380
381
*Notice*: operations are particular cases of processes, so that all the constructions from chapter _“Process”_ can be used in them.
382
383
*Notice*: calling macro @CPPTESK_START_STIMULUS(mode)@ is equivalent to the calling macro @CPPTESK_RECV_STIMULUS(mode, ...)@, where interface and message parameters are assigned with correspondent operation parameters.
384
385
h3. Callback function
386
387
In the main class of reference model, several callback functions are defined. The functions can be overloaded in the reference model. The main callback function is @onEveryCycle()@.
388
389
h4. Function onEveryCycle
390
391
Function @onEveryCycle()@ is called at the beginning of each reference model execution cycle.
392
393 1 Mikhail Chupilko
Example:
394 2 Mikhail Chupilko
<pre><code class="cpp">
395 1 Mikhail Chupilko
#include <hw/model.hpp>
396
CPPTESK_MODEL(MyModel) {
397
public:
398
    virtual void onEveryCycle();
399
    ...
400
};
401
402
void MyModel::onEveryCycle() {
403
    std::cout << "onEveryCycle: time=" << std::dec << time() << std::endl;
404
}
405 2 Mikhail Chupilko
</code></pre>
406
407
h2. Development of reference model adapter
408
409
_Reference model adapter_ (_mediator_) is a component of test system, binding reference model with target system. The adapter _serializes_ input message objects into sequences of input signal values, _deserializes_ sequences of output signal values into output message objects, and matches received from target system reactions with reference values.
410
411
h3. Reference model adapter
412
413
Reference model adapter is a subclass of reference model class. It is declared by means of the macro @CPPTESK_ADAPTER(adapter_name, model_name)@.
414
415 1 Mikhail Chupilko
Example:
416 2 Mikhail Chupilko
<pre><code class="cpp">
417 1 Mikhail Chupilko
#include <hw/media.hpp>
418
CPPTESK_ADAPTER(MyAdapter, MyModel) {
419
    ...
420
};
421 2 Mikhail Chupilko
</code></pre>
422
423
_Synchronization methods_, _input_ and _output interface adapters_, _output interface listeners_, and _reaction arbiters_ are declared in reference model adapter.
424
425
h4. Synchronizer
426
427 1 Mikhail Chupilko
Synchronizer is a low-level part of reference model adapter, responsible for synchronization of test system with being tested HDL-model. Synchronizer is implemented by overloading the following five methods of reference model adapter.
428 2 Mikhail Chupilko
* @void initialize()@ — test system initialization;
429
* @void finialize()@ — test system finalization;
430
* @void setInputs()@ — synchronization of inputs;
431
* @void getOutputs()@ — synchronization of outputs;
432
* @void simulate()@ — synchronization of time.
433
434 3 Mikhail Chupilko
When hardware models written in Verilog being verified, these methods can be implemented by standard interface VPI (Verilog Procedural Interface). Also, tool VeriTool (http://forge.ispras.ru/projects/veritool) can be used for automation of synchronizer development. In this case, macro @CPPTESK_VERITOOL_ADAPTER(adapter_name, model_name)@ can be used for facilitating of the efforts.
435 2 Mikhail Chupilko
436 1 Mikhail Chupilko
Example:
437 2 Mikhail Chupilko
<pre><code class="cpp">
438 1 Mikhail Chupilko
#include <hw/veritool/media.hpp>
439
// file generated by tool VeriTool
440
#include <interface.h>
441
CPPTESK_VERITOOL_ADAPTER(MyAdapter, MyModel) {
442
    ...
443
};
444
</code></pre>
445
446
Used for definition of synchronization methods functions and data structures (fields inputs and outputs) are generated automatically by tool VeriTool analyzing Verilog hardware model interface.
447 3 Mikhail Chupilko
448
*Notice*: when macro @CPPTESK_VERITOOL_ADAPTER@ being used, fields inputs и outputs should not be declared and methods and methods of synchronizer should not be overloaded.
449
450
*Notice*: tool VeriTool provides access to values of all HDL-model signals, including internal ones. To get access is possible by means of macros @CPPTESK_GET_SIGNAL(signal_type, signal_name)@ for getting value of signal @testbench.target.signal_name@ (@signal_type@ is meant to be from the following list: int, uint64_t, etc.), and @CPPTESK_SET_SIGNAL(signal_type, signal_name, new_value)@ for setting to a new value the signal @testbench.target.signal_name@ (@signal_type@ is meant to be the same as for getting value macro).
451
452
h4. Input interface adapter
453
454
_Input interface adapter_ is a process defined in reference model adapter and bound with one of the input interfaces. Input interface adapter is called by @CPPTESK_START_STIMULUS(mode)@ macro (see chapter _“Operation”_) or by @CPPTESK_RECV_STIMULUS(mode, interface, message)@ macro (see chapter _“Stimulus receiving”_). Declaration and definition of input interface adapters are done in typical for processes way.
455
456
It should be noticed, that just before the serialization, the input interface adapter should capture the interface. Capturing is made by macro @CPPTESK_CAPTURE_IFACE()@. Correspondingly, after the serialization, the interface should be released by macro @CPPTESK_RELEASE_IFACE()@.
