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Abstract. Most widely used, general-purpose operating systems are
built on top of monolithic kernels to achieve maximum performance.
These monolithic kernels are written in the C/C++ programming lan-
guage primarily and they may exceed one million lines of code in size even
without optional extensions or loadable kernel modules such as device
drivers and file systems. In addition, they evolve rapidly for supporting
new functionality and due to continuous optimizations and elimination
of defects. Since operating systems and, in turn, applications strongly de-
pend on monolithic kernels, requirements for their functionality, security,
reliability and performance are ones of the highest. Currently used ap-
proaches to software quality assurance help to reveal quite many defects
in monolithic kernels, but none of them aims at detecting all violations
of checked requirements and alongside providing guarantees that target
programs always operate correctly. This paper presents a new method
that is based on the software verification technique and that enables
thorough checking and finding hard-to-detect faults in various versions
of monolithic kernels. One of its key features is the possibility to avoid
considerable efforts for configuring tools and developing specifications to
obtain valuable verification results while one still can steadily improve
their quality. We implemented the suggested method within software ver-
ification framework Klever and evaluated it on subsystems of the Linux
monolithic kernel.

Keywords: Formal Verification, Software Verification, Deductive Verification,
Formal Specification, Program Decomposition, Environment Model, Operating
System, Monolithic Kernel.

1 Introduction

An architecture of most widely used, general-purpose operating system kernels
is either completely or mostly monolithic [1]. Like tiny microkernels, monolithic
kernels usually implement such main facilities as scheduling, memory manage-
ment and interprocess communication. Besides, unless specially configured, they
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also have a built-in support for low-level network protocols, security modules,
servers or monitors, the cryptography API, underlying abstraction layers for
different device classes and so on. One can further extend a set of monolithic
kernel facilities by enabling various optional extensions or loadable kernel mod-
ules such as device drivers and file systems. There may be available thousands
of such extensions but as a rule each monolithic kernel of a particular operating
system instance has several dozens of them at a time. It is possible to add new
extensions and remove existing ones either by recompiling monolithic kernels or
loading and unloading them dynamically.

The paper focuses on verification of monolithic kernels without extensions,
since many other works already address the latter [2–7]. Below for brevity we
refer to monolithic kernels without extensions as monolithic kernels.

Sizes of typical monolithic kernels may exceed one million lines of code in the
C/C++ programming language primarily. In addition, they evolve rapidly for
supporting new functionality, e.g. to support new device classes or a new security
model, and due to continuous improvements like optimizations and elimination
of defects. For instance, from 2009 to 2016 the size of the Linux monolithic kernel
grew in more than 2 times and now it exceeds 1.4 million lines of code [8].

During the boot process a monolithic kernel is loaded into memory and then
it operates completely in the same address space having a full direct access to
all its internal data structures as well as to all hardware. This is the main reason
why the given architecture allows reaching maximum performance. As a huge
drawback, even minor faults in monolithic kernels can lead to an incorrect op-
eration, data corruption and considerable performance degradation of operating
system components including monolithic kernel extensions, and, in turn, appli-
cations. Critical faults can lead to privilege escalations and confidential data
breaches.

Challenge. Operating systems based on monolithic kernels operate on billions
of devices1. That makes monolithic kernels one of the most critical software in
computer systems, thus, requirements for their functionality, security, reliabil-
ity and performance are ones of the highestrequirements for their functionality,
security, reliability and performance are ones of the highest.

To identify defects in monolithic kernels developers and quality assurance
engineers from different organizations use various methods and tools like code
review, testing and static analysis [9]. However, none of these approaches aims
at detecting all violations of checked requirements and providing some guar-
antees that target programs always operate correctly. Considering a very high
importance of monolithic kernels, industry is eager for additional software qual-
ity assurance methods and tools. In some cases, e.g. for checking safety-critical
computer systems based on monolithic kernels, certification authorities can spec-
ify quite rigorous requirements for such the tools [10]. However, there is a lack

1 https://www.computerworld.com/article/3050931/microsoft-windows/windows-
comes-up-third-in-os-clash-two-years-early.html

2



of available tools and evaluations of their applicability to fulfill such the require-
ments.

Below we present various formal verification methods and tools that meet
the challenge.

