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1 About TSMT

TSMT is a set of Isabelle proof methods and commands that facilitates the use of relatively complete
decision procedures, such as SMT solvers (potentially including Argo) and paramodulation-based provers
(including Metis), with deterministic quantifier instantiation based on bounded E-matching. In particular,
with some reasonable additional overhead, it enables extraction and inspection of counterexamples and
quantifier instantiations, automatic proof optimization based on unsatisfiability cores, trigger management
and some other small, but often useful features.

We proceed this tutorial with introduction to the problem of quantifier instantiation, traditional E-matching,
bounded E-matching and the solutions implemented within TSMT tooling.

2 Quantifier instantiation and E-matching

For the vast majority of practically relevant logical fragments involving quantifiers the corresponding satis-
fiability problems are generally undecidable. In practice this means there are no complete or even in some
sense “best” approaches to automatically proving most goals involving quantifiers. All existing approaches
are in some sense heuristical. However, the approaches also tend to be adapted to the particular needs of
their underlying reasoning engines. For example, quantifier instantiation for rewriting-based proof methods
(e. g. simp and auto) is based on special cases of higher-order resolution (introduction and elimination
rules with specially designated major premises and conclusions). Meanwhile, quantifier instantiation for
methods based on Satisfiability Modulo Theories (SMT) is often based on E-matching. The reason for
this is completeness of many SMT-based decision procedures for ground (quantifier-free) fragments of the
corresponding logics. In particular, the combination of linear integer arithmetic and equality with unin-
terpreted functions (the so-called UFLIA logic) is decidable and, moreover, most decision procedures for
this logic are very efficient in practice (although they are generally NP-complete and in theory can require
exponential amount of resources). The efficient decidability for ground formulas essentially implies that
given the appropriate set of relevant quantifier instances, the proof of unsatisfiability (and, dually, validity)
of the original formula can usually be obtained rather quickly. So there’s little to no need in any syntactic
heuristics for the refutation (or inference) reasoning itself, but rather the hueristical part of the decision
procedure is restricted to the choice of appropriate quantifier instantiations. Hence the particular syntactic
shape of the rules (introduction, elimination, destruction, conguruence etc.) is irrelevant, what’s important
is what terms should be used to instantiate the variables bound by the quantifiers.

Consider the following sample ground formula (the example is from [2]):

(P (f 42 ) −→ 42 < 0 ) ∧ a = f 42 ∧ P a.

A decision procedure for the combination of linear integer arithmetic and equality with uninterpreted func-
tions (the UFLIA logic) can easily prove this formula unsatisfiable. Consequently, in HOL it can also prove
the following goal:

[[P (f 42 ) −→ 42 < 0 ; a = f 42 ]] =⇒ ¬ P a.

However, in practice a more likely formulation of such a goal is a more general quantified one:

[[∀ x . P (f x ) −→ x < 0 ; a = f 42 ]] =⇒ ¬ P a.

To prove it with SMT, the corresponding SMT proof method first negates it:

(∀ x . P (f x ) −→ x < 0 ) ∧ a = f 42 ∧ P a,

then extracts the unsatisfiability proof from a proof-producing SMT-solver (such as Z3). The obtained
unsatisfiability proof is then transformed into the validity proof of the original formula. Yet to produce the
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proof the SMT solver should come up with an appropriate instantiation for the quantified variable x. In
general, there is an infinite set of potentially relevant instantiations for the variable x, such as 42. But once
the necessary instantiation is obtained, the formula can be relatively efficiently discharged since there is an
existing complete decision procedure for the ground logic.

One of the approaches to selection of the relevant terms for instantiation of bound variables is called E-
matching. It suggests to initially designate certain special terms containing occurrences of the target bound
variables and call those subterms triggers. Then it suggests to choose only those instantiations of the bound
variables that make those triggers equal to some ground subterms of the currently considered formula.

In our example let’s designate the term P (f x ) as a trigger. Now to extract the instantiations relevant for
this trigger we have to match the ground subterms of the formula with the trigger to obtain the substitutions
of the variable x that make the term P (f x ) equal to some ground subterm of the formula. However, in
our example there’s no such subterm! The ground part of the formula a = f 42 ∧ P a does not contain any
term of the form P (f x ). Here the “E” part of the matching approach comes to our help. The “E” means
that the matching is not considered literally, but rather modulo equality, i. e. if there is an equality of some
term t with another term u (t = u) implied by the current formula and the term f t is its ground subterm,
then f u is also considered a ground subterm of the formula, even though it is not syntactically present in
it.

In our example since equality a = f 42 is implied by the formula and the term P a occurs in it, we consider
P (f 42 ) a ground subterm of the formula. Then the bound variable x can be matched with 42 and the
required instantiation P (f 42 ) −→ 42 < 0 can finally be produced.

For now, we have not yet elaborated what is considered “current formula” and what is considered an equality
“implied” by it. This is actually the exact part where one of the key differences between the traditional
E-matching and the approach implemented in TSMT is to be found.

3 Traditional E-matching, its advantages and limitations

Traditional E-matching is usually implemented within the DPLL/CDCL framework [1] of a typical SMT-
solver as part of the theory of quantifiers. It interleaves its work with the main DPLL core of the solver
that enumerates possible models of the propositional skeleton of the normalized formula represented as the
set of currently relevant CNF clauses (disjuncts). So the subterms of the formula are the literals of this
CNF representation and the implied equalities are, naturally, the equalities implied by the current model of
the propositional skeleton resulting from invocation of the decision procedure for the theory of equality and
uninterpreted functions (the congruence closure algorithm) and other theories currently activated in the
particular solver (such as linear arithmetic). The instantiations obtained during E-matching are normalized
into CNF disjuncts and added to the current CNF representation of the formula. The extended CNF is
passed to the DPLL core of the solver. The process is then repeated upon the next completed propagation
of the current candidate model of the propositional skeleton.

This approach, in particular, implies that compound predicates containing propositional connectives such
as ∧ or ∨ can not be part of triggers as the syntactic propositional structure of non-atomic predicates is not
preserved by CNF normalization. For this reason, triggers should not contain propositional connectives. To
support matching on several disjoint terms simultaneously special conjunctive triggers are allowed, but they
are matched independently regardless of the propositional structure. For instance, to match a conjunction
of two triggers e. g. P (f x ) and g y z we should find two terms of the corresponding form anywhere in the
formula, e. g. a subterm P (f (g a b)) occurring in some CNF literal is already sufficient to match both
triggers (giving substitutions x = g a b, y = a and z = b).

Also, the approach implies that terms obtained as a result of instantiation are also subsequently considered
subterms of the current formula and can be matched against to produce new instantiations. More specifically,
it implies that iterated instantiation is performed and so-called instantiation loops are entirely possible and
are notoriously hard to eliminate. Consider, for instance, the following property:

∀ x . (when f x: f x < f (f x )).

3



Here we use our notation for triggers ∀ x . (when T x: P x ) to denote that the quantified predicate P x is
instantiated upon matching the trigger T x. If a term f a occurs in some literal of the current formula, then
the property is instantiated with the substitution x = a and the conjunct f a < f (f a) is added to the
formula. Then the term f (f a) becomes a subterm of a literal, so on the next iteration the property can
be instantiated again with the substitution x = f a producing a new conjunct f (f a) < f (f (f a)). This
process is diverging as the instantiation can be repeated indefinitely. As the matching is performed modulo
equality, detecting possible instantiation loops in advance becomes especially hard and most state-of-the-art
SMT solver implement only very simple heuristics for that purpose that very often fail to detect the loops.