457
458 1 Mikhail Chupilko
Example:
459 3 Mikhail Chupilko
<pre><code class="cpp">
460 1 Mikhail Chupilko
#include <hw/media.hpp>
461
CPPTESK_ADAPTER(MyAdapter, MyModel) {
462
    CPPTESK_DECLARE_PROCESS(serialize_input);
463
    ...
464
};
465
466
CPPTESK_DEFINE_PROCESS(MyAdapter::serialize_input) {
467
    MyMessage msg = CPPTESK_CAST_MESSAGE(MyMessage);
468
    // start serialization process
469
    CPPTESK_START_PROCESS();
470
    // capture input interface
471
    CPPTESK_CAPTURE_IFACE();
472
    // set operation start strobe
473
    inputs.start = 1;
474
    // set information signals
475
    inputs.addr  = msg.get_addr();
476
    inputs.data  = msg.get_data();
477
    // one cycle delay
478
    CPPTESK_CYCLE();
479
    // reset of operation strobe
480
    inputs.start = 0;
481
    // release input interface
482
    CPPTESK_RELEASE_IFACE();
483
    // stop serialization process
484
    CPPTESK_STOP_PROCESS();
485
}
486 3 Mikhail Chupilko
</code></pre>
487
488
Binding of adapter and interface is made in reference model constructor by means of macro @CPPTESK_SET_INPUT_ADAPTER(interface_name, adapter_full_name)@.
489
490 1 Mikhail Chupilko
Example:
491 3 Mikhail Chupilko
<pre><code class="cpp">
492 1 Mikhail Chupilko
MyAdapter::MyAdapter{
493
    CPPTESK_SET_INPUT_ADAPTER(input_iface, MyAdater::serialize_input);
494
    ...
495
};
496 3 Mikhail Chupilko
</code></pre>
497
498
*Notice*: when input interface adapter being registered, its full name (including the name of reference model adapter class) should be used.
499
500
h4. Output interface adapter
501
502
Output interface adapter is a process defined in reference model adapter and bound with one of the output interfaces, Output interface adapter is called by @CPPTESK_SEND_REACTION(mode, interface, message)@ macro (see chapter _“Reaction sending”_). Declaration and definition of output interface adapters are done by means of the following macros.
503
* @CPPTESK_WAIT_REACTION(condition)@ - wait for reaction and allow reaction arbiter to access the reaction;
504
* @CPPTESK_NEXT_REACTION()@ - releasing of reaction arbiter (see chapter _“Reaction arbiter”_).
505
506 1 Mikhail Chupilko
Example:
507 3 Mikhail Chupilko
<pre><code class="cpp">
508 1 Mikhail Chupilko
#include <hw/media.hpp>
509
CPPTESK_ADAPTER(MyAdapter, MyModel) {
510
    CPPTESK_DECLARE_PROCESS(deserialize_output);
511
    ...
512
};
513
514
CPPTESK_DEFINE_PROCESS(MyAdapter::deserialize_input) {
515
    // get reference to the message object
516
    MyMessage &msg = CPPTESK_CAST_MESSAGE(MyMessage);
517
    // start deserialization process
518
    CPPTESK_START_PROCESS();
519
    // wait for result strobe
520
    CPPTESK_WAIT_REACTION(outputs.result);
521
    // read data
522
    msg.set_data(outputs.data);
523
    // release reaction arbiter
524
    CPPTESK_NEXT_REACTION();
525
    // stop deserialization process
526
    CPPTESK_STOP_PROCESS();
527
}
528 3 Mikhail Chupilko
</code></pre>
529
530
The waiting for the implementation reaction time is restricted by a timeout. The timeout is set by macro @CPPTESK_SET_REACTION_TIMEOUT(timeout)@, which as well as macro @CPPTESK_SET_OUTPUT_ADAPTER(interface_name, adapter_full_name)@ is called in constructor of reference model adapter.
531
532 1 Mikhail Chupilko
Example:
533 3 Mikhail Chupilko
<pre><code class="cpp">
534 1 Mikhail Chupilko
MyAdapter::MyAdapter{
535
    CPPTESK_SET_OUTPUT_ADAPTER(output_iface, MyAdater::deserialize_output);
536
    CPPTESK_SET_REACTION_TIMEOUT(100);
537
    ...
538
};
539 3 Mikhail Chupilko
</code></pre>
540
541
*Notice*: when output interface adapter being registered, its full name (including the name of reference model adapter class) should be used.
542
543
h4. Output interface listener (deprecated feature)
544
545
_Output interface listener_ is a special-purpose process, waiting for appearing of implementation reactions at the beginning of each cycle, and registering error in case of unexpected reactions. Definition of listeners is made by @CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(name, interface_name, condition)@ macro.
546
547 1 Mikhail Chupilko
Example:
548 3 Mikhail Chupilko
<pre><code class="cpp">
549 1 Mikhail Chupilko
#include <hw/media.hpp>
550
CPPTESK_ADAPTER(MyAdapter, MyModel) {
551
    CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(output_listener,
552
        output_iface, outputs.result);
553
    ...