Related Work. Deductive verification tends to prove the complete formal cor-
rectness of target programs. There are several quite successful projects devoted
to deductive verification of microkernels [11–13]. Few works address deductive
verification of small parts of special purpose and monolithic kernels [14–16]. In
both cases authors show that it is necessary to do an enormous amount of man-
ual work to develop models and specifications. Therefore, it is extremely hard to
use existing specification languages, methods and tools of deductive verification
for large-scale verification of target monolithic kernels since their typical sizes
exceed ones of microkernels and special purpose kernels by 2-3 orders. More-
over, monolithic kernels constantly evolve that hinders deductive verification
especially if yielded proofs are complex and rely on many factors.

Many researchers suggest using special programming languages and even
special hardware for designing more safe and secure software, in particular oper-
ating system kernels [17–20]. This substantially simplifies formal verification but
these approaches can not help for formal verification of existing general-purpose
monolithic kernels.

Promising and outstanding results in formal verification of software have been
achieved using software model checking [21] which today is often called software
verification [22]. This technique provides a higher level of automation relatively
to deductive verification. Software verification already has many successful ap-
plications regarding operating system monolithic kernels and their extensions
including:

– Verification of operating system device drivers [2–7].
– Verification of network protocols [23].
– Verification of file systems [24, 25].
– Verification of a Linux kernel memory management subsystem [26].

Contribution. Thus far researchers focus on verification of specific subsystems
of monolithic kernels providing appropriate specifications and tools that do not
suit for other subsystems. Moreover, nobody takes care of reusing and updating
tool configurations and specifications for different versions of monolithic kernels.

This paper presents a new method that is based on the software verification
technique and that enables thorough checking and finding hard-to-detect faults
for various versions of monolithic kernels. The method allows avoiding consid-
erable efforts for configuring tools and for developing specifications to obtain
valuable verification results by means of:

– Verification of monolithic kernel subsystems together with extensions that
use their interfaces.
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– Reusing specifications developed for verification of monolithic kernel exten-
sions.

– A high level of automatization of routine operations at various steps of the
software verification workflow.

Besides, the suggested method remains room for improving verification re-
sults quality, i.e. for reducing the number of false alarms and the number of
missed faults of various kinds. Primarily one can achieve that by means of devel-
oping specifications. Sometimes it may be necessary to adjust tool configurations.

Paper Outline. Before proceeding to the suggested method we give more de-
tails on monolithic kernel internals and on capabilities of software verification
methods and tools (Section 2). In Section 3 we present a new method for ver-
ification of monolithic kernels. Section 4 describes the implementation of the
suggested method. Its evaluation on subsystems of the Linux monolithic kernel
is given in Section 5. Section 6 presents conclusions and future works.

2 Background

Both operating system monolithic kernels and software verification methods and
tools are extremely wide areas of research and development. In this section we
consider only those aspects that are vital for verification of operating system
monolithic kernels.

2.1 Operating System Monolithic Kernels

Traditionally one considers monolithic kernels as several abstraction layers which
often are referred to as subsystems. An actual implementation of these layers
often does not fit well their abstract representations. Monolithic kernel subsys-
tems can be tangled in an intricate way since this may be more efficient from
the practical point of view and easier for development.

In this study we rely on the fact that target monolithic kernels are developed
over decades and their current code bases are already mature and well organized.
In particular, most likely developers already put closely related functionalities,
that form subsystems, into corresponding groups of source files and perhaps
directories. For instance, some group of source files constitutes a memory man-
agement subsystem, other source files are responsible for a particular network
protocol, all source files from some directory form a subsystem for supporting
some class of devices, and so on.

Each monolithic kernel subsystem has an API decorating implementation
details. For instance, top-level subsystems define system calls that applications
invoke for using facilities of monolithic kernels and underlying hardware. As
a rule, at the bottom there is a hardware abstraction layer that introduces a
uniform API for various devices for the rest monolithic kernel subsystems and
extensions.
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Middle-level subsystems implement either a number of interfaces, such as
helper functions used in other subsystems and extensions, or event-driven APIs
by registering event handling callbacks. Such events include software and hard-
ware interrupts. Also, callbacks can be invoked in more implicit ways, e.g. on
expiration of timers or during execution of queued works. It is worth noting that
monolithic kernel extensions are similar to middle-level subsystems, but their
APIs and interrelations are usually simpler than subsystem ones. In particular,
mechanisms for defining, registering and unregistering callbacks in subsystems
are the same as in extensions [27].

