Project

General

Profile

C++TESK Quick Reference » History » Version 3

Mikhail Chupilko, 09/20/2013 12:56 PM

1 1 Mikhail Chupilko
h1. C++TESK Quick Reference
2
3
h2. Introduction
4
5
This document is a quick reference of C++TESK Hardware Extension tool (С++TESK, hereafter) included into C++TESK Testing ToolKit and aimed to automated development of test systems for HDL-models (HDL (Hardware Description Language) — class of program languages used for description of hardware) of hardware. The tool architecture bases on general UniTESK (http://www.unitesk.ru) conventions.
6
7
_Test system_ is meant to be a special program which evaluates the functional correctness of _target system_, applying some input data (_stimuli_) and analyzing received results of their application (_reactions_). Typical test system consists of three common components: (1) _stimulus generator_ making sequences of stimuli (_test sequences_), (2) _test oracle_ checking correctness of reactions, and (3) _test completeness evaluator_.
8
9
The document describes facilities of C++TESK aimed to development of mentioned test system components, and consists of four common chapters.
10
* Development of reference model
11
* Development of reference model adapter
12
* Description of test coverage
13
* Development of test scenario
14
15
First two chapters touch upon development of test oracle basic parts: _reference model_ covering functionality of target system, and _reference model adapter_ binding reference model with target system. The third chapter is devoted to the test completeness estimation on the base of _test coverage_. The last chapter concerns development of test scenario which is the main part of stimulus generator.
16
17
More detailed toolkit review is given in _«C++TESK Testing ToolKit: User Guide»_.
18
19
Installation process of C++TESK is described in _«С++TESK Testing ToolKit: Installation Guide»_.
20
21
h2. Supporting obsolete constructions
22
23
Updates of C++TESK do not interfere in the compilation and running of test systems developed for older versions of C++TESK. When the toolkit has incompatible with older versions update, this update is marked by a build number in form of yymmdd, i.e. 110415 – the 15th of April, 2011. The update is available only if macro CPPTESKHW_VERSION (using gcc compiler it can be done by the option –Dmacro_name=value) is appropriately defined. E.g.,
24
-DCPPTESKHW_VERSION=110415 enables usage of incompatible updated having been made by the 15th of April, 2011 (including this date). Each build of the toolkit has the whole list of such changes.
25
26
Obsolete constructions of the toolkit are not described in this document. Possibilities of the toolkit, being incompatible with having become obsolete constructions, are presented with the build number, since which they have been available. E.g., the sentence “the means are supported from 110415 build” means that usage of these means requires two conditions: (1) using toolkit build has the number 110415 or greater, (2) the compilation option -DCPPTESKHW_VERSION=number, where number is not less than 110415, is used.
27
28
If some obsolete constructions are not used or prevent the toolkit from further development, they might become unsupported. In this case, during compilation of test system using these constructions, a message with advices about correction of test system will be shown.
29
30
During compilation of test systems, developed by means of C++TESK, usage of the compiler option -DCPPTESKHW_VERSION=number is highly recommended.
31
32
h2. Naming convention
33
34
The core of the toolkit is developed as a C++ library. Available means are grouped into the following namespaces.
35
36
* cpptesk::hw — means for development of reference models and their adapters;
37
* cpptesk::ts — basic means for test system development;
38
* cpptesk::ts::coverage — means for test coverage description;
39 3 Mikhail Chupilko
* сpptesk::ts::engine  — library with _test engines_ (test engines are toolkit library components used for producing of stimulus sequence, use _test scenario_ (see chapter _“Development of test scenario”_));
40 1 Mikhail Chupilko
* cpptesk::tracer — means for tracing;
41
* cpptesk::tracer::coverage — means for coverage tracing.
42
43
A lot of C++TESK means are implemented in form of macros. To avoid conflicts of names, names of all macros start with prefix CPPTESK_, e.g., CPPTESK_MODEL(name). Generally, each macro has two aliases: shortened name (without CPPTESK_ prefix) and short name, (after additional “compression” of shortened name). E.g., macro CPPTESK_ITERATION_BEGIN has two aliases: ITERATION_BEGIN and IBEGIN. To use shortened and short names, macros CPPTESK_SHORT_NAMES and CPPTESK_SHORT_SHORT_NAMES should be defined, respectively.
44
45
h2. Development of reference model
46
47 3 Mikhail Chupilko
Reference model is a structured set of classes describing functionality of target system at some abstraction level (the toolkit allows developing of both abstract functional models and detailed models describing target system cycle-accurately). Reference model consists of message classes describing format of input and output data (structures of stimuli and reactions), main class and set of auxiliary classes. Hereafter, a main class of reference model will be meant under term reference model.
48 1 Mikhail Chupilko
49
h3. Class of message
50
51
Message classes are declared by macro @CPPTESK_MESSAGE(name)@. Row with macro @CPPTESK_SUPPORT_CLONE(name)@ defining the message clone method @name* clone()@ should be written inside of the each message class declaration.
52
53
Example:
54
<pre><code class="cpp">
55
#include <hw/message.hpp>
56
CPPTESK_MESSAGE(MyMessage) {
57
public:
58
    CPPTESK_SUPPORT_CLONE(MyMessage)
59
    ...
60
};
61
</code></pre>
62
*Notice*: Row @CPPTESK_SUPPORT_CLONE(name)@ is obligatory.
63
64 2 Mikhail Chupilko
h4. Input message randomizer
65 1 Mikhail Chupilko
66
Virtual method @randomize()@ (randomizer of the message) should be overloaded in each input message class. There are two macros @CPPTESK_{DECLARE|DEFINE}_RANDOMIZER@ for this purpose.
67
68
Example:
69
<pre><code class="cpp">
70
CPPTESK_MESSAGE(MyMessage) {
71
    ...
72
    CPPTESK_DECLARE_RANDOMIZER();
73
private:
74
    int data;
75
};
76
77
CPPTESK_DEFINE_RANDOMIZER(MyMessage) {
78
    data = CPPTESK_RANDOM(int);
79
}
80
</code></pre>
81
82
The following macros can be used for randomization of data fields.
83
* @CPPTESK_RANDOM(type)@ — generation of random integer value;
84
* @CPPTESK_RANDOM_WIDTH(type, length)@ — generation of random integer value of given number of bits;
85
* @CPPTESK_RANDOM_FIELD(type, min_bit, max_bit)@ — generation of random integer value with zero bits outside the given range;
86
* @CPPTESK_RANDOM_RANGE(type, min_value, max_value)@ — generation of random integer value from given integer range;
87
* @CPPTESK_RANDOM_CHOICE(type, value_1, ..., value_n)@ — random choice from given set of any type values.
88
89
*Notice*: randomizer may not be defined if all data fields are defined by special macros (see chapter _“Message data fields”_).
90
91 2 Mikhail Chupilko
h4. Comparator of output messages
92 1 Mikhail Chupilko
93
Virtual method @compare()@ (comparator of messages) should  be overloaded in each output message class. There are two macro @CPPTESK_{DECLARE|DEFINE}_COMPARATOR@ for this purpose (build is not less than 110428).
94
95
Example:
96
<pre><code class="cpp">
97
CPPTESK_MESSAGE(MyMessage) {
98
    ...
99
    CPPTESK_DECLARE_COMPARATOR();
100
private:
101
    int data;
102
};
103
104
CPPTESK_DEFINE_COMPARATOR(MyMessage) {
105
    const MyMessage &rhs = CPPTESK_CONST_CAST_MESSAGE(MyMessage);
106
    // in case of difference between messages return not empty string
107
    if(data != rhs.data)
108
        { return "incorrect data"; }
109
    // empty string is interpreted as absence of difference
110
    return COMPARE_OK;
111
}
112
</code></pre>
113
114
*Notice*: comparator may not be defined if all data fields are defined by special macros (see chapter “Message data fields”).