554
};
555 3 Mikhail Chupilko
</code></pre>
556
557
Output interface listener is started in constructor of reference model adapter by macro @CPPTESK_CALL_OUTPUT_LISTENER(listener_full_name, interface_name)@.
558
559 1 Mikhail Chupilko
Example:
560 3 Mikhail Chupilko
<pre><code class="cpp">
561 1 Mikhail Chupilko
MyAdapter::MyAdapter{
562
    ...
563
    CPPTESK_CALL_OUTPUT_LISTENER(MyAdapter::output_listener, output_iface);
564
    ...
565
};
566 3 Mikhail Chupilko
</code></pre>
567
568
h4. Reaction arbiter
569
570
_Reaction arbiter_ (_output interface arbiter_) is aimed for matching implementation reactions (received from HDL-model) with specification reactions (calculated by reference model). Having been matched, the reaction pairs are sent to comparator, showing an error if there is difference in data between two reactions (see chapter _“Comparator of output messages”_).
571
572 1 Mikhail Chupilko
The common types of arbiters are the following.
573 3 Mikhail Chupilko
* @CPPTESK_FIFO_ARBITER@ — implementation reaction having been received, the arbiter prefers specification reaction which was created by the earliest among the other reactions call of macro @CPPTESK_SEND_REACTION()@ (see chapter _“Reaction sending”_).
574
* @CPPTESK_PRIORITY_ARBITER@ — the arbiter prefers specification reaction which was created with the highest priority by macro @CPPTESK_SEND_REACTION()@ (see chapter _“Process priority”_).
575
576
To declare reaction arbiter in reference model adapter class is possible by means of macro @CPPTESK_DECLARE_ARBITER(type, name)@. To bind arbiter with output interface is possible by means of macro @CPPTESK_SET_ARBITER(interface, arbiter)@, which should be called in constructor of reference model adapter.
577
578 1 Mikhail Chupilko
Example:
579 3 Mikhail Chupilko
<pre><code class="cpp">
580 1 Mikhail Chupilko
#include <hw/media.hpp>
581
CPPTESK_ADAPTER(MyAdapter, MyModel) {
582
    CPPTESK_DECLARE_ARBITER(CPPTESK_FIFO_ARBITER, output_iface_arbiter);
583
    ...
584
};
585
586
MyAdapter::MyAdapter() {
587
    CPPTESK_SET_ARBITER(output_iface, output_iface_arbiter);
588
    ...
589
}
590 3 Mikhail Chupilko
</code></pre>
591
592
h2. Test coverage description
593
594
_Test coverage_ is aimed for evaluation of _test completeness_. As a rule, test coverage structure is described explicitly by enumerating of all possible in the test situations (test situations). To describe complex test situations, composition of simpler test coverage structures is used.
595
596
Test coverage can be described in the main class of reference model or moved to external class (test coverage class). In the second case, the class with test coverage description should have a reference to the reference model (see chapter _“Test coverage class”_).
597
598
h3. Class of test coverage
599
600
Class of test coverage is a class containing definition of test coverage structure and functions calculating test situations. As test coverage is defined in terms of reference model, test coverage class should have a reference to the main class of reference model. To trace test situations, test coverage class has test situation tracer — an object of @CoverageTracker@ class (@namespace cpptesk::tracer::coverage@) and function tracing test situations.
601
602 1 Mikhail Chupilko
Example:
603 3 Mikhail Chupilko
<pre><code class="cpp">
604 1 Mikhail Chupilko
#include <ts/coverage.hpp>
605
#include <tracer/tracer.hpp>
606
class MyModel;
607
608
// Declaration of test coverage class
609
class MyCoverage {
610
public:
611
    MyCoverage(MyModel &model): model(model) {}
612
613
    // Test situation tracer
614
    CoverageTracker tracker;
615
616
    // Description of test coverage structure
617
    CPPTESK_DEFINE_ENUMERATED_COVERAGE(MY_COVERAGE, "My coverage", (
618
         (SITUATION_1, "Situation 1"),
619
         ...
620
         (SITUATION_N, "Situation N")
621
    ));
622
623
    // Function calculating test situation: signature of the function
624
    // contains all necessary for it parameters
625
    MY_COVERAGE cov_MY_COVERAGE(...) const;
626
627
    // Function tracing test situations: signature of the function
628
    // is the same as signature of the previous function
629
    void trace_MY_COVERAGE(...);
630
    ...
631
private:
632
    // Reference to the reference model
633
    MyModel &model;
634
};
635 3 Mikhail Chupilko
</code></pre>
636
637
h3. Test coverage structure
638
639
Test coverage structure is described by means of _enumerated coverage_, _coverage compositions_, _excluded coverage composition_, and _test coverage aliases_.
640
641
h4. Enumerated coverage
642
643
_Enumerated coverage_, as it goes from the coverage name, is defined by explicit enumeration of all possible test situations by macro @CPPTESK_DEFINE_ENUMERATED_COVERAGE(coverage, description, situations)@, where coverage is an identifier of the coverage type, description is a string, and situations is the list of situations like @((id, description), ...)@.