In order to allocate required resources and to subscribe for handling events,
monolithic kernels initialize all subsystems in an appropriate order on loading
into memory. This process is not so straightforward due to the necessity to ensure
that event handlers are registered in advance to invocation:

– There are subsystems or some parts of subsystems to be initialized first of
all. This is the case for, say, memory management and scheduling. Usually
monolithic kernels perform such initialization in startup functions such as
start kernel in the Linux kernel and init386 in the FreeBSD kernel.

– Most subsystems and subsystem parts are initialized in accordance with
their levels. For instance, the Linux monolithic kernel of version 3.14 has 19
such the levels2. Initialization of its subsystem for supporting PCI devices
leverages 6 of them starting from registering a PCI bus and finishing by
registering file attributes for PCI devices. Monolithic kernels provide different
mechanisms to set initialization levels for particular subsystem interfaces
There are dedicated macros often, e.g.:
• in the Linux kernel macros postcore initcall, arch initcall, subsys initcall,

etc. take corresponding initialization function names, e.g.:

postcore_initcall(pci_driver_init);

arch_initcall(acpi_pci_init);

subsys_initcall(pci_slot_init);

fs_initcall_sync(pci_apply_final_quirks);

device_initcall(pci_proc_init);

late_initcall(pci_resource_alignment_sysfs_init);

• in the BSD based kernels such as FreeBSD, NetBSD and Darwin there is
macro SYSINIT that takes corresponding initialization function names,
their levels and orders within levels, e.g.:

enum sysinit_sub_id {

...

SI_SUB_VNET_PRELINK = 0x1E00000, /* vnet init before modules */

...

SI_SUB_VNET = 0x21E0000, /* vnet 0 */

...

SI_SUB_VNET_DONE = 0xdc00000, /* vnet registration complete */

2 One can see files include/linux/init.h and init/main.c for details.
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...

}

enum sysinit_elem_order {

SI_ORDER_FIRST = 0x0000000, /* first*/

SI_ORDER_SECOND = 0x0000001, /* second*/

...

SI_ORDER_ANY = 0xfffffff /* last*/

};

SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, ...);

SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, ...);

SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, ...);

– Some subsystems trigger initialization of parts of other subsystems or even
their complete initialization. Usually this is the case when subsystems depend
on each other.

Monolithic kernels invoke callbacks when corresponding events happen after
completing initialization and even during it. In turn, callbacks can refer to inter-
faces provided by other subsystems, e.g. for allocating and freeing resources or
for acquiring and releasing locks. Each event handling execution path can pass
through many subsystems and even several extensions.

Monolithic kernel subsystems operate until either normal or abnormal op-
erating system reboot unlike extensions that can be loaded and unloaded dy-
namically. In particular, subsystems do not need a final clean-up, e.g. to free
resources and release locks, at the end of their work.

There are many diverse requirements for monolithic kernel subsystems. In
this paper, we do not consider functional requirements since one has to spend
too much efforts on developing models and specifications to check them. As for
non-functional requirements, monolithic kernel subsystems should invoke used
interfaces properly and obey generic rules of safe programming such as an ab-
sence of null pointer dereferences or buffer overflows.

2.2 Software Verification Methods and Tools

The method suggested in the following section is based upon methods for soft-
ware verification [21, 22]. In the previous work [28] we already described an
interface, features and requirements of modern software verification tools like
SLAM [5] and CPAchecker [29]. The fundamental limitation of these tools is the
possibility to check programs of thousands or dozens of thousands of lines of
code in size at most depending on the number of conditions. Thus, one needs
to decompose monolithic kernels into moderate-sized subsystems to verify them
independently.

An experience of leveraging software verification tools demonstrated the ne-
cessity of modeling a target program environment in a rather accurate way [2–7,
27, 30]. Software verification tools may produce false alarms at checking spuri-
ous scenarios of interactions between the program and its environment and miss
faults if some paths possible during the program execution are forbidden by the
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environment model. Regarding monolithic kernel subsystems, their environment
mainly consists of other subsystems, various extensions, hardware and appli-
cations. The environment model should initialize subsystems, invoke registered
subsystem callbacks and provide models of used interfaces which implementa-
tions are out of verification scope but which significantly influence verification
results.

Software verification tools are capable to check satisfiability of safety and
liveness properties. Sometimes these properties explicitly match requirements,
e.g. this is the case for memory safety. Otherwise, it is necessary to formulate
specific requirements as a property supported by tools. For instance, one repre-
sents rules of correct usage of a particular API as a reachability problem usually.
Software verification tool can both miss faults and obtain false alarms in case of
imprecise formalization of requirements.