115
116 2 Mikhail Chupilko
h4. Message data fields
117 1 Mikhail Chupilko
118
The following macros are aimed to declaration of integer data fields.
119
* @CPPTESK_DECLARE_FIELD(name, length)@ declares integer field with given name and length.
120
* @CPPTESK_DECLARE_MASKED_FIELD(name, length, mask)@ declares integer field with given name, length, and mask.
121
* @CPPTESK_DECLARE_BIT(name)@ declares bit field with given name.
122
123
Example:
124
<pre><code class="cpp">
125
#include <hw/message.hpp>
126
CPPTESK_MESSAGE(MyMessage) {
127
public:
128
    CPPTESK_DECLARE_MASKED_FIELD(addr, 32, 0xffffFFF0);
129
    CPPTESK_DECLARE_FIELD(data, 32);
130
    CPPTESK_DECLARE_BIT(flag);
131
    ...
132
};
133
</code></pre>
134
135
*Notice*: length of the data fields should not exceed 64 bits.
136
137
All declared data fields should be registered in message class constructor by means of macro @CPPTESK_ADD_FIELD(full_name)@ or, when the data field should not be taken into account by comparator, by means of @CPPTESK_ADD_INCOMPARABLE_FIELD(full_name)@.
138
139
Example:
140
<pre><code class="cpp">
141
MyMessage::MyMessage() {
142
    CPPTESK_ADD_FIELD(MyMessage::addr);
143
    CPPTESK_ADD_FIELD(MyMessage::data);
144
    CPPTESK_ADD_INCOMPARABLE_FIELD(MyMessage::flag);
145
    ...
146
}
147
</code></pre>
148
149
*Notice*: full_name means usage both name of method and name of class.
150
151 2 Mikhail Chupilko
h4. Optional messages
152 1 Mikhail Chupilko
153
Output message can be declared to be optional (not obligatory for receiving) if the following method is used.
154
<pre><code class="cpp">void setOptional(optional_or_not_optional);</code></pre>
155
*Notice*: Default value of the parameter “optional_or_not_optional” is true, i.e. if there has not been correspondent implementation output message by a certain timeout, the message will be simply deleted without showing of an error. At the same time, the optional message is added to the interface arbiter and might affect to the matching of other output messages. If correspondent implementation reactions are received after the timeout and they are to be ignored, the flag of the message being optional should be set in message class constructor.
156
157
h2. Reference model
158
159 2 Mikhail Chupilko
Reference model (main class of the reference model) is declared by macro @CPPTESK_MODEL(name)@.
160
161 1 Mikhail Chupilko
Example:
162 2 Mikhail Chupilko
<pre><code class="cpp">
163 1 Mikhail Chupilko
#include <hw/model.hpp>
164
CPPTESK_MODEL(MyModel) {
165
    ...
166
};
167 2 Mikhail Chupilko
</code></pre>
168
169 1 Mikhail Chupilko
Reference model contains declaration of input and output interfaces, operations, auxiliary processes, and data necessary for operation description.
170 2 Mikhail Chupilko
171
h3. Interface
172
173
Input and output interfaces of the reference model are declared by means of two macros @CPPTESK_DECLARE_{INPUT|OUTPUT}(name)@, respectively.
174
175 1 Mikhail Chupilko
Example:
176 2 Mikhail Chupilko
<pre><code class="cpp">
177 1 Mikhail Chupilko
#include <hw/model.hpp>
178
CPPTESK_MODEL(MyModel) {
179
public:
180
    CPPTESK_DECLARE_INPUT(input_iface);
181
    CPPTESK_DECLARE_OUTPUT(output_iface);
182
    ...
183
};
184 2 Mikhail Chupilko
</code></pre>
185
186
All declared interfaces should be registered in reference model constructor by means of two macros @CPPTESK_ADD_{INPUT|OUTPUT}(name)@.
187
188 1 Mikhail Chupilko
Example:
189 2 Mikhail Chupilko
<pre><code>
190 1 Mikhail Chupilko
MyModel::MyModel() {
191
    CPPTESK_ADD_INPUT(input_iface);
192
    CPPTESK_ADD_OUTPUT(output_iface);
193
    ...
194
}
195 2 Mikhail Chupilko
</code></pre>
196
197
h3. Setting up ignoring of failures on output interface
198
199 1 Mikhail Chupilko
To disable showing errors of a certain type on a given interface is possible by means of the method:
200 2 Mikhail Chupilko
<pre><code class="cpp">
201 1 Mikhail Chupilko
void setFailureIgnoreTypes(disabling_error_types_mask);
202 2 Mikhail Chupilko
</code></pre>
203
204
Disabling error types include errors of implementation reaction absence (@MISSING_REACTION@) and specification reaction absence (@UNEXPECTED_REACTION@) on the given interface. Error types can be grouped by bit operation “or”.
205
206
h3. Process
207
208
Processes are the main means of functional specification of hardware. Processes are subdivided into operations (see chapter _“Operation”_) and internal processes. Operations describe processing of stimuli of a certain types by the target system. Internal processes are used for definition of the other, more complex processes, including operations.
209
210
Declaration and definition of reference model processes are made by means of macros @CPPTESK_{DECLARE|DEFINE}_PROCESS(name)@. Definition of the process should be started by calling macro @CPPTESK_START_PROCESS()@, and finished by calling macro @CPPTESK_STOP_PROCESS()@.
211
212 1 Mikhail Chupilko
Example:
213 2 Mikhail Chupilko
<pre><code class="cpp">
214 1 Mikhail Chupilko
#include <hw/model.hpp>
215
CPPTESK_MODEL(MyModel) {
216
public:
217
    ...
218
    CPPTESK_DECLARE_PROCESS(internal_process);
219
    ...
220
};
221
222
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
223
    CPPTESK_START_PROCESS();
224
    ...
225
    CPPTESK_STOP_PROCESS();
226
}
227 2 Mikhail Chupilko
</code></pre>
228
229
*Notice*: macro @CPPTESK_START_PROCESS()@ may be used only once in definition of the process, and usually precedes the main process code. Semantics of @CPPTESK_STOP_PROCESS()@ is similar to the semantics of operator return — when the macro is called, the process finished.
230
231
*Notice*: keyword process is reserved and cannot be used for naming of processes.
232
233
h3. Process parameters
234
235 1 Mikhail Chupilko
Process should have three obligatory parameters: (1) process execution context, (2) associated with process interface, and (3) message. To access process parameters is possible by means of the following macros.
236 2 Mikhail Chupilko
* @CPPTESK_GET_PROCESS()@ — get process context;
237
* @CPPTESK_GET_IFACE()@ — get process interface;
238
* @CPPTESK_GET_MESSAGE()@ — get message.
239
240 1 Mikhail Chupilko
To cast message parameter to the necessary type is possible by means of the following macros.
241 2 Mikhail Chupilko
* @CPPTESK_CAST_MESSAGE(message_class)@;
242
* @CPPTESK_CONST_CAST_MESSAGE(message_class)@.
243
244 1 Mikhail Chupilko
Example:
245 2 Mikhail Chupilko
<pre><code class="cpp">
246 1 Mikhail Chupilko
#include <hw/model.hpp>
247
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
248
    // copy message to the local variable
249
    MyMessage msg = CPPTESK_CAST_MESSAGE(MyMessage);
250
    // get reference to the message
251
    MyMessage &msg_ref = CPPTESK_CAST_MESSAGE(MyMessage);
252
    // get constant reference to the message
253
    const MyMessage &const_msg_ref = CPPTESK_CONST_CAST_MESSAGE(MyMessage);
254
    ...