644
645 1 Mikhail Chupilko
Example:
646 3 Mikhail Chupilko
<pre><code class="cpp">
647 1 Mikhail Chupilko
#include <ts/coverage.hpp>
648
CPPTESK_DEFINE_ENUMERATED_COVERAGE(FIFO_FULLNESS, "FIFO fullness", (
649
    (FIFO_EMPTY, "Empty"),
650
     ...
651
    (FIFO_FULL, "Full")
652
));
653 3 Mikhail Chupilko
</code></pre>
654
655
h4. Coverage composition
656
_Coverage composition_ allows creation of test situation structure basing on two test coverage structures, containing Cartesian product of situations from both initial structures. Coverage composition is made by means of macro @CPPTESK_DEFINE_COMPOSED_COVERAGE(type, description, coverage_1, coverage_2)@. Description of new test situations is made according to the pattern @"%s,%s"@.
657
658 1 Mikhail Chupilko
Example:
659 3 Mikhail Chupilko
<pre><code class="cpp">
660 1 Mikhail Chupilko
#include <ts/coverage.hpp>
661
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
662
    (A1, "A one"),
663
    (A2, "A two")
664
));
665
666
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
667
    (B1, "B one"),
668
    (B2, "B two")
669
));
670
671
// Product of structures A and B makes the following situations:
672
// (COVERAGE_AxB::Id(A1, B1), "A one, B one")
673
// (COVERAGE_AxB::Id(A1, B2), "A one, B two")
674
// (COVERAGE_AxB::Id(A2, B1), "A two, B one")
675
// (COVERAGE_AxB::Id(A2, B2), "A two, B two")
676
CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AxB, "Coverage AxB",
677
    COVERAGE_A, COVERAGE_B);
678 3 Mikhail Chupilko
</code></pre>
679
680
h4. Excluded coverage composition
681
682
To make product of test coverage structures and exclude unreachable test situations is possible by macro @CPPTESK_DEFINE_COMPOSED_COVERAGE_EXCLUDING(type, description, coverage_1, coverage_2, excluded)@, where excluded is the list like @({coverage_1::id, coverage_2::id}, ... )@. Instead of test situation identifier, macro @ANY()@ can be used. To product coverage structures being products themselves, correspondent tuples should be used instead of pairs.
683
684 1 Mikhail Chupilko
Example:
685 3 Mikhail Chupilko
<pre><code class="cpp">
686 1 Mikhail Chupilko
#include <ts/coverage.hpp>
687
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
688
    (A1, "A one"),
689
    (A2, "A two")
690
));
691
692
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
693
    (B1, "B one"),
694
    (B2, "B two")
695
));
696
697
// The following composition makes the following test situations:
698
// (COVERAGE_AxB::Id(A1, B2), "A one, B two")
699
// (COVERAGE_AxB::Id(A2, B1), "A two, B one")
700
// (COVERAGE_AxB::Id(A2, B2), "A two, B two")
701
CPPTESK_DEFINE_COMPOSED_COVERAGE_EXCLUDING(COVERAGE_AxB, "Coverage AxB",
702
    COVERAGE_A, COVERAGE_B, ({COVERAGE_A::A1, COVERAGE_B::B1}));
703 3 Mikhail Chupilko
</code></pre>
704
705
h4. Test coverage alias
706
707
To make a test coverage alias (test coverage with different name, but with the same test situations), macro @CPPTESK_DEFINE_ALIAS_COVERAGE(alias, description, coverage)@ should be used.
708
709 1 Mikhail Chupilko
Example:
710 3 Mikhail Chupilko
<pre><code class="cpp">
711 1 Mikhail Chupilko
#include <ts/coverage.hpp>
712
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
713
    (A1, "A one"),
714
    (A2, "A two")
715
));
716
717
// COVERAGE_B – alias of COVERAGE_A
718
CPPTESK_DEFINE_ALIAS_COVERAGE(COVERAGE_B, "Coverage B", COVERAGE_A);
719 3 Mikhail Chupilko
</code></pre>
720
721
h3. Calculating current test situation function
722
723
_Calculating current test situation function_ is a function, which returns identifier of the current test situation (see chapter _“Structure of the test coverage”_), having analyzed the reference model state and (possibly) input parameters of the operation. Identifier of test situation for enumerated coverage looks like @coverage::identifier@ and @class::coverage::identifier@ when used outside of test coverage class. Calculating current test situation function for production of coverage structures can be obtained by calling functions for particular coverage structures and “production” of their results (operator @*@ should be appropriately overloaded).