Possible instantiation loops and matching modulo current congruence relation that is implied by the latest
model of the propositional skeleton as well as the non-deterministic interleaving between the quantifier
instantiation and propositional model search make the behavior of quantifier instantiation in most modern
SMT solvers very hard to predict or even debug using specialized tools, such as Z3 axiom profiler. Before
turning to our alternative approach to E-matching, specifically crafted for use in interactive theorem provers,
we should note two most important advantages of traditional E-matching:

• The first is very straightforward definition of the congruence1 relation. The relation is fully known at
any time when instantiation is performed, although it can change between the rounds of instantiation
together with the current model. In particular, it means that whenever we match a term f x against,
say, a term f a given some implied equalities, say a = b and a = c, we do not have to attempt
enumerating the entire equivalence class of the term a to produce all possible matches modulo equality
i. e. f b and f c. Since if a = b is implied by he congruence relation, then f a = f b is also implied, the
same holds for c, and thus the only instantiation f a is sufficient to enumerate the entire equivalence
class of the substitution x = a. This significantly reduces the number of relevant instantiations and
boosts the efficiency of E-matching. For a moment, imagine we only know that a might be equal to
b, and don’t have a concrete congruence model. Then we cannot in general rely on such optimization.
This problem is somewhat relevant in TSTM.

• The second advantage is efficiency due to very tight coupling between the quantifier instantiation and
the DPLL/CDCL core of the solver. In particular, we don’t have to define when to stop our attempts
at quantifier instantiation, as the instantiation and satisfiability check steps are interleaved and once
we have enough instances to show the unsatisfiability we immediately get the verdict (and the proof).
This partially alleviates the problem with instantiation loops, but not completely as the loops often
make enumeration of instances diverge indefinitely without ever obtaining the relevant instantiations.
Yet in general, existing modern SMT solver implementations are quite efficient at generating relevant
instances and can in practice solve many realistic problems with several dozens of quantifiers. We
also note another limitation of interleaving between stasisfiability checking and matching: the poor
definition of counterexample. As there is no definite criterion for stopping the instantiation, the precise
formula that is satisfied by the counterexample model is unknown as it can potentially include a wide
range of possible instantiations. This prevents the use of counterexamples produced by SMT solvers
in many practical applications including interactive theorem proving.

4 Bounded E-matching in TSMT

TSMT implements a rather simple E-matching procedure that is tailored for predictability and flexibility
that are relevant for proof methods in interactive proof assistants. We can summarize three most important
characteristics of the TSMT approach as follows:

• E-matching is performed only once before the satisfiability check with SMT. This makes the coun-
terexample model much better defined, but requires all relevant instances to be generated in advance
without relying on any knowledge implied by the target formula. Also, this makes matching less

1Congruence relation is a special case of equality relation that is closed under
the congruence rule ∀ f x y . x = y −→ f x = f y.
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efficient in cases where only a small fraction of generated instances is later used to infer the unsatisfi-
ability.

• Since no congruence relation is available to the instantiation procedure, TSMT resorts to approxima-
tion. Namely, a non-conservative over-approximation (may-congruence) and an under-approximation
(must-congruence) are maintained to still support matching modulo equality. The approximations are
syntactic and are based on occurrences of the equality symbol inside the formula. All occurrences of
the equality symbol are treated as implied equalities in may-congruence, but only the equality sym-
bols occurring under no connective other than conjunction are treated as implied in must-congruence.
However, both the may- and must-congruence relations are always guaranteed to be closed under
congruence. Matching is performed modulo may-congruence, but the pruning of equivalent instantia-
tions is performed modulo must-congruence. Also, for the sake of efficiency, matching of any ground
term with a bound variable is not performed modulo equality. So E-matching is only performed when
matching against applications. Thus in the following example

(∀ x . (when P (f x ): P (f x ) −→ x < 0 )) ∧ (a = b ∨ a = c) ∧ a = d ∧ u = f a ∧ f b < f d ∧ P u

may-congruence includes equalities a = b = c = d and u = f a = f b = f c = f d, while must-
congruence includes only the equalities a = d and u = f a = f d, and therefore the resulting instances
would be P (f a) −→ a < 0 and P (f b) −→ b < 0. The instantiation P (f d) −→ d < 0 is not
considered because a = d is implied by must-congruence and therefore this instantiation is necessarily
equivalent to P (f a) −→ a < 0 and so is redundant. The instantiation P (f c) −→ c < 0 is not
considered because matching against bound variable x is not performed modulo equality and the
formula doesn’t directly contain subterm f c. However, matching against subterm f x (an application
of f to x ) is performed modulo may-congruence and since terms f a and f b occur in the formula and
are may-congruent to u, they are both considered relevant.

• The instantiation is in general not iterative, i. e. earlier obtained instances of some property are not
considered to be ground terms of the formula when matching against triggers of that property. Instead,
there is explicit ordering of properties so that instantiations of preceding properties are considered
ground terms when instantiating succeeding properties, but not vice versa. However, by itself this
approach may be somewhat over-restrictive. Consider the following property:

∀ x y z . (when g x (g y z ): g x (g y z ) = g (g x y) z ).

It allows us to prove the following identity:

g a (g b (g c d)) = g (g (g a b) c) d

by iteratively instantiating the property twice, first getting

g a︸︷︷︸
x

(g b︸︷︷︸
y

(g c d)︸ ︷︷ ︸
z

) = g (g a b) (g c d),

and then
g (g a b)︸ ︷︷ ︸

x

(g c︸︷︷︸
y

d︸︷︷︸
z

) = g (g (g a b) c) d.

Since the size of such subterms in the original formula may not be bounded in general, it’s desirable
to still be able to perform iterated instantiation. But if this instantiation never terminates, since we
do not interleave instantiation with satisfiability checks, we have no chance of ever proving the goal.
To avail some restricted form of iterated instantiation that can guarantee termination TSMT uses
bounded version of E-matching. Basically, it means that when matching a term modulo equality, the
size of the resulting matched term should in some sense not exceed the size of the initial outermost
matched term.
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Let’s consider the last point in more detail. Assume we are matching a trigger P (f x ). To initially match
against that trigger we must find an occurrence of an application of P to some argument. This application
is our initial outermost term. Let it be P u. Then we should match against the trigger f x modulo equality
to the term u. Let’s assume we found a term f b occurring in the formula and the equality f b = u is
implied by may-congruence. So to finally instantiate the property with x = b we have to check that size
(P (f b)) ≤ size (P u) for some fixed definition of the function size. We can already see that traditional
structural definition of size would be too restrictive here, but practical experience also showed that without
imposing any similar restriction the size of the formula can grow too quickly during E-matching even in
absence of instantiation loops (so that a lot of irrelevant, but exceedingly large instances are generated
during instantiation).