In contrast to methods and tools for deductive verification [11–16], the soft-
ware verification technique does not require developing complete models and
formal specifications covering all functional and high-level requirements. It is
possible to detect faults of particular kinds as well as to prove correctness un-
der certain assumptions even having inaccurate models and specifications. This
stems from the following factors:

– One does not prove the complete formal correctness of target programs but
searches for violations of quite widespread non-functional requirements using
software verification methods and tools. We gave examples of such require-
ments for operating system monolithic kernels at the end of the previous
subsection.

– Software verification tools automatically build models for all functions from
target programs. These models are accurate enough for checking specified
requirements.

– Software verification tools make certain assumptions either by default or
being configured appropriately. For instance, tools can ignore the inline as-
sembler. One should not expect many related problems since in monolithic
kernels there are not many such statements and they are concentrated in
architecture dependent subsystems [8]. Otherwise, one can develop corre-
sponding models in the C/C++ programming language.

– Researches suggest new software verification methods and optimize the im-
plementation of existing ones. Thanks to that today tools can automati-
cally build accurate models and check satisfiability of specified properties
for medium-sized programs using reasonable computational resources.

2.3 Klever Software Verification Framework

It is hardly possible to use software verification tools out of the box for industrial
programs [28]. Fortunately, there are higher-level methods and frameworks that
considerably automate the entire software verification workflow [2–7, 28]. Most
existing software verification frameworks target specific software like operating
system device drivers [2–7]. In contrast, Klever is an extensible framework for
checking various GNU C programs by design [28].
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At the moment Klever is capable to thoroughly check Linux device drivers.
It includes a set of specifications allowing both to generate rather accurate en-
vironment models for invoking most popular device driver APIs and to check
various requirements. These specifications are also applicable at verification of
the Linux monolithic kernel after slight customizations.

3 Verification of Monolithic Kernels

Following subsections consider adaptations of the common method for verifi-
cation of GNU C programs [28] that we suggest for verification of monolithic
kernels. Because of the limited space, we do not provide details like formats and
samples of tool configurations and specifications.

3.1 Decomposing Monolithic Kernels into Subsystems

We suggest treating all source files from specified directories built into a mono-
lithic kernel for a specified architecture and configuration as subsystems. This
simplifies updates of tool configurations for new versions of monolithic kernels
since developers rarely modify directories. Provided source files of different sub-
systems belong to the same directory, one should divide them between these
subsystems explicitly.

The approach allows obtaining quite compact subsystems. If some subsystem
is too complex for software verification tools at checking particular requirements,
we suggest doing an additional decomposition using the same approach. One
can expect several hundreds of subsystems for each monolithic kernel assuming
a mean size of a subsystem to be about several thousands of lines of code.

However, our assumption that developers strictly follow separation of con-
cerns is wrong sometimes. For instance, the same source file can contain func-
tionalities of several subsystems. It is possible to extend a decomposition level
further, e.g. by enabling enumeration of particular subsystem functions. But one
has to provide and maintain different function name lists for various versions of
monolithic kernels because developers change function names rather frequently.
To avoid such difficulties we suggest considering source files shared by different
subsystems indivisibly.

3.2 Verifying Monolithic Kernel Subsystems with Extensions

We suggest verifying monolithic kernel subsystems together with extensions that
use their interfaces to avoid development of specifications considering corre-
sponding interaction scenarios. There are several related assumptions:

– There should be environment model specifications for selected extensions to
cover execution paths invoking target subsystem interfaces.

– Extensions should use subsystem interfaces correctly. Correctness of exten-
sions is within the scope of other works [2–7].
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One can select extensions using subsystem interfaces in different ways. If
there is enough time and computational resources, we suggest taking all relevant
extensions since this helps to cover all possible interaction scenarios. Otherwise,
we propose to follow the algorithm:

– Obtain function coverage when verifying target monolithic kernel subsystems
without extensions.

– Determine what subsystem functions are not covered and which of them are
invoked by extensions.

– Obtain a minimal number of extensions invoking all uncovered subsystem
functions or gather extensions in a greedy way.

3.3 Generating Environment Models for Monolithic Kernel
Subsystems

We base the approach for generating environment models for monolithic kernel
subsystems on the method we developed for modeling environment for Linux
device drivers [27]. The method suggests specifying callbacks using a special
domain specific language (DSL). Also, it has a hardcoded algorithm for initial-
izing and exiting extensions occurring after loading and before unloading them
respectively. Using environment model specifications and target extensions an
environment model generator produces an extra C code to be verified together
with a source code of these extensions.