724
725 1 Mikhail Chupilko
Example:
726 3 Mikhail Chupilko
<pre><code class="cpp">
727 1 Mikhail Chupilko
#include <ts/coverage.hpp>
728
class MyCoverage {
729
    // definition of the enumerated coverage structure COVERAGE_A
730
    CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
731
        (A1, "A one"),
732
        (A2, "A two")
733
    ));
734
    // test situation calculating function for coverage COVERAGE_A
735
    COVERAGE_A cov_COVERAGE_A(int a) const {
736
        switch(a) {
737
        case 1: return COVERAGE_A::A1;
738
        case 2: return COVERAGE_A::A2;
739
        }
740
        assert(false);
741
    }
742
    
743
    // definition of COVERAGE_B – alias of COVERAGE_A
744
    CPPTESK_DEFINE_ALIAS_COVERAGE(COVERAGE_B, "Coverage B", COVERAGE_A);
745
    // test situation calculating function for coverage COVERAGE_B
746
    COVERAGE_B cov_COVERAGE_B(int b) const {
747
        return cov_COVERAGE_A(b);
748
    }
749
750
    // definition of COVERAGE_AxB – production of COVERAGE_A and COVERAGE_B
751
    CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AxB, "Coverage AxB",
752
        COVERAGE_A, COVERAGE_B);s
753
    // test situation calculating function of coverage COVERAGE_AxB
754
    COVERAGE_AxB cov_COVERAGE_AxB(int a, int b) const {
755
        return cov_COVERAGE_A(a) * cov_COVERAGE_B(b);
756
    }
757
    ...
758
};
759 3 Mikhail Chupilko
</code></pre>
760
761
h3. Tracing test situation function
762
763
_Tracing test situation function_ is defined for each upper-level test coverage structure. As tracing function calls test situation calculating function, their parameters usually coincide. Implementation of this function is based on test situation tracer, being an object of class @CoverageTracker@ (@namespace cpptesk::tracer::coverage@).
764
765 1 Mikhail Chupilko
Example:
766 3 Mikhail Chupilko
<pre><code class="cpp">
767 1 Mikhail Chupilko
#include <ts/coverage.hpp>
768
#include <tracer/tracer.hpp>
769
CoverageTracker tracer;
770
void trace_COVERAGE_A(int a) {
771
    tracer << cov_COVERAGE_A(a);
772
}
773 3 Mikhail Chupilko
</code></pre>
774
775
h2. Development of test scenario
776
777
_Test scenario_ is a high-level specification of test, which being interpreted by test engine (see chapter _“Test scenario running”_) is used by test system for test sequence generation. Test scenario is developed as a special class named scenario class.
778
779
h3. Class of scenario
780
781
Scenario class is declared by macro @CPPTESK_SCENARIO(name)@.
782
783 1 Mikhail Chupilko
Example:
784 3 Mikhail Chupilko
<pre><code class="cpp">
785 1 Mikhail Chupilko
#include <ts/scenario.hpp>
786
CPPTESK_SCENARIO(MyScenario) {
787
    ...
788
private:
789
    // testing is done via reference model adapter
790
    MyAdapter dut;
791
};
792 3 Mikhail Chupilko
</code></pre>
793
794
_Test scenario initialization_ and _finalization methods_, _scenario methods_, and _current state function_ are declared in scenario class.
795
796
h4. Test scenario initialization method
797
798
_Test scenario initialization method_ includes actions which should have been made right before test start. It is defined by overloading of base class virtual method @bool init(int argc, char **argv)@. It returns true in case of successful initialization and false in case of some problem.
799
800
Example:
801
<pre><code class="cpp">
802 1 Mikhail Chupilko
#include <ts/scenario.hpp>
803
CPPTESK_SCENARIO(MyScenario) {
804
public:
805
    virtual bool init(int argc, char **argv) {
806
        dut.initialize();
807
        std::cout << "Test has started..." << std::endl;
808
    }
809
    ...
810
};
811 3 Mikhail Chupilko
</code></pre>
812
813
h4. Test scenario finalizing method
814
815
_Test scenario finalizing method_ contains actions which should be done right after test finish. It is defined by overloading of base class virtual method @void finish()@.
816
817 1 Mikhail Chupilko
Example:
818 3 Mikhail Chupilko
<pre><code class="cpp">
819 1 Mikhail Chupilko
#include <ts/scenario.hpp>
820
CPPTESK_SCENARIO(MyScenario) {
821
public:
822
    virtual void finish() {
823
        dut.finalize();	
824
        std::cout << "Test has finished..." << std::endl;
825
    }
826
    ...
827
};
828 3 Mikhail Chupilko
</code></pre>
829
830
h4. Scenario method
831
832
_Scenario methods_ iterate parameters of input messages and run operations by means of reference model adapter. One scenario class may contain several scenario method declarations. Scenario method returns value of bool type, which is interpreted as a flag of some problem. The only parameter of scenario method is an iteration context, which is an object containing variables to be iterated by scenario method (iteration variables). Definition of scenario method starts from calling  macro @CPPTESK_ITERATION_BEGIN@, and finishes with @CPPTESK_ITERATION_END@.
833
834 1 Mikhail Chupilko
Example:
835 3 Mikhail Chupilko
<pre><code class="cpp">
836 1 Mikhail Chupilko
#include <ts/scenario.hpp>
837
CPPTESK_SCENARIO(MyScenario) {
838
public:
839
    bool scenario(cpptesk::ts::IntCtx &ctx);
840
    ...