For this reason TSMT implements three special heuristics to define the size function in a practically suitable
way:

• First, the size is computed just as normal structural size of the term, but certain symbols can be
assigned size greater than 1. For instance, normally the size of the term P u is equal to size P + size
u = 1 + 1 = 2, but if we allow the size of symbol u to be equal to 2, then size (P u) = 1 + 2 = 3 ≥
size (P (f b)) = 1 + 1 + 1 = 3 and the desired instantiation is allowed. This heuristic is especially
relevant for functions specified by their definitions. For instance, if we have a definition u x ≡ f (g
x ), it is natural to assign the symbol u the size 2 so that the term u x has the same size as the term
f (g x ) for any x.

• Second, TSMT computes maximal sizes of terms modulo must-congruence. So if we have an equality
u x = f (g x ) implied by the must-congruence, then the size of the term u x is regarded to be not less
than (i. e. at least) the size of the term f (g x ).

• Third, TSMT increases the size of every term by a special margin value. The margin is computed
at definite explicitly specified points during instantiation and is equal to the maximal size of any
non-Boolean term occurring in the formula (including all previous instantiations) at that point. Also,
by default the margin is always computed at least on the original formula before starting any instan-
tiations. Then it can be recomputed on demand.

5 The tsmt method

Let’s now consider the main proof method of the TSMT toolset. The syntax of tsmt method is the follow-
ing:

tsmt
�� ��

� group bundle

�


group bundle

�
�n ×

���
�


group�
� [

��� group�
�

�


]
���

�


�
� !

���
�


group

fact�
� (

��� fact�
�

�


)
���

�
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Properties for instantiation are specified as a sequence of groups. Each group either consists of a single
property that is instantiated against the goal conjoined with all previously obtained instances, or a set
of properties for iterated instantiation. In case of iterated instantiation, the instances obtained during
instantiation of the properties in the group are conjoined with the formula and are fed again for instantiation
of the properties from the group. The process is repeated until no new instantiations can be obtained.
It’s important that the instantiation is always performed using bounded E-matching with sizes of terms
computed as described in the previous section. The must-congruence and the margin are not recomputed
during instantiation of properties from an iterated instantiation group. This allows for iterative instantiation
of some non-trivial property groups without the risk of looping. However, in this tutorial we do not describe
any precise termination criteria that can be used to detect possible looping. Currently TSMT itself does
not check or inforce termination within iterated instantiation groups. Nonetheless, a formal proof of one
such possible termination criterion is presented in session TSMT_Termination. In future there is a plan
to implement automatic splitting of interative property groups according to this conservative termination
criterion in a separate proof method or command, so that every resulting property instantiation group can
be made necessarily terminating. But since the criterion is still only an approximation there’s no plan to
prohibit possibly non-terminating instantiation groups altogether.

A subsequence of non-iterated single-property groups is specified as a fact , i. e. a standard reference to
a list of theorems in Isabelle. Thus a fact inside an application of tsmt method is treated as a sequence
of single-property groups. Unlike most proof methods in Isabelle, TSMT currently only accepts either
schematic rules with explicit triggers or rules fully instantiated using the attribute of . No meta or object
logic quantifiers (

∧
, ∀ , ∃ etc.), or schematic rules without explicitly specified triggers are allowed. All

quantification must be represented using only schematic variables (e. g. ?a). In future there is a plan to
implement automatic prenex normalization, skolemization and heuristical inference of triggers to provide
some support for nested quantifiers and usual Isabelle rules.

An iterated instantiation group is specified as a set of facts that is treated as the flat set of the corresponding
properties. The set comprising an iterated group is specified in parenthesis.

Every instantiation group can finish with a bang (!) designating a recomputation of the term size margin.
Also, for convenience it is possible to bundle a sequence of either non-iterated or iterated instantiation groups
together using square brackets ([ and ]) and repeat such group bundle an explicitly specified number of
times (n).

Once instantiation is finished, the resulting instances are ultimately supplied as chained facts to the smt
proof method 2.

6 TSMT by example

Here we present several examples to illustrate the use of tsmt proof method and some of its features that
are beyond simple transformations of the current goals and the proof context.

Let’s assume we have the following definitions:

definition "f x ≡ x"

definition "P x ≡ x < 0"

Now we want to prove the sample property illustrating the E-matching modulo must- and may-congruence
as was presented in Section 4. First we need to specify the property:

∀ x . (when P (f x ): P (f x ) −→ x < 0 ).

To do this we first prove the corresponding lemma:

lemma sample prop lemma: "P (f x ) =⇒ x < 0" unfolding f def P def .

2In reality TSMT partially re-implements smt method, but this only concerns model extraction and proof optimization
facilities presented further.
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6.1 when attribute

Now we need to turn this lemma into a property with explicit triggers. To do this TSMT provides a special
attribute when with the following syntax:

when
�� ��

� term�
� and

�� �
�


�
� or

�� �

�


�


This attribute provides a way to specify several sets of conjunctive triggers. Sets are separated by the or
keyword while the triggers in a set are separated by the and keyword. The special case of empty set of
triggers is treated as unconditional instantiation and is only applicable to ground properties that have no
occurrences of schematic variables. This way we can, for instance, unconditionally insert definitions of some
constants e. g. MAX BYTE ≡ 255. To attach our trigger P (f x ) to the lemma we transform it with the
when attribute:

lemmas sample prop = sample prop lemma[when "P (f x )"]

Now we can try to prove our sample property. Let’s first formulate it in the following way:
lemma "(a = b ∨ a = c) ∧ a = d ∧ u = f a ∧ f b < f d ∧ P u =⇒ b < 0"

We use the tsmt method to instantiate our sample property and prove the goal:

lemma "(a = b ∨ a = c) ∧ a = d ∧ u = f a ∧ f b < f d ∧ P u =⇒ b < 0"
apply (tsmt sample prop)
oops

6.2 Counterexample report

However, we can see that the application of the method is not successful. Upon unsuccessful invocation
tsmt method outputs a report on the results of instantiation and a reconstructed counterexample model.
The report includes the following parts:

• The goal state printed with counterexample model highlighting available upon mouse hover with the
key Ctrl pressed and held;

• The report on the number of instantiations for every property, which is shown separately for each
the set of conjunctive triggers. If the same property with the same set of conjunctive triggers occurs
several times in the sequence supplied to the tsmt method, the report distinguishes the corresponding
occurrences and their corresponding instantiations by the occurrence index (the “at n” part) counted
from 1 ;

• The propositions characterizing Skolem constants introduced during instantiation. More about intro-
duction of Skolem constants is explained in the further examples, namely in Subsection 6.8;

• The list of additional may-equalities propagated by theory-specific decision procedures in the SMT
solver. Since TSMT itself is only able to non-conservatively approximate may-congruence, the con-
crete congruence relation implied by the reconstructed counterexample model may contain additional
equalities that are not part of the may-approximation. This well illustrates the fact the the may-
approximation used by TSMT is non-conservative and that the E-matching implemented in a tradi-
tional way inside the solver could potentially provide more relevant instantiations by employing the
congruence returned by the combination of other theories implemented in the solver, such as linear
arithmetic. If such a theory-implied equality is needed to be accounted in the may-congruence to
produce the necessary instantiations, it can be supplied to TSMT by using a dummy hint property
instantiated with the additional equality. E. g. hint [of "f a = 0"].
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6.3 tlki command