255
}
256 2 Mikhail Chupilko
</code></pre>
257
258
h3. Process priority
259
260
During execution, each process is assigned with a priority, unsigned integer value from range @[1, 255]@ (0 is reserved). Priority affects the order of process execution inside of one cycle (processes with higher priority run first). Priorities may be used in matching of implementation and specification reactions (see chapter _“Reaction arbiter”_). When started, all processes are assigned with the same priority (@NORMAL_PRIORITY@). To change the priority is possible by means of the following macros.
261
* @CPPTESK_GET_PRIORITY()@ — get process priority.
262
* @CPPTESK_SET_PRIORITY(priority)@ — set process priority.
263
264
Some priority values are defined in the enumeration type @priority_t (cpptesk::hw namespace)@. The most general of them are the following ones.
265
* @NORMAL_PRIORITY@ — normal priority;
266
* @LOWEST_PRIORITY@ — the lowest priority;
267
* @HIGHEST_PRIORITY@ — the highest priority.
268
269 1 Mikhail Chupilko
Example:
270 2 Mikhail Chupilko
<pre><code class="cpp">
271 1 Mikhail Chupilko
#include <hw/model.hpp>
272
#include <iostream>
273
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
274
    ...
275
    std::cout << "process priority is " << std::dec
276
              << CPPTESK_GET_PRIORITY() << std::end;
277
    ...
278
    CPPTESK_SET_PRIORITY(cpptesk::hw::HIGHEST_PRIORITY);
279
    ...
280
}
281 2 Mikhail Chupilko
</code></pre>
282
283
h3. Modeling of delays
284
285 1 Mikhail Chupilko
To model delays in processes is possible by means of the following macros.
286 2 Mikhail Chupilko
* @CPPTESK_CYCLE()@ - delay of one cycle.
287
* @CPPTESK_DELAY(number_of_cycles)@ - delay of several cycles.
288
* @CPPTESK_WAIT(condition)@ - delay till condition is satisfied.
289
* @CPPTESK_WAIT_TIMEOUT(condition, timeout)@ - limited in time delay till condition is satisfied.
290
291 1 Mikhail Chupilko
Example:
292 2 Mikhail Chupilko
<pre><code class="cpp">
293 1 Mikhail Chupilko
#include <hw/model.hpp>
294
#include <iostream>
295
CPPTESK_DEFINE_PROCESS(MyModel::internal_process) {
296
    ...
297
    std::cout << "cycle: " << std::dec << time() << std::end;
298
    // delay of one cycle
299
    CPPTESK_CYCLE();
300
    std::cout << "cycle: " << std::dec << time() << std::end;
301
    ...
302
    // wait till outputs.ready is true,
303
    // but not more than 100 cycles
304
    CPPTESK_WAIT_TIMEOUT(outputs.ready, 100);
305
    ...
306
}
307 2 Mikhail Chupilko
</code></pre>
308
309
h3. Process calling
310
311
Reference model process calling from another process is made by means of macro @CPPTESK_CALL_PROCESS(mode, process_name, interface, message)@, where mode might be either @PARALLEL@ or @SEQUENTIAL@. In the first case separated process is created, which is executed in parallel with the parent process. In the second case consequent execution is performed, where returning to the parent process execution is possible only after child process has been finished.
312
313 1 Mikhail Chupilko
Example:
314 2 Mikhail Chupilko
<pre><code class="cpp">
315 1 Mikhail Chupilko
#include <hw/model.hpp>
316
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
317
    ...
318
    // call separated process
319
    CPPTESK_CALL_PROCESS(PARALLEL, internal_process,
320
        CPPTESK_GET_IFACE(), CPPTESK_GET_MESSAGE());
321
    ...
322
    // call process and wait till it has been finished
323
    CPPTESK_CALL_PROCESS(SEQUENTIAL, internal_process,
324
        CPPTESK_GET_IFACE(), CPPTESK_GET_MESSAGE());
325
    ...
326
}
327 2 Mikhail Chupilko
</code></pre>
328
329
*Notice*: to call new processes is possible from any reference model methods, not only from methods describing processes. Macro @CPPTESK_CALL_PARALLEL(process_name, interface, message)@ should be used in this case. Calling process with mode @SEQUENTIAL@ from the method not being a process is prohibited.
330
331
h3. Stimulus receiving
332
333
Inside of the process, receiving of stimulus on one of the input interfaces can be modeled. It is possible by means of macro @CPPTESK_RECV_STIMULUS(mode, interface, message)@. Executing this macro, test system applies the stimulus to the target system via adapter of the correspondent input interface (see chapter _«Input interface adapter»_). Semantics of the mode parameter is described in the chapter _«Process calling»_.
334
335 1 Mikhail Chupilko
Example:
336 2 Mikhail Chupilko
<pre><code class="cpp">
337 1 Mikhail Chupilko
#include <hw/model.hpp>
338
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
339
    // modeling of stimulus receiving
340
    CPPTESK_RECV_STIMULUS(PARALLEL, input_iface, input_msg);
341
    ...
342
}
343 2 Mikhail Chupilko
</code></pre>
344
345
h3. Reaction sending
346
347
Modeling of reaction sending is done by the macro @CPPTESK_SEND_REACTION(mode, interface, message)@. Executing this macro, test system calls adapter of the correspondent output interface. The adapter starts waiting for the proper implementation reaction. When being received, the reaction is transformed into object of the correspondent message class (see chapter _“Adapter of the output interface”_). Then test system compares reference message with received message by means of comparator (see chapter _“Comparator of output messages”_). Semantics of the mode parameter is described in the chapter _“Process calling”_.
348
349 1 Mikhail Chupilko
Example:
350 2 Mikhail Chupilko
<pre><code class="cpp">
351 1 Mikhail Chupilko
#include <hw/model.hpp>
352
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
353
    // modeling of reaction sending
354
    CPPTESK_SEND_REACTION(SEQUENTIAL, output_iface, output_msg);
355
    ...
356
}
357 2 Mikhail Chupilko
</code></pre>
358
359
h3. Operation
360
361
Declaration and definition of interface operations of reference model is made by means of macros @CPPTESK_{DECLARE|DEFINE}_STIMULUS(name)@. The definition should start from macro @CPPTESK_START_STIMULUS(mode)@, and stop by macro @CPPTESK_STOP_STIMULUS()@.
362
363 1 Mikhail Chupilko
Example:
364 2 Mikhail Chupilko
<pre><code class="cpp">
365 1 Mikhail Chupilko
#include <hw/model.hpp>
366
CPPTESK_MODEL(MyModel) {
367
public:
368
    CPPTESK_DECLARE_STIMULUS(operation);
369
    ...
370
};
371
372
CPPTESK_DEFINE_STIMULUS(MyModel::operation) {
373
    CPPTESK_START_STIMULUS(PARALLEL);
374
    ...
375
    CPPTESK_STOP_STIMULUS();
376
}
377 2 Mikhail Chupilko
</code></pre>
378
379
*Notice*: operations are particular cases of processes, so that all the constructions from chapter _“Process”_ can be used in them.
380
381
*Notice*: calling macro @CPPTESK_START_STIMULUS(mode)@ is equivalent to the calling macro @CPPTESK_RECV_STIMULUS(mode, ...)@, where interface and message parameters are assigned with correspondent operation parameters.
382
383
h3. Callback function
384
385
In the main class of reference model, several callback functions are defined. The functions can be overloaded in the reference model. The main callback function is @onEveryCycle()@.
386
387
h4. Function onEveryCycle
388
389
Function @onEveryCycle()@ is called at the beginning of each reference model execution cycle.
390
391 1 Mikhail Chupilko
Example:
392 2 Mikhail Chupilko
<pre><code class="cpp">
393 1 Mikhail Chupilko
#include <hw/model.hpp>
394
CPPTESK_MODEL(MyModel) {
395
public:
396
    virtual void onEveryCycle();
397
    ...