841
};
842
843
bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx) {
844
    CPPTESK_ITERATION_BEGIN
845
    ...
846
    CPPTESK_ITERATION_END
847
}
848 3 Mikhail Chupilko
</code></pre>
849
850
Scenario methods are registered by macro @CPPTESK_ADD_SCENARIO_METHOD(full_name)@ in scenario class constructor.
851
852 1 Mikhail Chupilko
Example:
853 3 Mikhail Chupilko
<pre><code class="cpp">
854 1 Mikhail Chupilko
MyScenario::MyScenario() {
855
    CPPTESK_ADD_SCENARIO_METHOD(MyScenario::scenario);
856
    ...
857
}
858 3 Mikhail Chupilko
</code></pre>
859
860
h4. Access to iteration variables
861
862
_Iteration variables_ are fields of _iteration context_, which is a parameter of scenario method. To access iteration variables is possible by macro @CPPTESK_ITERATION_VARIABLE(name)@, where name is a name of one of the iteration context fields.
863
864 1 Mikhail Chupilko
Example:
865 3 Mikhail Chupilko
<pre><code class="cpp">
866 1 Mikhail Chupilko
#include <ts/scenario.hpp>
867
bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx) {
868
    // get reference to iteration variable
869
    int &i = CPPTESK_ITERATION_VARIABLE(i);
870
    CPPTESK_ITERATION_BEGIN
871
    for(i = 0; i < 10; i++) {
872
        ...
873
    }
874
    CPPTESK_ITERATION_END
875
}
876 3 Mikhail Chupilko
</code></pre>
877
878
h4. Test action block
879
880
_Test action_ (preparation of input message and start of operation) is made in a code block @CPPTESK_ITERATION_ACTION{...}@ located in scenario method.
881
882 1 Mikhail Chupilko
Example:
883 3 Mikhail Chupilko
<pre><code class="cpp">
884 1 Mikhail Chupilko
#include <ts/scenario.hpp>
885
...
886
CPPTESK_ITERATION_BEGIN
887
for(i = 0; i < 10; i++) {
888
     ...
889
     // test action block
890
     CPPTESK_ITERATION_ACTION {
891
         // input message randomization
892
         CPPTESK_RANDOMIZE_MESSAGE(input_msg);
893
         input_msg.set_addr(i);
894
         // start operation
895
         CPPTESK_CALL_STIMULUS_OF(dut, MyModel::operation,
896
             dut.input_iface, input_msg);
897
         ...
898
     }
899
}
900
CPPTESK_ITERATION_END
901 3 Mikhail Chupilko
</code></pre>
902
903
h4. Scenario action finishing
904
905
Each iteration of scenario method is finished by @CPPTESK_ITERATION_YIELD(verdict)@ macro, quitting from scenario method. When being called next time, scenario method will continue its execution from next iteration.
906
907 1 Mikhail Chupilko
Example:
908 3 Mikhail Chupilko
<pre><code class="cpp">
909 1 Mikhail Chupilko
#include <ts/scenario.hpp>
910
...
911
CPPTESK_ITERATION_BEGIN
912
for(i = 0; i < 10; i++) {
913
     ...
914
     // test action block
915
     CPPTESK_ITERATION_ACTION {
916
         ...
917
         // quit from scenario method and return verdict
918
         CPPTESK_ITERATION_YIELD(dut.verdict());
919
     }
920
}
921
CPPTESK_ITERATION_END
922 3 Mikhail Chupilko
</code></pre>
923
924
h4. Delays
925
926
Making _delays_ (sending of stimuli at different time of HDL-model simulation) in tests requires development of at least one method with calling reference model method @cycle()@. In case of possibility of parallel stimulus running, the most convenient way of usage method @cycle()@ is to call this method from purposely created scenario method @nop()@ (name of this method is unrestricted). Notice that in this case method @cycle()@ should not be called from any other method.
927
928
Example:
929
<pre><code class="cpp">
930 1 Mikhail Chupilko
#include <ts/scenario.hpp>
931
bool MyScenario::nop(cpptesk::ts::IntCtx& ctx) {
932
    CPPTESK_ITERATION_BEGIN
933
    CPPTESK_ITERATION_ACTION {
934
        dut.cycle();
935
        CPPTESK_ITERATION_YIELD(dut.verdict());
936
    }
937
    CPPTESK_ITERATION_END
938
}
939 3 Mikhail Chupilko
</code></pre>
940
941
*Notice*: scenario method @nop()@ should be registered before any other scenario methods.
942
943
h3. Calculating current state function
944
945
_Calculating current state function_ is needed for test engines, using exploration of target system state graph for creation of test sequences. Returning by function value is interpreted as system state. Type of the returning value and function name are unrestricted. Method does not allow parameters.
946
947 1 Mikhail Chupilko
Example:
948 3 Mikhail Chupilko
<pre><code class="cpp">
949 1 Mikhail Chupilko
#include <ts/scenario.hpp>
950
CPPTESK_SCENARIO(MyScenario) {
951
public:
952
    ...