Now let’s first ensure that our sample property was instantiated as expected. To do this we can use the tlki
command that is applicable in a proof state resulting from unsuccessful application of the tsmt method.
The command has the following syntax:

tlki
�� ��

� term�
� and

�� �
�


�
� or

�� �

�


�


The command selects from all resulting instantiations of all properties the ones that contain occurrences of
terms matching the patterns specified in the command. The command supports conjunctive and disjunctive
constraints, but not negations (e. g. excluding instances that match some patterns is not supported). Using
the command we can query instantiations containing e .g. the variable a. However, here we should also
note that unlike HOL (a Higher-Order Logic), the logic internally used by TSMT is essentially first-order.
This particularly implies that a function application e. g. g a b cannot be further split into currified
subterms such as g and g a. The command tlki looks for subterms, so a query P will not result in any
matching instances, because P does not occur as a separate first-order term, but only as a function in a full
(uncurrified) application of the form P x. However, if there are indeed actual higher-order occurrences of
the predicate P such as filter P [], then only the instances containing those higher-order occurences would
be recognized and matched by the tlki command. To look up any full application of the predicate P we
can use a wildcard as in P . The command also recognizes schematic variables such as ?a, but does not
perform non-linear matching i. e. the patterns = and ?a = ?a are treated similarly 3. This is of course in
contrast to TSMT itself that really supports arbitrary patterns, including non-linear ones. Let’s summarize
all of the above:

lemma "(a = b ∨ a = c) ∧ a = d ∧ u = f a ∧ f b < f d ∧ P u =⇒ b < 0"
apply (tsmt sample prop)
tlki "?a < ?a"
tlki "a" or "b"
tlki "P " and " < 0"
tlki "a"
oops

We can inspect the effects of various uses of the tlki command by looking at the output in the interactive
document inside Isabelle/jEdit.

Moreover, looking at both the output of the tlki command and the tsmt proof method itself we can notice
that in fact both of them highlight predicates and even display some values for subterms inside tooltips
available on mouse hovering with Ctrl pressed and held. Those values are extracted from the SMT solver
upon returning the counterexample model. Predicates that hold in the counterexample model are highlighted
in green and the predicates that do not hold are highlighted in red. The colors are actually the ones used for
Markdown list markup, so they are configurable in the Isabelle plugin options (Markdown bullet1 for truth
and Markdown bullet4 for falsehood). The model is consistent with all property instantiations obtained
by tsmt .

After looking closer at the provided counterexample model, we can notice that in fact in that model b > 0
and c < 0 (the precise numbers depend on the particular solver implementation). So we can now come up
with the correct formulation of the lemma and finally prove it with tsmt :

lemma "(a = b ∨ a = c) ∧ a = d ∧ u = f a ∧ f b < f d ∧ P u =⇒ b < 0 ∨ c < 0"
by (tsmt sample prop)

3Linear patterns contain no more than a single occurrence of any schematic variable, while non-linear patterns can generally
contain any number of occurrences of the same variable.

9



Let’s now move on to a more realistic example: Let’s assume we are verifying some program manipulating
fixed-size machine integers. Take their size to be 64 bits. First, let’s introduce abbreviation for an auxiliary
constant:

abbreviation "MAX ULONG ≡ 18446744073709551615"

Now let’s assume we want to prove the following useful property of integer division:

lemma "a < MAX ULONG div 2 =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: "64 word"
oops

First let’s try to prove it using existing capabilities provided by the HOL-Word library. We try to prove the
lemma with uint arith method for arithmetic on bounded integers and then using Sledgehammer.

lemma "a < MAX ULONG div 2 =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: "64 word"
apply uint arith
oops

lemma "a < MAX ULONG div 2 =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: "64 word"
sledgehammer [timeout=10 , provers="cvc4 z3"]
oops

Both attempts are unsuccessful. So now we switch to the TSMT-based supplementary theory
TSMT Tutorial .TSMT Bounded providing a locale with a relatively complete set of properties for deciding
satisfiability problems for ground formulas in the theory of bounded integers using existing SMT solvers.
The implementation currently provided by the ubound locale is compete for the following operations on
bounded integers: +, −, ∗ (linear multiplication by a constant),div, mod, +, uint (conversion from bounded
integer to a mathematical integer), and word of int (the reverse conversion, generally has wrap-around
semantics). To use the locale we instantiate it with the particular bounded integer type of interest and
provide the required constant value:

type synonym ulong = "64 word"
interpretation ubound "TYPE(64 )" MAX ULONG by unfold locales simp all

Now let’s consider some of the properties provided by the locale. The first and simplest property is just
another notation for the upper bound of our bounded integer type (ulong):

thm U

when : U = MAX ULONG

The next property formalizes the notion of integer division and remainder. Note that whenever we en-
counter either of the corresponding operators (functions) div or mod, we want to instantiate both of the
two properties unambiguously characterizing the integer division with remainder, so we need two sets of
triggers, one for the division and one for the remainder. To achieve this we use the or keyword in the when
attribute:

thm div modT

when a div numeral k or a mod numeral k:

numeral k ≤ U −→
uint (a div numeral k) ∗ numeral k + uint (a mod numeral k) = uint a

when a div numeral k or a mod numeral k:

0 < numeral k −→ numeral k ≤ U −→ uint (a mod numeral k) < numeral k

We also note that we only support integer division by a syntactic constant. The non-linear case of divi-
sion/multiplication by a variable is not fully supported by the solvers and even in some special cases, when
the variable is propagated with a constant value by congruence or linear arithmetic, although the solver can
be able to prove unsatisfiability, the proof may still fail to replay within Isabelle/HOL (because Isabelle’s
tactics for linear arithmetic are less flexible than those of SMT solvers). Therefore we restrict our reasoning
to syntactic constants that are represented in Isabelle using the numeral function that takes binary repre-
sentation of the number as argument. Other notations, such as decimal, octal an hexadecimal numbers are
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implemented in Isabelle as parse/print translations. For completeness sake we notice that the numbers 0
and 1 may also be represented in Isabelle using special polymorphic constants 0 :: ′a and 1 :: ′a and negative
numbers do not have special constant notation, so a number −2 is not recognized as constant, but as an
application of a prefix function (−) to the constant 2. Those details are also accounted for in the ubound
locale.

The next property formalizes multiplication of a bounded integer by a constant:

thm lin mul ′T

when a ∗ numeral k: uint a ∗ numeral k ≤ U −→ uint (a ∗ numeral k) = uint a ∗ numeral k

Actually, there are two such properties, one for multiplication with constant on the left (lin mulT ) and
one for the constant on the right (this lin mul ′T ). Also note the convention to give TSMT properties
names ending with T. This is just a convention introduced by analogy to Isabelle’s I for introduction, E for
elimination rules etc. The next property formalizes semantics of bounded integer constants:

thm numeralT

when numeral k: numeral k ≤ U −→ uint (numeral k) = numeral k

The remaining properties straightforwardly formalize the semantics of comparison (≤) between bounded
integers and the properties of the conversion of a bounded integer to a mathematical integer (int):

thm ltT

when a < b: (a < b) = (uint a < uint b)

thm uintT

when uint a: 0 ≤ uint a

when uint a: uint a ≤ U

Using the properties presented above we can immediately prove our target lemma:

lemma "a < MAX ULONG div 2 =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: ulong
by (tsmt div modT lin mul ′T numeralT ltT uintT U )

Now let’s test the capabilities of counterexample model extraction using this sample lemma. Pretend we
have the following wrong formulation of the lemma:

a < MAX ULONG =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 ).