398
};
399
400
void MyModel::onEveryCycle() {
401
    std::cout << "onEveryCycle: time=" << std::dec << time() << std::endl;
402
}
403 2 Mikhail Chupilko
</code></pre>
404
405
h2. Development of reference model adapter
406
407
_Reference model adapter_ (_mediator_) is a component of test system, binding reference model with target system. The adapter _serializes_ input message objects into sequences of input signal values, _deserializes_ sequences of output signal values into output message objects, and matches received from target system reactions with reference values.
408
409
h3. Reference model adapter
410
411
Reference model adapter is a subclass of reference model class. It is declared by means of the macro @CPPTESK_ADAPTER(adapter_name, model_name)@.
412
413 1 Mikhail Chupilko
Example:
414 2 Mikhail Chupilko
<pre><code class="cpp">
415 1 Mikhail Chupilko
#include <hw/media.hpp>
416
CPPTESK_ADAPTER(MyAdapter, MyModel) {
417
    ...
418
};
419 2 Mikhail Chupilko
</code></pre>
420
421
_Synchronization methods_, _input_ and _output interface adapters_, _output interface listeners_, and _reaction arbiters_ are declared in reference model adapter.
422
423
h4. Synchronizer
424
425 1 Mikhail Chupilko
Synchronizer is a low-level part of reference model adapter, responsible for synchronization of test system with being tested HDL-model. Synchronizer is implemented by overloading the following five methods of reference model adapter.
426 2 Mikhail Chupilko
* @void initialize()@ — test system initialization;
427
* @void finialize()@ — test system finalization;
428
* @void setInputs()@ — synchronization of inputs;
429
* @void getOutputs()@ — synchronization of outputs;
430
* @void simulate()@ — synchronization of time.
431
432 3 Mikhail Chupilko
When hardware models written in Verilog being verified, these methods can be implemented by standard interface VPI (Verilog Procedural Interface). Also, tool VeriTool (http://forge.ispras.ru/projects/veritool) can be used for automation of synchronizer development. In this case, macro @CPPTESK_VERITOOL_ADAPTER(adapter_name, model_name)@ can be used for facilitating of the efforts.
433 2 Mikhail Chupilko
434 1 Mikhail Chupilko
Example:
435 2 Mikhail Chupilko
<pre><code class="cpp">
436 1 Mikhail Chupilko
#include <hw/veritool/media.hpp>
437
// file generated by tool VeriTool
438
#include <interface.h>
439
CPPTESK_VERITOOL_ADAPTER(MyAdapter, MyModel) {
440
    ...
441
};
442
</code></pre>
443
444
Used for definition of synchronization methods functions and data structures (fields inputs and outputs) are generated automatically by tool VeriTool analyzing Verilog hardware model interface.
445 3 Mikhail Chupilko
446
*Notice*: when macro @CPPTESK_VERITOOL_ADAPTER@ being used, fields inputs и outputs should not be declared and methods and methods of synchronizer should not be overloaded.
447
448
*Notice*: tool VeriTool provides access to values of all HDL-model signals, including internal ones. To get access is possible by means of macros @CPPTESK_GET_SIGNAL(signal_type, signal_name)@ for getting value of signal @testbench.target.signal_name@ (@signal_type@ is meant to be from the following list: int, uint64_t, etc.), and @CPPTESK_SET_SIGNAL(signal_type, signal_name, new_value)@ for setting to a new value the signal @testbench.target.signal_name@ (@signal_type@ is meant to be the same as for getting value macro).
449
450
h4. Input interface adapter
451
452
_Input interface adapter_ is a process defined in reference model adapter and bound with one of the input interfaces. Input interface adapter is called by @CPPTESK_START_STIMULUS(mode)@ macro (see chapter _“Operation”_) or by @CPPTESK_RECV_STIMULUS(mode, interface, message)@ macro (see chapter _“Stimulus receiving”_). Declaration and definition of input interface adapters are done in typical for processes way.
453
454
It should be noticed, that just before the serialization, the input interface adapter should capture the interface. Capturing is made by macro @CPPTESK_CAPTURE_IFACE()@. Correspondingly, after the serialization, the interface should be released by macro @CPPTESK_RELEASE_IFACE()@.
455
456 1 Mikhail Chupilko
Example:
457 3 Mikhail Chupilko
<pre><code class="cpp">
458 1 Mikhail Chupilko
#include <hw/media.hpp>
459
CPPTESK_ADAPTER(MyAdapter, MyModel) {
460
    CPPTESK_DECLARE_PROCESS(serialize_input);
461
    ...
462
};
463
464
CPPTESK_DEFINE_PROCESS(MyAdapter::serialize_input) {
465
    MyMessage msg = CPPTESK_CAST_MESSAGE(MyMessage);
466
    // start serialization process
467
    CPPTESK_START_PROCESS();
468
    // capture input interface
469
    CPPTESK_CAPTURE_IFACE();
470
    // set operation start strobe
471
    inputs.start = 1;
472
    // set information signals
473
    inputs.addr  = msg.get_addr();
474
    inputs.data  = msg.get_data();
475
    // one cycle delay
476
    CPPTESK_CYCLE();
477
    // reset of operation strobe
478
    inputs.start = 0;
479
    // release input interface
480
    CPPTESK_RELEASE_IFACE();
481
    // stop serialization process
482
    CPPTESK_STOP_PROCESS();
483
}
484 3 Mikhail Chupilko
</code></pre>
485
486
Binding of adapter and interface is made in reference model constructor by means of macro @CPPTESK_SET_INPUT_ADAPTER(interface_name, adapter_full_name)@.
487
488 1 Mikhail Chupilko
Example:
489 3 Mikhail Chupilko
<pre><code class="cpp">
490 1 Mikhail Chupilko
MyAdapter::MyAdapter{
491
    CPPTESK_SET_INPUT_ADAPTER(input_iface, MyAdater::serialize_input);
492
    ...
493
};
494 3 Mikhail Chupilko
</code></pre>
495
496
*Notice*: when input interface adapter being registered, its full name (including the name of reference model adapter class) should be used.
497
498
h4. Output interface adapter
499
500
Output interface adapter is a process defined in reference model adapter and bound with one of the output interfaces, Output interface adapter is called by @CPPTESK_SEND_REACTION(mode, interface, message)@ macro (see chapter _“Reaction sending”_). Declaration and definition of output interface adapters are done by means of the following macros.
501
* @CPPTESK_WAIT_REACTION(condition)@ - wait for reaction and allow reaction arbiter to access the reaction;
502
* @CPPTESK_NEXT_REACTION()@ - releasing of reaction arbiter (see chapter _“Reaction arbiter”_).
503
504 1 Mikhail Chupilko
Example:
505 3 Mikhail Chupilko
<pre><code class="cpp">
506 1 Mikhail Chupilko
#include <hw/media.hpp>
507
CPPTESK_ADAPTER(MyAdapter, MyModel) {
508
    CPPTESK_DECLARE_PROCESS(deserialize_output);
509
    ...
510
};
511
512
CPPTESK_DEFINE_PROCESS(MyAdapter::deserialize_input) {
513
    // get reference to the message object
514
    MyMessage &msg = CPPTESK_CAST_MESSAGE(MyMessage);
515
    // start deserialization process
516
    CPPTESK_START_PROCESS();
517
    // wait for result strobe
518
    CPPTESK_WAIT_REACTION(outputs.result);
519
    // read data
520
    msg.set_data(outputs.data);
521
    // release reaction arbiter
522
    CPPTESK_NEXT_REACTION();
523
    // stop deserialization process
524
    CPPTESK_STOP_PROCESS();
525
}
526 3 Mikhail Chupilko
</code></pre>
527
528
The waiting for the implementation reaction time is restricted by a timeout. The timeout is set by macro @CPPTESK_SET_REACTION_TIMEOUT(timeout)@, which as well as macro @CPPTESK_SET_OUTPUT_ADAPTER(interface_name, adapter_full_name)@ is called in constructor of reference model adapter.