To cope with monolithic kernel subsystems that have more complex APIs
we suggest extending the existing method to support a number of DSLs for
developing specifications and a corresponding number of environment model
generators. These generators should prepare a final environment model as a
parallel composition of its fragments generated independently for each DSL and
the target program. Below we consider 3 such DSLs and environment model
generators for monolithic kernel subsystems.

Modeling Initialization of Monolithic Kernel Subsystems and Exten-
sions. It is vital to perform accurate initialization since during it resources are
allocated and callbacks are registered. We suggest supporting a corresponding
environment generator for specifying initialization of monolithic kernel subsys-
tems and extensions as well as exit of extensions. It allows setting:

– Initialization levels and sublevels together with mechanisms to relate them
with concrete initialization functions without referencing names of the latter.

– Initialization levels and sublevels for concrete initialization functions using
their names (this is necessary for invoking those initialization functions for
which initialization levels and sublevels are not set within target subsystems).

– Mechanisms to obtain exit functions for extensions without referencing names
of the latter.

An environment model generator responsible for initializing subsystem and
extensions and for exiting extensions:
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– Obtains all initialization and exit functions defined by target subsystems and
extensions with help of specified mechanisms.

– Properly orders obtained functions together with ones specified explicitly in
accordance with respective levels and sublevels.

– Generates C code invoking initialization and exit functions in the calculated
order taking into account failures of initialization functions if necessary3.

Modeling Invocations of Monolithic Kernel Subsystem Callbacks. Re-
garding callbacks we propose to use the same approach to environment model
generation for monolithic kernel subsystems as applied for verification of their
extensions [27]. Often subsystems implement the same event-driven APIs as ex-
tensions, so, one can reuse existing environment model specifications.

Modeling Remaining Environment of Monolithic Kernel Subsystems.
Sometimes nothing suggested above helps to cover subsystem interfaces, e.g.
when they are invoked just by other subsystems or not invoked anywhere in a
target monolithic kernel or considered extensions. To cover them we suggest to
manually extend an intermediate environment model which is prepared at the
previous stage since it is hard to suggest appropriate top-level specifications.

It may be necessary to develop models of interfaces invoked by target sub-
systems but which implementations are out of verification scope unless existing
environment model specifications contain them. For these models we suggest
using the C programming language with special expressions. The most impor-
tant such expressions are functions which return non-determined values of their
return value types. By using them one can force software verification tools to
consider various paths, e.g. when functions both succeed and fail.

3.4 Checking Requirements for Monolithic Kernel Subsystems

We suggest checking those requirements for monolithic kernel subsystems that
are vital but do not require much time for developing corresponding specifica-
tions. These requirements include memory safety and relevant for subsystems
rules of correct usage of monolithic kernel subsystem interfaces that are tra-
ditionally checked at verification of monolithic kernel extensions [2–7]. Unlike
extensions one should not check that subsystems perform a final clean up since
they can not be unloaded on demand.

3.5 Improving Verification Results

Generated environment models and requirement specifications may be impre-
cise. As we discussed in the previous section it can lead to missed faults, which

3 For instance, for the Linux kernel initialization functions can fail and return error
codes. In this case, the environment model generator should not invoke exit functions
if so, but can try to invoke failed initialization functions again.
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is extremely undesirable, and false alarms substantially complicating verification
results analysis. In addition, considering subsystems with or without extensions
may be too hard for software verification tools at checking particular require-
ments. To improve verification results we suggest:

– To adjust tool configurations describing target subsystems and extensions
verified together with them.

– To refine environment model and requirement specifications step by step
until one obtains a reasonable coverage and an acceptable number of false
alarms.

This process can be hardly formalized. There are strict deadlines usually, so one
has to balance time spent on setting tool configurations, developing specifica-
tions, verification results analysis and preparing final accounts.

4 Implementation

We implemented the suggested method within the Klever software verification
framework [28]. The implementation employs all existing Klever components and
specifications intended for verification of Linux device drivers. At the moment
it aims at thorough checking subsystems of the Linux monolithic kernel but it
can be extended for other monolithic kernels as well.