Upon invoking the tsmt tactic with the same arguments as above for this modified lemma, we get the usual
counterexample report:

lemma "a < MAX ULONG =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: ulong
apply (tsmt div modT lin mul ′T numeralT ltT uintT U ) — Inspect in isabelle/jEdit
oops

However, upon closer inspection of the counterexample model we notice that it does not provide the desired
values for the variable a that satisfy the negated formula. Instead, we just see that the value of the term
a in the counterexample model is just itself, i .e. a. This is what TSMT produces by default when it is
not able to directly reconstruct the model of a term. The reason for this failure lies in the use of particular
underlying theories in the back-end SMT solver, more particularly, the QF UFLIA logic that is currently
picked by TSMT for all formulas regardless of their syntax or semantics. TSMT favours QF UFLIA because
of its full support provided both by major SMT solvers (primarily, Z3) and Isabelle proof reconstruction
implementation. In practice this most surely guarantees that any proof produced by the SMT solver
will be definitely replayed by the Isabelle inference kernel. Yet QF UFLIA only meaningfully interprets
mathematical integers and linear arithmetic operations on them as well as predicates. So an SMT solver
implementing a complete decision procedure for this logic will only produce concrete models for terms of
types int and bool. Since the variable a is of type ulong i. e. is not a mathematical integer, it does not
have an explicit model, hence the dummy value. However, the fact that TSMT preforms instantiation
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ahead of satisfiability check provides one crucial advantage: together with instantiation it produces a lot of
auxiliary terms (the subterms of the obtained instances) that complement the terms directly present in the
initial formula. These terms can be later employed to enhance the capabilities of the counterexample model
reconstruction.

6.4 tlkp command

More specifically, TSMT requests the model for all terms occurring in the resulting instantiations as well
as in the initial formula. Those models are accessible with the tlkp command, which has the following
syntax

tlkp
�� ��

� term�
� and

�� �
�


�
� or

�� �

�


�


entirely analogous to that of the tlki command. Unlike tlki though, it searches not for instantiations, but
for subterms occurring in them. The found matching subterms are printed in alphabetical order along with
the values returned by the solver. Here it’s important to note that for terms of types not interpreted in
the QF UFLIA logic, the solver returns Skolem constants instead of real values as it does not ascribe them
any particular interpretation. However, since QF UFLIA includes congruence closure, those constants still
provide some useful information about equalities between those values. Equal terms are assigned the same
Skolem constant. Since the constants returned by the solver are given quite arbitrary meaningless names,
TSMT replaces them with the shortest (least-size) representants from their corresponding equivalence classes
and shows us those representants instead. Therefore, not only the variable a itself, but also all other terms
equal to it in the produced counterexample will be assigned the default value a in the resulting model.
However, in our particular example it’s more important that our properties actually relate the bounded
integer numbers to the corresponding mathematical integers using the functions uint and word of int. Since
those functions occur in the resulting instantiations and even more so, our set of properties is designed in
a way that a term of the form uint x will inevitably appear in the instantiations for any bounded integer
term x occurring in the initial formula, we can be sure that any such term is related to the corresponding
integer term uint x by our property instances. Thus to obtain some useful hint on the value of the term a,
or any other bounded integer term occurring in the instantiated formula, we can request the value of the
corresponding integer term, e. g. uint a. Let’s do that:

lemma "a < MAX ULONG =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: ulong
apply (tsmt div modT lin mul ′T numeralT ltT uintT U )
tlkp "uint a" or "uint (a ∗ 2 )" or "uint (a div 2 )"
tlkp "a div 2 ∗ 2" or "a ∗ 2 div 2"
oops

6.5 Custom model extractors

In this output we see the value assigned to the uint a is equal to 9223372036854775808. Also, we can see
that the term uint (a ∗ 2 ) is assigned an arbitrary value (it is 0 for my implementation) not equal to 2 ∗
uint a, that reflects the fact that in our theory of bounded integers an overflow during integer multiplication
results in an undefined value. This way we can ultimately detect the flaw in our second erroneous formu-
lation. However, it would be more convenient if the tsmt method itself could automatically perform some
transformations of the extracted counterexample model to present us more helpful and readable output.
This is nontheless not entirely trivial since TSMT does not have an obvious way to know about all the
possible theories (such as bounded integer arithmetic) we might want to reason about in advance. For this
reason we decided to make the model extraction capabilities maximally flexible and equip the users with
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some basic means to define and plug in their own model transformations. The particular functions are de-
fined in the ML structure TSMT_Model and are not covered in this tutorial as this requires some additional
introduction to Isabelle/ML programming and some common practices of pure functional programming.
We suggest more advanced users to figure out the semantics of basic model extraction combinators directly
from their definitions as they are all relatively small. Here we only present the particular code for registering
the extractors for values of type ′a word (of which our type ulong is an instance):

setup 〈TSMT Model .add extractor type name 〈word 〉 ”reconstruct” (K extract word reconstruct)〉

setup 〈TSMT Model .add extractor type name 〈word 〉 ”lookup” (K extract word lookup)〉

The first extractor implements reconstruction of the bounded integer value x based on the value of the
corresponding term of the form uint x while the second extractor looks for the terms of the form word of int
y in the equivalence class of the term x. The extractors are applied in the reverse order relative to the order
of their registration, and the value returned by the first successful extractor is selected, so the extractor
based on word of int y is preferred in out setting. After registering the extractors, we can finally get the
nice reconstructed model we might originally hoped for:

lemma "a < MAX ULONG =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: ulong
apply (tsmt div modT lin mul ′T numeralT ltT uintT U ) — Try it out in Isabelle/jEdit!
tlkp "a div 2 ∗ 2" or "a ∗ 2 div 2"
oops

6.6 tsmt add/del attribute

There is, however, an inherent inconvenience in the need to provide the sequence of instantiated properties
explicitly at every invocation of the tsmt method. This can be addressed by first defining a named fact
comprising the carefully designed set of properties e. g.:

lemmas bounded = div modT lin mul ′T numeralT ltT uintT U
lemma "a < MAX ULONG div 2 =⇒ uint (a div 2 ∗ 2 ) ≤ uint (a ∗ 2 div 2 )" for a b :: ulong

by (tsmt bounded)

Nonetheless, this approach has at least two disadvantages:

• First, it’s impossible to extend the previously defined fact afterwards, when some additional properties
become relevant for further proofs. This is especially inconvenient in the context of incremental
property development, where some previously established properties are applied to prove the later,
derived and often more complicated ones.

• Second, there is a small somewhat nasty detail about the Isabell’s treatment of facts defined using
the lemma command: The original names of the theorems comprising the fact are not preserved.
This prevents some nice features from being based on such fact bundles, for instance name-annotated
statistics output for unsuccessful proof attempts as well as automated proof optimization with filtering
of relevant theorems, while reporting their original names in the output.