529
530 1 Mikhail Chupilko
Example:
531 3 Mikhail Chupilko
<pre><code class="cpp">
532 1 Mikhail Chupilko
MyAdapter::MyAdapter{
533
    CPPTESK_SET_OUTPUT_ADAPTER(output_iface, MyAdater::deserialize_output);
534
    CPPTESK_SET_REACTION_TIMEOUT(100);
535
    ...
536
};
537 3 Mikhail Chupilko
</code></pre>
538
539
*Notice*: when output interface adapter being registered, its full name (including the name of reference model adapter class) should be used.
540
541
h4. Output interface listener (deprecated feature)
542
543
_Output interface listener_ is a special-purpose process, waiting for appearing of implementation reactions at the beginning of each cycle, and registering error in case of unexpected reactions. Definition of listeners is made by @CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(name, interface_name, condition)@ macro.
544
545 1 Mikhail Chupilko
Example:
546 3 Mikhail Chupilko
<pre><code class="cpp">
547 1 Mikhail Chupilko
#include <hw/media.hpp>
548
CPPTESK_ADAPTER(MyAdapter, MyModel) {
549
    CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(output_listener,
550
        output_iface, outputs.result);
551
    ...
552
};
553 3 Mikhail Chupilko
</code></pre>
554
555
Output interface listener is started in constructor of reference model adapter by macro @CPPTESK_CALL_OUTPUT_LISTENER(listener_full_name, interface_name)@.
556
557 1 Mikhail Chupilko
Example:
558 3 Mikhail Chupilko
<pre><code class="cpp">
559 1 Mikhail Chupilko
MyAdapter::MyAdapter{
560
    ...
561
    CPPTESK_CALL_OUTPUT_LISTENER(MyAdapter::output_listener, output_iface);
562
    ...
563
};
564 3 Mikhail Chupilko
</code></pre>
565
566
h4. Reaction arbiter
567
568
_Reaction arbiter_ (_output interface arbiter_) is aimed for matching implementation reactions (received from HDL-model) with specification reactions (calculated by reference model). Having been matched, the reaction pairs are sent to comparator, showing an error if there is difference in data between two reactions (see chapter _“Comparator of output messages”_).
569
570 1 Mikhail Chupilko
The common types of arbiters are the following.
571 3 Mikhail Chupilko
* @CPPTESK_FIFO_ARBITER@ — implementation reaction having been received, the arbiter prefers specification reaction which was created by the earliest among the other reactions call of macro @CPPTESK_SEND_REACTION()@ (see chapter _“Reaction sending”_).
572
* @CPPTESK_PRIORITY_ARBITER@ — the arbiter prefers specification reaction which was created with the highest priority by macro @CPPTESK_SEND_REACTION()@ (see chapter _“Process priority”_).
573
574
To declare reaction arbiter in reference model adapter class is possible by means of macro @CPPTESK_DECLARE_ARBITER(type, name)@. To bind arbiter with output interface is possible by means of macro @CPPTESK_SET_ARBITER(interface, arbiter)@, which should be called in constructor of reference model adapter.
575
576 1 Mikhail Chupilko
Example:
577 3 Mikhail Chupilko
<pre><code class="cpp">
578 1 Mikhail Chupilko
#include <hw/media.hpp>
579
CPPTESK_ADAPTER(MyAdapter, MyModel) {
580
    CPPTESK_DECLARE_ARBITER(CPPTESK_FIFO_ARBITER, output_iface_arbiter);
581
    ...
582
};
583
584
MyAdapter::MyAdapter() {
585
    CPPTESK_SET_ARBITER(output_iface, output_iface_arbiter);
586
    ...
587
}
588 3 Mikhail Chupilko
</code></pre>
589
590
h2. Test coverage description
591
592
_Test coverage_ is aimed for evaluation of _test completeness_. As a rule, test coverage structure is described explicitly by enumerating of all possible in the test situations (test situations). To describe complex test situations, composition of simpler test coverage structures is used.
593
594
Test coverage can be described in the main class of reference model or moved to external class (test coverage class). In the second case, the class with test coverage description should have a reference to the reference model (see chapter _“Test coverage class”_).
595
596
h3. Class of test coverage
597
598
Class of test coverage is a class containing definition of test coverage structure and functions calculating test situations. As test coverage is defined in terms of reference model, test coverage class should have a reference to the main class of reference model. To trace test situations, test coverage class has test situation tracer — an object of @CoverageTracker@ class (@namespace cpptesk::tracer::coverage@) and function tracing test situations.
599
600 1 Mikhail Chupilko
Example:
601 3 Mikhail Chupilko
<pre><code class="cpp">
602 1 Mikhail Chupilko
#include <ts/coverage.hpp>
603
#include <tracer/tracer.hpp>
604
class MyModel;
605
606
// Declaration of test coverage class
607
class MyCoverage {
608
public:
609
    MyCoverage(MyModel &model): model(model) {}
610
611
    // Test situation tracer
612
    CoverageTracker tracker;
613
614
    // Description of test coverage structure
615
    CPPTESK_DEFINE_ENUMERATED_COVERAGE(MY_COVERAGE, "My coverage", (
616
         (SITUATION_1, "Situation 1"),
617
         ...
618
         (SITUATION_N, "Situation N")
619
    ));
620
621
    // Function calculating test situation: signature of the function
622
    // contains all necessary for it parameters
623
    MY_COVERAGE cov_MY_COVERAGE(...) const;
624
625
    // Function tracing test situations: signature of the function
626
    // is the same as signature of the previous function
627
    void trace_MY_COVERAGE(...);
628
    ...
629
private:
630
    // Reference to the reference model
631
    MyModel &model;
632
};
633 3 Mikhail Chupilko
</code></pre>
634
635
h3. Test coverage structure
636
637
Test coverage structure is described by means of _enumerated coverage_, _coverage compositions_, _excluded coverage composition_, and _test coverage aliases_.
638
639
h4. Enumerated coverage
640
641
_Enumerated coverage_, as it goes from the coverage name, is defined by explicit enumeration of all possible test situations by macro @CPPTESK_DEFINE_ENUMERATED_COVERAGE(coverage, description, situations)@, where coverage is an identifier of the coverage type, description is a string, and situations is the list of situations like @((id, description), ...)@.
642
643 1 Mikhail Chupilko
Example:
644 3 Mikhail Chupilko
<pre><code class="cpp">
645 1 Mikhail Chupilko
#include <ts/coverage.hpp>
646
CPPTESK_DEFINE_ENUMERATED_COVERAGE(FIFO_FULLNESS, "FIFO fullness", (
647
    (FIFO_EMPTY, "Empty"),
648
     ...
649
    (FIFO_FULL, "Full")
650
));
651 3 Mikhail Chupilko
</code></pre>
652
653
h4. Coverage composition
654
_Coverage composition_ allows creation of test situation structure basing on two test coverage structures, containing Cartesian product of situations from both initial structures. Coverage composition is made by means of macro @CPPTESK_DEFINE_COMPOSED_COVERAGE(type, description, coverage_1, coverage_2)@. Description of new test situations is made according to the pattern @"%s,%s"@.
655
656 1 Mikhail Chupilko
Example:
657 3 Mikhail Chupilko
<pre><code class="cpp">
658 1 Mikhail Chupilko
#include <ts/coverage.hpp>
659
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
660
    (A1, "A one"),
661
    (A2, "A two")
662
));
663
664
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
665
    (B1, "B one"),
666
    (B2, "B two")
667
));
668
669
// Product of structures A and B makes the following situations:
670
// (COVERAGE_AxB::Id(A1, B1), "A one, B one")
671
// (COVERAGE_AxB::Id(A1, B2), "A one, B two")
672
// (COVERAGE_AxB::Id(A2, B1), "A two, B one")
673
// (COVERAGE_AxB::Id(A2, B2), "A two, B two")
674
CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AxB, "Coverage AxB",
675
    COVERAGE_A, COVERAGE_B);
676 3 Mikhail Chupilko
</code></pre>
677
678
h4. Excluded coverage composition
679
680
To make product of test coverage structures and exclude unreachable test situations is possible by macro @CPPTESK_DEFINE_COMPOSED_COVERAGE_EXCLUDING(type, description, coverage_1, coverage_2, excluded)@, where excluded is the list like @({coverage_1::id, coverage_2::id}, ... )@. Instead of test situation identifier, macro @ANY()@ can be used. To product coverage structures being products themselves, correspondent tuples should be used instead of pairs.