953
    int get_model_state() {
954
        return dut.buffer.size();
955
    }
956
};
957 3 Mikhail Chupilko
</code></pre>
958
959
Setting up of calculating current state function is made by method @void setup(...)@. in test scenario constructor.
960
961 1 Mikhail Chupilko
Example:
962 3 Mikhail Chupilko
<pre><code class="cpp">
963 1 Mikhail Chupilko
#include <ts/scenario.hpp>
964
MyScenario::MyScenario() {
965
    setup("My scenario",
966
    UseVirtual::init,
967
    UseVirtual::finish,
968
    &MyScenario::get_model_state);
969
    ...
970
}
971 3 Mikhail Chupilko
</code></pre>
972
973
h3. Test scenario running
974
975
Test scenario running at local computer is made by calling function @localmain(engine, scenario.getTestScenario(), argc, argv)@ (namespace @cpptesk::ts@).
976
977
Available test engines are the following (namespace @cpptesk::ts::engine@).
978
* @fsm@ — generator of test sequence based on state graph exploration;
979
* @rnd@ — generator of randomized test sequence.
980
981 1 Mikhail Chupilko
Example:
982 3 Mikhail Chupilko
<pre><code class="cpp">
983 1 Mikhail Chupilko
#include <netfsm/engines.hpp>
984
using namespace cpptesk::ts;
985
using namespace cpptesk::ts::engine;
986
...
987
MyScenario scenario;
988
localmain(fsm, scenario.getTestScenario(), argc, argv);
989 3 Mikhail Chupilko
</code></pre>
990
991
h2. Auxiliary possibilities
992
993 1 Mikhail Chupilko
C++TESK toolkit includes the following auxiliary possibilities: assertions and debug print. These possibilities can be used in reference models and in all test system components (adapters, test scenarios, etc). Their main aim is to facilitate debug of test system.
994 3 Mikhail Chupilko
995
h3. Assertions
996
997
_Assertions_ are predicates (logic constructions) used for description of program properties and, as a rule, checked during runtime. If assertion is violated (predicate shows false), error is fixed and program is stopped. To make assertions is possible by @CPPTESK_ASSERTION(predicate, description)@ macro, where predicate is a checking property, and description is a string describing error bound with violation of this property.
998
999 1 Mikhail Chupilko
Example:
1000 3 Mikhail Chupilko
<pre><code class="cpp">
1001 1 Mikhail Chupilko
#include <hw/assertion.hpp>
1002
...
1003
CPPTESK_ASSERTION(pointer, "pointer is null");
1004 3 Mikhail Chupilko
</code></pre>
1005
1006
h3. Debug print
1007
1008
_Debug print_ is devoted to debug of test system. In contrast to typical printing by means of, e.g., STL streams, adjustment of debug print is easier (turning on/off, changing of printing color, etc).
1009
1010
h4. Debug print macros
1011
1012
Debug print is commonly made by macro @CPPTESK_DEBUG_PRINT(level, message)@, where level is a level of debug print (see chapter _“Debug print levels”_) and message is a printing debug message, and macro @CPPTESK_DEBUG_PRINTF(level, formal, parameters)@, where @(format, parameters)@ is a formatted string and values of used in the string parameters in the same format as they are used by C library function @printf()@.
1013
1014 1 Mikhail Chupilko
Example:
1015 3 Mikhail Chupilko
<pre><code class="cpp">
1016 1 Mikhail Chupilko
#include <hw/debug.hpp>
1017
using namespace cpptesk::hw;
1018
...
1019
CPPTESK_DEBUG_PRINT(DEBUG_USER, "The input message is "
1020
    << CPPTESK_GET_MESSAGE());
1021
...
1022
CPPTESK_DEBUG_PRINTF(DEBUG_USER, "counter=%d", counter);
1023 3 Mikhail Chupilko
</code></pre>
1024
1025
*Notice*: as a debug message in macro @CPPTESK_DEBUG_PRINT()@ any “stream expression” (allowed for usage in standard C++ STL output streams expressions) can be used.
1026
1027
To add location information of debug macro to debug message (file name and string number) is possible by means of macros @CPPTESK_DEBUG_PRINT_FILE_LINE()@ and @CPPTESK_DEBUG_PRINTF_FILE_LINE()@. Their parameters are the same as of macros mentioned above.
1028
1029
h3. Process call stack printing
1030
1031
To print process call stack of reference model is possible by macro @CPPTESK_CALL_STACK()@, which can be used inside and instead of debug message of macro @CPPTESK_DEBUG_PRINT()@.
1032
1033 1 Mikhail Chupilko
Example:
1034 3 Mikhail Chupilko
<pre><code class="cpp">
1035 1 Mikhail Chupilko
#include <hw/model.hpp>
1036
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
1037
    CPPTESK_START_PROCESS();
1038
1039
    CPPTESK_DEBUG_PRINT(DEBUG_USER, "Call stack is "
1040
        << CPPTESK_CALL_STACK());
1041
    ...
1042
    CPPTESK_STOP_PROCESS();
1043
}
1044 3 Mikhail Chupilko
</code></pre>
1045
1046
*Notice*: macro @CPPTESK_CALL_STACK()@ can be used only inside on reference model.