For this reason TSMT toolset provides a special set of attributes with the following syntax:

tsmt
�� � �

�add
�� �

�


name�
�

�


�
�del

�� ��
�name

�


�


The form add name1 . . . namen adds the theorem being modified by the attribute to the named property
groups with the specified names. If some of the groups don’t previously exist, it also creates them. The
add token can be omitted, so by default the tsmt attribute is treated similarly to tsmt add. The del form
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without name deletes the theorem being modified from all previously created property groups, while the
form del name1 . . . namen deletes the theorem only from the specified groups. The order of the properties
in the group is the order in which they are added to the group.

Let’s now consider one another aspect of defining and using the properties to prove propositions with tsmt .
First let’s assume we defined the following theorem group using the tsmt attribute:

lemmas [tsmt bounded ′] = word of intT uintT (2 )

Later we proved and extended the property group with the following additional lemmas:

lemmas [tsmt bounded ′] =
leT subT addT zero one numeralT lin mulT lin mul ′T lin mul0T lin mul0 ′T lin mul1T lin mul1 ′T U

Now we want to prove a sample property about bounded integers with those properties. The proposition
is well-understood and is a typical minimal example of a property of bounded integers from the decidable
fragment, where the set of properties defined above is complete. However, upon trying to apply the tsmt
method we get an unexpected result:

lemma simple example:
"MAX ULONG ≤ a =⇒ 1 ∗ a − MAX ULONG = 0" for a :: ulong
apply (tsmt bounded ′)
tlkp "uint " tlkp "word of int (uint )"
oops

Let’s inspect what has just happened in some more detail. Our intent in approaching the proof was to estab-
lish the bijection between the bounded terms occurring in the formula and their mathematical unbounded
counterparts. A crucial part in establishing this bijeciton is instantiation of the property word of intT
(when uint a: word of int (uint a) = a) for every unbounded integer counterpart of the form uint x. How-
ever, to successfully perform this instantiation as intended we need to have all the necessary terms of this
form to occur in the current formula. However, if we instantiate the property word of intT before instan-
tiating the properties that establish the correspondence for all the operations occurring in the formula,
we might not yet have all the necessary terms. In our example the initial formula does not contain any
subterm of the form uint x at all, all of them should be added by instantiating the preceding properties. So
the property word of intT should be placed after the properties characterizing the operations (subT , addT
etc.). Thus the reason of this failure is the wrong ordering of properties in our group. For this reason, the
TSMT Tutorial .TSMT Bounded theory defines the correctly-ordered group ubound . However, if we want
to care somewhat less about the order of property instantiations we might also use an iterated instantiation
group as follows:

lemma simple example: "MAX ULONG ≤ a =⇒ 1 ∗ a − MAX ULONG = 0" for a :: ulong
by (tsmt (bounded ′)) — Note the parenthesis

Here we should warn that as TSMT does not enforce any termination criterion on such groups, and thus
can potentially loop. Therefore, carefully crafted (and, particularly, well-ordered) property groups are more
favourable in general.

Now we move to some different kind of example lemmas, namely the theory of interpreted sets to demonstrate
other important features provided by TSMT. The theory of interpreted sets, presented, for instance, in
[3] includes the following most basic operations on sets: ∪, ∩, − (the set difference as it is denoted in
Isabelle/HOL), {·} (the singleton set), as well as the constant {} (an empty set), and a predicate ∈. The
paper actually presents a complete set of properties that can be used to obtain the corresponding decision
procedure for the formulas in the theory using the tools provided by Isabelle and TSMT. Let’s present here
most of the resulting TSMT properties that we ended up with after optimizing somewhat the set of rules
presented in the paper for the context of trigger-based quantifier instantiation:

lemma emptyT [when "u" and "{} :: ′a set"]: "u /∈ {}" by simp
lemma member splitT [when "t" and "u"]: "u ∈ t ∨ u /∈ t" by simp
lemma UnT [when "u ∈ s ∪ t"]: "u ∈ s ∪ t ←→ u ∈ s ∨ u ∈ t" using Un iff .
lemma IntT [when "u ∈ s ∩ t"]: "u ∈ s ∩ t ←→ u ∈ s ∧ u ∈ t" using Int iff .
lemma DiffT [when "u ∈ s − t"]: "u ∈ s − t ←→ u ∈ s ∧ u /∈ t" using Diff iff .
lemma singletonT [when "u ∈ {v}"]: "u ∈ {v} ←→ u = v" using singleton iff .
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6.7 Skolemization of existential quantifiers

The presented properties are mostly just typical TSMT properties with triggers that do not demonstrate
any especially interesting proof patterns. The only notable thing here is the use of variable triggers e. .g
"u", which correspond to instantiation of the property with every term of the corresponding type (e. g. a
set or an element of a set) occurring in the current formula (the set of terms available after instantiating
the preceding properties). However, one last property presented in the paper requires some more attention.
We can represent it in HOL as follows:

s 6= t =⇒ ∃w . w ∈ s ∧ w /∈ t ∨ w /∈ s ∧ w ∈ t.

Here we have a problem: a nested existential quantifier that is not supported by TSMT. Although nested
quantifiers are not directly supported by TSMT, which currently only supports schematic quantification,
from general mathematical logic we know that there’s a process transforming any formula in first-order logic
to a normal form without any nested quantifiers: It’s prenex normalization followed by Skolemization. The
precise rules of prenex normlization are widely known and can be found in many general sources. Same is
true for Skolemization, so here we only mention that as in our case we actually already have a prenex normal
form with two implicit universal quantifiers ∀ s and ∀ t, to eliminate the existentially quantified variable w
we introduce a function of two variables (say, s and t) that would return an arbitrary element satisfying
the body of the eliminated existential quantifier. Let’s denote the Skolem function we and use the Hilbert
epsilon operator (denoted as SOME . in Isabelle/HOL) to obtain the required arbitrary value:

definition "we s t ≡ SOME x . x ∈ s − t ∨ x ∈ t − s"

Now we are ready to formulate and prove the final property from the minimal theory of interpreted sets:

lemma set eqT [when "s = t", tsmt sets]:
"s 6= t =⇒ we s t ∈ s ∧ we s t /∈ t ∨ we s t /∈ s ∧ we s t ∈ t"
unfolding we def Diff iff by auto (smt someI )+

lemmas [tsmt sets] = member splitT emptyT UnT IntT DiffT singletonT

We note that our choice of the name for the Skolem function we is not entirely arbitrary. The convention of
starting Skolem functions with the symbol w is currently relied upon in TSMT when inventing the names of
the corresponding Skolem variables occurring in the automatically constructed optimized proofs, that are
presented and discussed further in this tutorial (Subsection 6.11). For now, let’s use our resulting property
group sets to prove two example propositions from the paper:

lemma "x ∈ {1 :: int} ∪ {2} =⇒ x ≤ 2" by (tsmt sets)
lemma "x ∈ {1 :: int} ∪ {2} =⇒ x ≤ 2" by (tsmt (sets))
lemma "4 < u =⇒ u < 6 =⇒ u ∈ x ∪ y =⇒ x ∩ {5 :: int} 6= {5} =⇒ z = {} =⇒ y − z 6= {}"

by (tsmt sets)
lemma "4 < u =⇒ u < 6 =⇒ u ∈ x ∪ y =⇒ x ∩ {5 :: int} 6= {5} =⇒ z = {} =⇒ y − z 6= {}"

by (tsmt (sets))

Here we once again emphasize the need for careful ordering of the instantiated properties (or the use of
iterated instantiation, which terminates for this property system as is shown in the paper). We also note that
we can install the counterexample model extractor for the theory of interpreted sets using our pre-defined
function provided in the TSMT_Model ML structure:

setup 〈TSMT Model .add extractor type name 〈set 〉 ”fold” TSMT Model .set extractor 〉

Here’s an example use:

lemma "3 < u =⇒ u < 6 =⇒ u ∈ x ∪ y =⇒ x ∩ {5 :: int} 6= {5} =⇒ z = {} =⇒ y − z 6= {}"
apply (tsmt sets) — Inspect interactively in Isabelle/jEdit
oops

The extractor is based on exhaustively probing the model value for every predicate of the form ∈ s (for
a set s) occurring in the resulting instantiated formula. The terms t such that the predicate t ∈ s holds in
the counterexample model are included in the reconstructed model for the set s.