681
682 1 Mikhail Chupilko
Example:
683 3 Mikhail Chupilko
<pre><code class="cpp">
684 1 Mikhail Chupilko
#include <ts/coverage.hpp>
685
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
686
    (A1, "A one"),
687
    (A2, "A two")
688
));
689
690
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
691
    (B1, "B one"),
692
    (B2, "B two")
693
));
694
695
// The following composition makes the following test situations:
696
// (COVERAGE_AxB::Id(A1, B2), "A one, B two")
697
// (COVERAGE_AxB::Id(A2, B1), "A two, B one")
698
// (COVERAGE_AxB::Id(A2, B2), "A two, B two")
699
CPPTESK_DEFINE_COMPOSED_COVERAGE_EXCLUDING(COVERAGE_AxB, "Coverage AxB",
700
    COVERAGE_A, COVERAGE_B, ({COVERAGE_A::A1, COVERAGE_B::B1}));
701 3 Mikhail Chupilko
</code></pre>
702
703
h4. Test coverage alias
704
705
To make a test coverage alias (test coverage with different name, but with the same test situations), macro @CPPTESK_DEFINE_ALIAS_COVERAGE(alias, description, coverage)@ should be used.
706
707 1 Mikhail Chupilko
Example:
708 3 Mikhail Chupilko
<pre><code class="cpp">
709 1 Mikhail Chupilko
#include <ts/coverage.hpp>
710
CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
711
    (A1, "A one"),
712
    (A2, "A two")
713
));
714
715
// COVERAGE_B – alias of COVERAGE_A
716
CPPTESK_DEFINE_ALIAS_COVERAGE(COVERAGE_B, "Coverage B", COVERAGE_A);
717 3 Mikhail Chupilko
</code></pre>
718
719
h3. Calculating current test situation function
720
721
_Calculating current test situation function_ is a function, which returns identifier of the current test situation (see chapter _“Structure of the test coverage”_), having analyzed the reference model state and (possibly) input parameters of the operation. Identifier of test situation for enumerated coverage looks like @coverage::identifier@ and @class::coverage::identifier@ when used outside of test coverage class. Calculating current test situation function for production of coverage structures can be obtained by calling functions for particular coverage structures and “production” of their results (operator @*@ should be appropriately overloaded).
722
723 1 Mikhail Chupilko
Example:
724 3 Mikhail Chupilko
<pre><code class="cpp">
725 1 Mikhail Chupilko
#include <ts/coverage.hpp>
726
class MyCoverage {
727
    // definition of the enumerated coverage structure COVERAGE_A
728
    CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
729
        (A1, "A one"),
730
        (A2, "A two")
731
    ));
732
    // test situation calculating function for coverage COVERAGE_A
733
    COVERAGE_A cov_COVERAGE_A(int a) const {
734
        switch(a) {
735
        case 1: return COVERAGE_A::A1;
736
        case 2: return COVERAGE_A::A2;
737
        }
738
        assert(false);
739
    }
740
    
741
    // definition of COVERAGE_B – alias of COVERAGE_A
742
    CPPTESK_DEFINE_ALIAS_COVERAGE(COVERAGE_B, "Coverage B", COVERAGE_A);
743
    // test situation calculating function for coverage COVERAGE_B
744
    COVERAGE_B cov_COVERAGE_B(int b) const {
745
        return cov_COVERAGE_A(b);
746
    }
747
748
    // definition of COVERAGE_AxB – production of COVERAGE_A and COVERAGE_B
749
    CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AxB, "Coverage AxB",
750
        COVERAGE_A, COVERAGE_B);s
751
    // test situation calculating function of coverage COVERAGE_AxB
752
    COVERAGE_AxB cov_COVERAGE_AxB(int a, int b) const {
753
        return cov_COVERAGE_A(a) * cov_COVERAGE_B(b);
754
    }
755
    ...
756
};
757 3 Mikhail Chupilko
</code></pre>
758
759
h3. Tracing test situation function
760
761
_Tracing test situation function_ is defined for each upper-level test coverage structure. As tracing function calls test situation calculating function, their parameters usually coincide. Implementation of this function is based on test situation tracer, being an object of class @CoverageTracker@ (@namespace cpptesk::tracer::coverage@).
762
763 1 Mikhail Chupilko
Example:
764 3 Mikhail Chupilko
<pre><code class="cpp">
765 1 Mikhail Chupilko
#include <ts/coverage.hpp>
766
#include <tracer/tracer.hpp>
767
CoverageTracker tracer;
768
void trace_COVERAGE_A(int a) {
769
    tracer << cov_COVERAGE_A(a);
770
}
771 3 Mikhail Chupilko
</code></pre>
772
773
h2. Development of test scenario
774
775
_Test scenario_ is a high-level specification of test, which being interpreted by test engine (see chapter _“Test scenario running”_) is used by test system for test sequence generation. Test scenario is developed as a special class named scenario class.
776
777
h3. Class of scenario
778
779
Scenario class is declared by macro @CPPTESK_SCENARIO(name)@.
780
781 1 Mikhail Chupilko
Example:
782 3 Mikhail Chupilko
<pre><code class="cpp">
783 1 Mikhail Chupilko
#include <ts/scenario.hpp>
784
CPPTESK_SCENARIO(MyScenario) {
785
    ...
786
private:
787
    // testing is done via reference model adapter
788
    MyAdapter dut;
789
};
790 3 Mikhail Chupilko
</code></pre>
791
792
_Test scenario initialization_ and _finalization methods_, _scenario methods_, and _current state function_ are declared in scenario class.
793
794
h4. Test scenario initialization method
795
796
_Test scenario initialization method_ includes actions which should have been made right before test start. It is defined by overloading of base class virtual method @bool init(int argc, char **argv)@. It returns true in case of successful initialization and false in case of some problem.
797
798
Example:
799
<pre><code class="cpp">
800 1 Mikhail Chupilko
#include <ts/scenario.hpp>
801
CPPTESK_SCENARIO(MyScenario) {
802
public:
803
    virtual bool init(int argc, char **argv) {
804
        dut.initialize();
805
        std::cout << "Test has started..." << std::endl;
806
    }
807
    ...
808
};
809 3 Mikhail Chupilko
</code></pre>
810
811
h4. Test scenario finalizing method
812
813
_Test scenario finalizing method_ contains actions which should be done right after test finish. It is defined by overloading of base class virtual method @void finish()@.
814
815 1 Mikhail Chupilko
Example:
816 3 Mikhail Chupilko
<pre><code class="cpp">
817 1 Mikhail Chupilko
#include <ts/scenario.hpp>
818
CPPTESK_SCENARIO(MyScenario) {
819
public:
820
    virtual void finish() {
821
        dut.finalize();	
822
        std::cout << "Test has finished..." << std::endl;
823
    }
824
    ...
825
};
826 3 Mikhail Chupilko
</code></pre>
827
828
h4. Scenario method
829
830
_Scenario methods_ iterate parameters of input messages and run operations by means of reference model adapter. One scenario class may contain several scenario method declarations. Scenario method returns value of bool type, which is interpreted as a flag of some problem. The only parameter of scenario method is an iteration context, which is an object containing variables to be iterated by scenario method (iteration variables). Definition of scenario method starts from calling  macro @CPPTESK_ITERATION_BEGIN@, and finishes with @CPPTESK_ITERATION_END@.