1047
1048
h3. Colored debug print
1049
1050
To facilitate manual search of debug messages of a certain type among all debug print is possible by means of colored debug print macros @CPPTESK_COLORED_DEBUG_PRINT(level, color, background_color, message)@, @CPPTESK_COLORED_DEBUG_PRINTF(level, color, background_color, format, parameters)@, and also macros @CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE()@ and @CPPTESK_COLORED_DEBUG_PRINTF_FILE_LINE()@.
1051
1052
The following color constants are defined (namespace @cpptesk::hw@):
1053
* @BLACK@ — black;
1054
* @RED@ — red;
1055
* @GREEN@ — green;
1056
* @YELLOW@ — yellow;
1057
* @BLUE@ — blue;
1058
* @MAGENTA@ — purple;
1059
* @CYAN@ — cyan;
1060
* @WHITE@ — white.
1061
1062 1 Mikhail Chupilko
Example:
1063 3 Mikhail Chupilko
<pre><code class="cpp">
1064 1 Mikhail Chupilko
#include <hw/debug.hpp>
1065
using namespace cpptesk::hw;
1066
...
1067
CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE(DEBUG_USER, RED, BLACK,
1068
    "The input message is " << CPPTESK_GET_MESSAGE());
1069
...
1070
CPPTESK_COLORED_DEBUG_PRINTF(DEBUG_USER, WHITE, BLACK,
1071
    "counter=%d", counter);
1072 3 Mikhail Chupilko
</code></pre>
1073
1074
h3. Controlling indents in debug print
1075
1076
To control indents in debug print is possible by @CPPTESK_SET_DEBUG_INDENT(indent)@, @CPPTESK_BEGIN_DEBUG_INDENT@, and @CPPTESK_END_DEBUG_INDENT@ macros. Macro @CPPTESK_SET_DEBUG_INDENT@ sets indent value (not negative integer) returning its old value. Macros @CPPTESK_BEGIN_DEBUG_INDENT@ and @CPPTESK_END_DEBUG_INDENT@ are used in complementary way: the first one increases indent, the second one decreases indent by one point.
1077
1078 1 Mikhail Chupilko
Example:
1079 3 Mikhail Chupilko
<pre><code class="cpp">
1080 1 Mikhail Chupilko
#include <hw/debug.hpp>
1081
using namespace cpptesk::hw;
1082
...
1083
unsigned old_indent = CPPTESK_SET_DEBUG_INDENT(2);
1084
...
1085
CPPTESK_BEGIN_DEBUG_INDENT
1086
{
1087
    CPPTESK_DEBUG_PRINT(DEBUG_USER, "Some message");
1088
    ...
1089
}
1090
CPPTESK_END_DEBUG_INDENT
1091 3 Mikhail Chupilko
</code></pre>
1092
1093
h3. Debug print levels
1094
1095
There is a level of debug message parameter among other debug print parameters. Level characterizes importance of the message. Usually, debug messages of different levels are colored differently. The following debug levels are defined (namespace @cpptesk::hw@):
1096
* @DEBUG_MORE@ — detailed debug messages produced by toolkit itself;
1097
* @DEBUG_INFO@ — basic debug messages produced by toolkit itself;
1098
* @DEBUG_USER@ — user’s debug messages;
1099
* @DEBUG_WARN@ — warnings (typically, produced by toolkit itself);
1100
* @DEBUG_FAIL@ — messages about failures (typically, produced by toolkit itself).
1101
1102
The most “important” level is @DEBUG_FAIL@, then @DEBUG_WARN@, etc. @DEBUG_USER@ is the only one level for user’s messages.
1103
1104
h3. Debug print setting up
1105
1106
To set up the volume of debug print messages is possible by selection of debug print level, and only those messages will be printed, which has debug level being not less than selected one. It is done by macro @CPPTESK_SET_DEBUG_LEVEL(debug_level, colored)@. This macro has an additional Boolean parameter colored, turning on/off coloring. Debug level @DEBUG_INFO@ is set by default. Special level @DEBUG_NONE@ can be used to switch off debug print totally.
1107
1108
Each debug print level can be assigned with colors for messages of this level. It is done by macro @CPPTESK_SET_DEBUG_STYLE(level, tag_color, tag_background_color, color, background_color)@.
1109
1110 1 Mikhail Chupilko
Example:
1111 3 Mikhail Chupilko
<pre><code class="cpp">
1112 1 Mikhail Chupilko
#include <hw/model.hpp>
1113
using namespace cpptesk::hw;
1114
...
1115
// reference model constructor
1116
MyModel::MyModel() {
1117
    // print messages with failures only,
1118
    // switch on message coloring
1119
    CPPTESK_SET_DEBUG_LEVEL(DEBUG_FAIL, true);
1120
    // [FAIL] Error message style.
1121
    CPPTESK_SET_DEBUG_STYLE(DEBUG_FAIL, BLACK, RED, RED, BLACK);
1122
}
1123 3 Mikhail Chupilko
</code></pre>