To elaborate a bit more on the use of Skolem functions, let’s consider a slightly more complicated proposition:
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typedef object = "UNIV :: nat set" morphisms to nat object by simp
typedef container = "UNIV :: nat set" morphisms to nat container by simp
typedef name = "UNIV :: nat set" morphisms to nat name by simp
datatype entity =

Object (object : object) |
Container (container : container)

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

oops

We have several ways to prove this proposition with TSMT. First, if we attempt to prove it using Sledge-
hammer, we obtain an efficient proof:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

by (smt image mono sup mono)

If we want to replay this proof within TSMT, we need to augment the properties image mono and sup mono
with explicit triggers as currently TSMT does not implement automatic trigger inference:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

by
(tsmt

image mono[when "?A ⊆ ?B" and "?f ` ?A"]
sup mono[where ? ′a=" ′a set", when "?a ⊆ ?c" and "?b ⊆ ?d"])

Even though in this example we were able to harness existing properties such as image mono, it may be
more reliable to ensure we have a relatively complete set of properties to reason about certain classes of
propositions, because the suitable auxiliary lemmas such as image mono are not guaranteed to be present
in Isabelle libraries for every proposition we might need to prove. For the image operation (`) we suggest
the following set of properties:

definition "wi x f s ≡ SOME y . y ∈ s ∧ x = f y"
lemma imageT [when "x ∈ f ` s", tsmt sets]: "x ∈ f ` s =⇒ wi x f s ∈ s ∧ x = f (wi x f s)"

unfolding wi def by auto (smt someI )+
lemma imageIT [when "y ∈ s" and "f y" and "f ` s", tsmt sets]:
"y ∈ s =⇒ f y ∈ f ` s"
using imageI .

We also add two properties for the (⊂) operation (⊆):

definition "ws s t ≡ SOME x . x ∈ s − t"
lemma subsetIT [when "s ⊆ t", tsmt sets]:
"¬ s ⊆ t =⇒ ws s t ∈ s ∧ ws s t /∈ t"
unfolding ws def subset iff by auto (smt someI )+

lemma subsetT [when "s ⊆ t" and "x ∈ s", tsmt sets]:
"s ⊆ t =⇒ x ∈ s =⇒ x ∈ t"
using set mp .

We already notice how two of the four additional properties we defined involve Skolem functions. And
indeed, when we try to gradually prove our lemma by iteratively inspecting the resulting counterexample
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model and adding the suitable missing properties on each step, we can notice how the terms involved
in the resulting instances are becoming larger and larger due to growing nesting of the Skolem function
applications:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (tsmt subsetIT UnT imageT subsetT )
— Inspect the model in jEdit. Notice the model of objects ′ is {wi (ws entities ′ entities) Object objects ′}, i. e.

involves two allications of Skolem functions ws and wi

oops

6.8 Skolem variables and tsmt skolem attribute

To alleviate this problem TSMT provides the ability to introduce auxiliary Skolem variables during instan-
tiation of properties involving Skolem functions. The variables simply abbreviate concrete applications of
Skolem functions occurring in the resulting instantiations. Since the Skolem variables are introduced auto-
matically, their names follow a particular naming convention. They all have names of the form wlab n m,
where n is a unique number identifying the property containing the corresponding application of the Skolem
function wlab, and the number m identifies the particular instance of this property (simply increasing index
starting from 0 ). To enable the introduction of Skolem variables for applications of a Skolem function, the
definition of that function should be transformed with the tsmt skolem attribute:

declare ws def [tsmt skolem] wi def [tsmt skolem]

Now we can finish our proof of the example lemma:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (tsmt subsetIT UnT imageT subsetT )
— Notice the Skolem variable wi 7 0 in the model of objects ′

oops
lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

by (tsmt subsetIT UnT imageT subsetT imageIT )

6.9 tsmt def and tsmt size attributes

A small note on the lemma we’ve just proved: Its premises contain an equality entities = Object ` objects
∪ Container ` containers. Since the equality is present in the original formulation on the lemma, it is part
of the initial must-congruence and this in particular implies that size size of the term entities is considered
to be not less than that of the term Object ` objects ∪ Container ` containers. For that reason a trigger x
∈ s ∪ t can match on the term x ∈ entities modulo congruence. However, if we had the constants objects,
containers and entities as parts of the context (e. g. in the context of a locale), we might want to ensure the
size of the term entities is always considered to be at least the same as the size of the term Object ` objects
∪ Container ` containers. Although we could add the property entities = Object ` objects ∪ Container `
containers (with empty triggers) somewhere close the beginning of the instantiation group and follow the
group in the tsmt instantiation sequence by the size margin re-computation (denoted as “!”), this would
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also increase the size of all other terms in the formula. For a more targeted control of the size, TSMT has
two special attributes: tsmt def that is applied to the definitions of the form a ≡ b and “tsmt size c n” that
is used directly and ensures the size of the constant c to be at least n. Both attributes can only increase the
size of the constant. If the size is already set to a greater value, the attributes do nothing. We can apply
the attributes in the following way:

locale sets =
fixes objects :: "object set"

and containers :: "container set"
begin
definition [tsmt def ]: "entities ≡ Object ` objects ∪ Container ` containers"

or

declare [[tsmt size "entities" 7 ]]

After our successful attempt at careful interactive proof of our property with manual inspection of the
produced counterexamples let’s now attempt a more effortless approach to proving the lemma. Let’s try to
directly use our set of properties sets:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (tsmt sets)
oops

The first attempt failed. The second attempt at trying the iterated instantiation would also fail, because
the instantiation would loop (we suggest the reader to figure out the precise reason for this). We can apply
bounded instantiation deep enough to finally prove the lemma without elaborating the particular properties
involved:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

by (tsmt 3×sets)

Yet as we can see this proof leads to a significant overhead stemming from excessive instantiation of irrelevant
properties. We would like a way to somehow quickly identify the relevant properties automatically. Actually,
often, there’s such a way. So here we suggest another approach to significantly reduce the proof effort when
using TSMT:

6.10 Applying sledgehammer in a failing TSMT proof state

In fact, as TSMT performs all instantiation internally and produces the set of resulting instances that are
actually valid Isabelle theorems, it’s possible to use these instances to help sledgehammer automatically
identify the relevant properties to finish the proof. We suggest the following sledgehammer configuration
for that purpose:
sledgehammer params [provers="cvc4 z3 spass e remote vampire", dont preplay , dont try0 , no isar proofs]