831
832 1 Mikhail Chupilko
Example:
833 3 Mikhail Chupilko
<pre><code class="cpp">
834 1 Mikhail Chupilko
#include <ts/scenario.hpp>
835
CPPTESK_SCENARIO(MyScenario) {
836
public:
837
    bool scenario(cpptesk::ts::IntCtx &ctx);
838
    ...
839
};
840
841
bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx) {
842
    CPPTESK_ITERATION_BEGIN
843
    ...
844
    CPPTESK_ITERATION_END
845
}
846 3 Mikhail Chupilko
</code></pre>
847
848
Scenario methods are registered by macro @CPPTESK_ADD_SCENARIO_METHOD(full_name)@ in scenario class constructor.
849
850 1 Mikhail Chupilko
Example:
851 3 Mikhail Chupilko
<pre><code class="cpp">
852 1 Mikhail Chupilko
MyScenario::MyScenario() {
853
    CPPTESK_ADD_SCENARIO_METHOD(MyScenario::scenario);
854
    ...
855
}
856 3 Mikhail Chupilko
</code></pre>
857
858
h4. Access to iteration variables
859
860
_Iteration variables_ are fields of _iteration context_, which is a parameter of scenario method. To access iteration variables is possible by macro @CPPTESK_ITERATION_VARIABLE(name)@, where name is a name of one of the iteration context fields.
861
862 1 Mikhail Chupilko
Example:
863 3 Mikhail Chupilko
<pre><code class="cpp">
864 1 Mikhail Chupilko
#include <ts/scenario.hpp>
865
bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx) {
866
    // get reference to iteration variable
867
    int &i = CPPTESK_ITERATION_VARIABLE(i);
868
    CPPTESK_ITERATION_BEGIN
869
    for(i = 0; i < 10; i++) {
870
        ...
871
    }
872
    CPPTESK_ITERATION_END
873
}
874 3 Mikhail Chupilko
</code></pre>
875
876
h4. Test action block
877
878
_Test action_ (preparation of input message and start of operation) is made in a code block @CPPTESK_ITERATION_ACTION{...}@ located in scenario method.
879
880 1 Mikhail Chupilko
Example:
881 3 Mikhail Chupilko
<pre><code class="cpp">
882 1 Mikhail Chupilko
#include <ts/scenario.hpp>
883
...
884
CPPTESK_ITERATION_BEGIN
885
for(i = 0; i < 10; i++) {
886
     ...
887
     // test action block
888
     CPPTESK_ITERATION_ACTION {
889
         // input message randomization
890
         CPPTESK_RANDOMIZE_MESSAGE(input_msg);
891
         input_msg.set_addr(i);
892
         // start operation
893
         CPPTESK_CALL_STIMULUS_OF(dut, MyModel::operation,
894
             dut.input_iface, input_msg);
895
         ...
896
     }
897
}
898
CPPTESK_ITERATION_END
899 3 Mikhail Chupilko
</code></pre>
900
901
h4. Scenario action finishing
902
903
Each iteration of scenario method is finished by @CPPTESK_ITERATION_YIELD(verdict)@ macro, quitting from scenario method. When being called next time, scenario method will continue its execution from next iteration.
904
905 1 Mikhail Chupilko
Example:
906 3 Mikhail Chupilko
<pre><code class="cpp">
907 1 Mikhail Chupilko
#include <ts/scenario.hpp>
908
...
909
CPPTESK_ITERATION_BEGIN
910
for(i = 0; i < 10; i++) {
911
     ...
912
     // test action block
913
     CPPTESK_ITERATION_ACTION {
914
         ...
915
         // quit from scenario method and return verdict
916
         CPPTESK_ITERATION_YIELD(dut.verdict());
917
     }
918
}
919
CPPTESK_ITERATION_END
920 3 Mikhail Chupilko
</code></pre>
921
922
h4. Delays
923
924
Making _delays_ (sending of stimuli at different time of HDL-model simulation) in tests requires development of at least one method with calling reference model method @cycle()@. In case of possibility of parallel stimulus running, the most convenient way of usage method @cycle()@ is to call this method from purposely created scenario method @nop()@ (name of this method is unrestricted). Notice that in this case method @cycle()@ should not be called from any other method.
925
926
Example:
927
<pre><code class="cpp">
928 1 Mikhail Chupilko
#include <ts/scenario.hpp>
929
bool MyScenario::nop(cpptesk::ts::IntCtx& ctx) {
930
    CPPTESK_ITERATION_BEGIN
931
    CPPTESK_ITERATION_ACTION {
932
        dut.cycle();
933
        CPPTESK_ITERATION_YIELD(dut.verdict());
934
    }
935
    CPPTESK_ITERATION_END
936
}
937 3 Mikhail Chupilko
</code></pre>
938
939
*Notice*: scenario method @nop()@ should be registered before any other scenario methods.
940
941
h3. Calculating current state function
942
943
_Calculating current state function_ is needed for test engines, using exploration of target system state graph for creation of test sequences. Returning by function value is interpreted as system state. Type of the returning value and function name are unrestricted. Method does not allow parameters.
944
945 1 Mikhail Chupilko
Example:
946 3 Mikhail Chupilko
<pre><code class="cpp">
947 1 Mikhail Chupilko
#include <ts/scenario.hpp>
948
CPPTESK_SCENARIO(MyScenario) {
949
public:
950
    ...
951
    int get_model_state() {
952
        return dut.buffer.size();
953
    }
954
};
955 3 Mikhail Chupilko
</code></pre>
956
957
Setting up of calculating current state function is made by method @void setup(...)@. in test scenario constructor.
958
959 1 Mikhail Chupilko
Example:
960 3 Mikhail Chupilko
<pre><code class="cpp">
961 1 Mikhail Chupilko
#include <ts/scenario.hpp>
962
MyScenario::MyScenario() {
963
    setup("My scenario",
964
    UseVirtual::init,
965
    UseVirtual::finish,
966
    &MyScenario::get_model_state);
967
    ...
968
}
969 3 Mikhail Chupilko
</code></pre>
970
971
h3. Test scenario running
972
973
Test scenario running at local computer is made by calling function @localmain(engine, scenario.getTestScenario(), argc, argv)@ (namespace @cpptesk::ts@).
974
975
Available test engines are the following (namespace @cpptesk::ts::engine@).
976
* @fsm@ — generator of test sequence based on state graph exploration;
977
* @rnd@ — generator of randomized test sequence.
978
979 1 Mikhail Chupilko
Example:
980 3 Mikhail Chupilko
<pre><code class="cpp">
981 1 Mikhail Chupilko
#include <netfsm/engines.hpp>
982
using namespace cpptesk::ts;
983
using namespace cpptesk::ts::engine;
984
...
985
MyScenario scenario;
986
localmain(fsm, scenario.getTestScenario(), argc, argv);
987 3 Mikhail Chupilko
</code></pre>
988
989
h2. Auxiliary possibilities
990
991 1 Mikhail Chupilko
C++TESK toolkit includes the following auxiliary possibilities: assertions and debug print. These possibilities can be used in reference models and in all test system components (adapters, test scenarios, etc). Their main aim is to facilitate debug of test system.
992 3 Mikhail Chupilko
993
h3. Assertions
994
995
_Assertions_ are predicates (logic constructions) used for description of program properties and, as a rule, checked during runtime. If assertion is violated (predicate shows false), error is fixed and program is stopped. To make assertions is possible by @CPPTESK_ASSERTION(predicate, description)@ macro, where predicate is a checking property, and description is a string describing error bound with violation of this property.
996
997 1 Mikhail Chupilko
Example:
998 3 Mikhail Chupilko
<pre><code class="cpp">
999 1 Mikhail Chupilko
#include <hw/assertion.hpp>
1000
...