The instantiations produced by TSMT are bound to the fact named this available in the context of a failed
proof. Therefore we can apply sledgehammer in this state as follows:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
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containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (tsmt sets) using this sledgehammer [timeout=10 ] (sets)
oops

sledgehammer helps figuring out the relevant properties, so we append them to the end of our instantiation
sequence:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (tsmt sets sets(4 ,8 ,9 ,11 )) oops

This does not lead us directly to a successful proof, but we can repeat the attempt:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (tsmt sets sets(4 ,8 ,9 ,11 )) using this sledgehammer [timeout=10 ] (sets)
oops

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

by (tsmt sets sets(4 ,8 ,9 ,11 ) sets(9 ))

We finally obtained a working and relatively efficient proof. However, in case of more complicated lemmas the
resulting proofs obtained in this manner may be still not efficient enough, especially in a typical “interactive
proof document” setting of the Isabelle/PIDE workflow that implies multiple repetitions of the same proof
upon every slight change made to the active document. For that reason TSMT provides a special proof
method that automatically optimizes the resulting successful proof attempt based on the capabilities of
modern SMT solvers, namely on the extraction of unsatisfiable cores.

6.11 Optimizing successful proofs with topt method

The topt method accepts exactly the same syntax as the basic tsmt method. It also supports counterexample
model extraction and binds the this fact exactly the same way, so it can actually be used in place of tsmt
to obtain the initial successful proof by iterative refinement with sledgehammer. The difference is that it
does not actually prove the goal in case the proof attempt is successful. Instead, it generates a structured
Isabell/Isar proof of the goal that ends in an application of the tsmt method with an optimized property
sequence:

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

apply (topt sets sets(4 ,8 ,9 ,11 ) sets(9 ))
oops

The user can either use the entire structured optimized proof by clicking on the output of the topt method
or only the last optimized application of tsmt by clicking on the last by command:
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lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

— After clicking somewhere in the proof and removing the initial topt invocation
proof atomize?

assume
"entities = Object ` objects ∪ Container ` containers"
"entities ′ = Object ` objects ′ ∪ Container ` containers ′"

"objects ′ ⊆ objects"
"containers ′ ⊆ containers"

thus "entities ′ ⊆ entities"
by (tsmt subsetIT sets(4 , 8 , 11 ) imageIT )

qed

lemma
"entities = Object ` objects ∪ Container ` containers =⇒
entities ′ = Object ` objects ′ ∪ Container ` containers ′ =⇒
objects ′ ⊆ objects =⇒
containers ′ ⊆ containers =⇒
entities ′ ⊆ entities"

— After clicking on the by command and removing the initial topt invocation
by (tsmt subsetIT sets(4 , 8 , 11 ) imageIT )

6.12 topt configuration options

The proof optimization implemented by topt method can be configured by the following options that can
be used to make the resulting proof either shorter, more efficient or more readable:

• minimize core, on by default. This option enables additional local minimization of the unsatisfiable
core returned by the SMT solver. Since the unsatisfiable core is inherently ambiguous as the formula
can have several alternative proofs and the solver always relies only on the first one available that it
happened to obtain, it can be reasonable to try to optimize the resulting core further by successively
trying to exclude every assumption included in the core one by one. This additional optimization
is enabled by this option. It should be noted that it might still not obtain the shortest possible
proof, because an entirely different shorter proof can still exist that includes some other assumptions
(instantiations) that were not initially included in the core.

• max insts, equals 0 by default. The topt method is not only able to filter out some irrelevant properties,
but also to replace some properties with their corresponding relevant instantiations altogether. This
is especially relevant for proofs involving instantiations of many properties that can still be too slow
even after restricting the property sequence only to the relevant ones. This option puts a limit on the
number of relevant instances that can be used in place of the original property. As a special case this
option can be used to avoid instantiation altogether and obtain an entirely ground proof of the goal
e. g.
using [[max insts=3 ]] apply (topt sets sets(4 ,8 ,9 ,11 ) sets(9 ))
would give
define w s w i w i0 where

"ws ≡ ws entities ′ entities"

"w i ≡ wi ws Container containers ′"

"w i0 ≡ wi ws Object objects ′"

ultimately show "entities ′ ⊆ entities"

by
(tsmt

subsetIT [of "entities ′" "entities"]
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UnT [of "ws" "Object ` objects ′" "Container ` containers ′"]

UnT [of "ws" "Object ` objects" "Container ` containers"]

imageT [of "ws" "Object" "objects ′"] imageT [of "ws" "Container" "containers ′"]

subsetT [of "objects ′" "objects" "w i0"]

subsetT [of "containers ′" "containers" "w i"] imageIT [of "w i0" "objects" "Object"]

imageIT [of "w i" "containers" "Container"])

Here it’s important to note that this feature relies on the conventional naming of the Skolem functions
starting with w that is replaced by w to avoid conflicts in the Skolem variable definitions.

• merge refs, on by default. The option enables merging of adjacent properties from the same group e. g.
sets into a single fact reference with the corresponding theorem selection e. g. sets(4 ,8 ,11 ). Turning
this option off enables output of each property separately with the corresponding original name e. g.
UnT imageT subsetT thus making the proof longer, but arguably a bit more understandable.

• drop whens, on by default. This option disables splitting of the resulting properties by their disjunctive
triggers. For instance if only instantiations produced by some of the disjunctive triggers are relevant,
the resulting proof will contain a special trigger selection attribute when n1 . . . nk that selects only
the specified triggers by their corresponding indexes. This attribute causes removal of these additional
selection attributes, making the proofs shorter, but also potentially slower.

7 Replaying TSMT proofs with Metis

Since TSMT implements quantifier instantiation and thus transforms the original goals by supplementing
them with additional implied facts, the resulting goals may often be discharged not only by SMT solvers, but
also by other decision procedures, including the internal decision procedures implemented within Isabelle
itself, such as Metis and Argo. While our current experience with Argo unfortunately uncovered a number
of blocker bugs that prevent its use in too many cases, the Metis solver turned out to be able to efficiently
discharge many of the resulting goals. For this reason, we implemented an additional tmetis proof method
that is fully analogous to tsmt except that is applies Metis as the final proof step. To augment Metis
with some very limited background knowledge about linear arithmetic, tmetis attempts to prove pairwise
disequalities between all explicit numerical constants occurring in the resulting instantiated formula and
adds those disequalities to the facts supplied to metis.

8 More examples and planned features

The features presented in this tutorial are sufficient to prove some practically relevant lemmas from the
formalization of a small hierarchical storage model available in the file ../PicoMROSL.thy. We also recom-
mend the reader to get familiar with the Sledgehammer tool by referring to its official documentation. In
future we plan to implement at least the following extensions to TSMT:

• Automatic prenex normalization, Skolem function introduction and trigger inference. This should
enable the use of many existing lemmas and nested quantified propositions as TSMT properties without
the need of explicit definition of Skolem functions and corresponding triggers for every property;

• Automated ordering and grouping of properties based on a conservative termination criterion. This
should make possible a fully automated reconstruction of TSMT proofs from sledgehammer proofs
with high success rate (i. e. not guaranteed to succeed in general due to differences between TSMT
and quantifier instantiation algorithms used in the solvers).

end
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