1001
CPPTESK_ASSERTION(pointer, "pointer is null");
1002 3 Mikhail Chupilko
</code></pre>
1003
1004
h3. Debug print
1005
1006
_Debug print_ is devoted to debug of test system. In contrast to typical printing by means of, e.g., STL streams, adjustment of debug print is easier (turning on/off, changing of printing color, etc).
1007
1008
h4. Debug print macros
1009
1010
Debug print is commonly made by macro @CPPTESK_DEBUG_PRINT(level, message)@, where level is a level of debug print (see chapter _“Debug print levels”_) and message is a printing debug message, and macro @CPPTESK_DEBUG_PRINTF(level, formal, parameters)@, where @(format, parameters)@ is a formatted string and values of used in the string parameters in the same format as they are used by C library function @printf()@.
1011
1012 1 Mikhail Chupilko
Example:
1013 3 Mikhail Chupilko
<pre><code class="cpp">
1014 1 Mikhail Chupilko
#include <hw/debug.hpp>
1015
using namespace cpptesk::hw;
1016
...
1017
CPPTESK_DEBUG_PRINT(DEBUG_USER, "The input message is "
1018
    << CPPTESK_GET_MESSAGE());
1019
...
1020
CPPTESK_DEBUG_PRINTF(DEBUG_USER, "counter=%d", counter);
1021 3 Mikhail Chupilko
</code></pre>
1022
1023
*Notice*: as a debug message in macro @CPPTESK_DEBUG_PRINT()@ any “stream expression” (allowed for usage in standard C++ STL output streams expressions) can be used.
1024
1025
To add location information of debug macro to debug message (file name and string number) is possible by means of macros @CPPTESK_DEBUG_PRINT_FILE_LINE()@ and @CPPTESK_DEBUG_PRINTF_FILE_LINE()@. Their parameters are the same as of macros mentioned above.
1026
1027
h3. Process call stack printing
1028
1029
To print process call stack of reference model is possible by macro @CPPTESK_CALL_STACK()@, which can be used inside and instead of debug message of macro @CPPTESK_DEBUG_PRINT()@.
1030
1031 1 Mikhail Chupilko
Example:
1032 3 Mikhail Chupilko
<pre><code class="cpp">
1033 1 Mikhail Chupilko
#include <hw/model.hpp>
1034
CPPTESK_DEFINE_PROCESS(MyModel::some_process) {
1035
    CPPTESK_START_PROCESS();
1036
1037
    CPPTESK_DEBUG_PRINT(DEBUG_USER, "Call stack is "
1038
        << CPPTESK_CALL_STACK());
1039
    ...
1040
    CPPTESK_STOP_PROCESS();
1041
}
1042 3 Mikhail Chupilko
</code></pre>
1043
1044
*Notice*: macro @CPPTESK_CALL_STACK()@ can be used only inside on reference model.
1045
1046
h3. Colored debug print
1047
1048
To facilitate manual search of debug messages of a certain type among all debug print is possible by means of colored debug print macros @CPPTESK_COLORED_DEBUG_PRINT(level, color, background_color, message)@, @CPPTESK_COLORED_DEBUG_PRINTF(level, color, background_color, format, parameters)@, and also macros @CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE()@ and @CPPTESK_COLORED_DEBUG_PRINTF_FILE_LINE()@.
1049
1050
The following color constants are defined (namespace @cpptesk::hw@):
1051
* @BLACK@ — black;
1052
* @RED@ — red;
1053
* @GREEN@ — green;
1054
* @YELLOW@ — yellow;
1055
* @BLUE@ — blue;
1056
* @MAGENTA@ — purple;
1057
* @CYAN@ — cyan;
1058
* @WHITE@ — white.
1059
1060 1 Mikhail Chupilko
Example:
1061 3 Mikhail Chupilko
<pre><code class="cpp">
1062 1 Mikhail Chupilko
#include <hw/debug.hpp>
1063
using namespace cpptesk::hw;
1064
...
1065
CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE(DEBUG_USER, RED, BLACK,
1066
    "The input message is " << CPPTESK_GET_MESSAGE());
1067
...
1068
CPPTESK_COLORED_DEBUG_PRINTF(DEBUG_USER, WHITE, BLACK,
1069
    "counter=%d", counter);
1070 3 Mikhail Chupilko
</code></pre>
1071
1072
h3. Controlling indents in debug print
1073
1074
To control indents in debug print is possible by @CPPTESK_SET_DEBUG_INDENT(indent)@, @CPPTESK_BEGIN_DEBUG_INDENT@, and @CPPTESK_END_DEBUG_INDENT@ macros. Macro @CPPTESK_SET_DEBUG_INDENT@ sets indent value (not negative integer) returning its old value. Macros @CPPTESK_BEGIN_DEBUG_INDENT@ and @CPPTESK_END_DEBUG_INDENT@ are used in complementary way: the first one increases indent, the second one decreases indent by one point.
1075
1076 1 Mikhail Chupilko
Example:
1077 3 Mikhail Chupilko
<pre><code class="cpp">
1078 1 Mikhail Chupilko
#include <hw/debug.hpp>
1079
using namespace cpptesk::hw;
1080
...
1081
unsigned old_indent = CPPTESK_SET_DEBUG_INDENT(2);
1082
...
1083
CPPTESK_BEGIN_DEBUG_INDENT
1084
{
1085
    CPPTESK_DEBUG_PRINT(DEBUG_USER, "Some message");
1086
    ...
1087
}
1088
CPPTESK_END_DEBUG_INDENT
1089 3 Mikhail Chupilko
</code></pre>
1090
1091
h3. Debug print levels
1092
1093
There is a level of debug message parameter among other debug print parameters. Level characterizes importance of the message. Usually, debug messages of different levels are colored differently. The following debug levels are defined (namespace @cpptesk::hw@):
1094
* @DEBUG_MORE@ — detailed debug messages produced by toolkit itself;
1095
* @DEBUG_INFO@ — basic debug messages produced by toolkit itself;
1096
* @DEBUG_USER@ — user’s debug messages;
1097
* @DEBUG_WARN@ — warnings (typically, produced by toolkit itself);
1098
* @DEBUG_FAIL@ — messages about failures (typically, produced by toolkit itself).
1099
1100
The most “important” level is @DEBUG_FAIL@, then @DEBUG_WARN@, etc. @DEBUG_USER@ is the only one level for user’s messages.
1101
1102
h3. Debug print setting up
1103
1104
To set up the volume of debug print messages is possible by selection of debug print level, and only those messages will be printed, which has debug level being not less than selected one. It is done by macro @CPPTESK_SET_DEBUG_LEVEL(debug_level, colored)@. This macro has an additional Boolean parameter colored, turning on/off coloring. Debug level @DEBUG_INFO@ is set by default. Special level @DEBUG_NONE@ can be used to switch off debug print totally.
1105
1106
Each debug print level can be assigned with colors for messages of this level. It is done by macro @CPPTESK_SET_DEBUG_STYLE(level, tag_color, tag_background_color, color, background_color)@.
1107
1108 1 Mikhail Chupilko
Example:
1109 3 Mikhail Chupilko
<pre><code class="cpp">
1110 1 Mikhail Chupilko
#include <hw/model.hpp>
1111
using namespace cpptesk::hw;
1112
...
1113
// reference model constructor
1114
MyModel::MyModel() {
1115
    // print messages with failures only,
1116
    // switch on message coloring
1117
    CPPTESK_SET_DEBUG_LEVEL(DEBUG_FAIL, true);
1118
    // [FAIL] Error message style.
1119
    CPPTESK_SET_DEBUG_STYLE(DEBUG_FAIL, BLACK, RED, RED, BLACK);
1120
}
1121 3 Mikhail Chupilko
</code></pre>