For decomposing the Linux monolithic kernel into subsystems we allowed
specifying directories and particular source files belonging to subsystems. Also,
we extended a Klever component responsible for program decomposition so that
it automatically triggers required build actions and filters out all required sub-
system source files. Moreover, this component started to generate program frag-
ments incorporating both subsystems and device drivers together.

We considerably extended the corresponding Klever component to gener-
ate environment models for monolithic kernels. The new version supports ad-
ditional kinds of specification DSLs and generates corresponding environment
model parts on their basis. In addition, we implemented a common environment
model specification taking care of multilevel initialization for Linux monolithic
kernel subsystems. We allowed disabling checking a final state since monolithic
kernel subsystems do not need that.

5 Evaluation

For evaluating the suggested method we considered 3 subsystems of the Linux
monolithic kernel that was built for architecture x86 64 and configuration allmod-
config (Table 1). We limited the number of target subsystems as we did a thor-
ough analysis of results to investigate various aspects of verification quality while
analyzing only found violations does not take much time.
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All experiments were conducted on OpenStack virtual machines each with
8 virtual cores of the Intel Xeon E312xx (Sandy Bridge) CPU, 64 GB of mem-
ory and Debian 9 (Stretch) on board4. We used Klever Git branch kernel-
verification [28], CPAchecker Subversion revision trunk:27583 [29] and, unless
particularly pointed, those specifications and tool configurations that are used
in Klever by default. In particular, CPAchecker could spend 15 minutes of CPU
time and 10 GB of memory for checking each subsystem against any require-
ments specification. Earlier in subsection 2.2 we discussed major limitations of
CPAchecker and other software verification tools as well as how these tools op-
erate.

Table 1. Target Linux monolithic kernel subsystems (numbers of source files and lines
of code are given for Linux 3.14)

Subsystem name Directory Source files Lines of code

Character Devices Support (CHAR) drivers/char 5 4194
General-Purpose I/O (GPIO) drivers/gpio 6 4472
Terminal Devices Support (TTY ) drivers/tty 11 12129

5.1 Verification of Linux Monolithic Kernel Subsystems

To confirm that the suggested method meets one of its major expectations we
verified target subsystems for all major versions of the Linux kernel issued from
2013, April 28 (version 3.9) to 2015, February 8 (version 3.19). This period
covers almost 2 years of development and includes 11 major versions. Table 2
provides generic information on changes made in target Linux monolithic kernel
subsystems.

Table 2. Changes of target Linux monolithic kernel subsystems (percentages were
calculated relatively Linux 3.14)

Subsystem name Source files added/removed Lines of code added/removed

CHAR +0/-1 (+0%/-20%) +950/-712 (+23%/-17%)
GPIO +2/-3 (+33%/-50%) +5074/-3079 (+113%/-69%)
TTY +1/-0 (+9%/-0%) +4012/-3221 (+33%/-27%)

To launch Klever we used the same tool configuration and specifications for
all treated versions of the Linux kernel. To get better function coverage and to
get rid of annoying false alarms we made following improvements in environment
model specifications that are specific for Linux monolithic kernel subsystems:

4 http://www.bigdataopenlab.ru/about.html
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– Explicitly specify initialization levels for two initialization functions from the
CHAR and TTY subsystems.

– Develop a model for function panic that abnormally terminates kernel oper-
ation.

– Place memory allocated in environment models into global lists to avoid
detection of memory leaks after termination of subsystems.

3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19
40%

60%

80%

100%

Linux kernel version

F
u
n
ct

io
n

co
v
er

a
g
e

CHAR

GPIO

TTY

Fig. 1. Function coverage for target subsystems of the Linux monolithic kernel

Function Coverage. Fig. 1 demonstrates function coverage for target sub-
systems of the Linux monolithic kernel. One can see that for CHAR and TTY
subsystems function coverage changes rather slightly except for Linux 3.11. In
this version developers added to the TTY subsystem a new source file defining
specific semaphores but there were no users of an introduced API at that time
yet.

Function coverage for the GPIO subsystem changes more often and more
significantly because this subsystem is relatively new. It was introduced in 20085

while other target subsystems have been developing from the nineties of the
previous century. One can see that this correlates with numbers of added and
removed source files and lines of code from Table 2.

Fig. 2 demonstrates reasons why remaining functions of target subsystems of
the Linux monolithic kernel are not covered. In the most cases it is necessary to
develop additional environment model specifications to invoke specific callbacks.

5 https://lkml.org/lkml/2008/1/5/137
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Verification Results. We verified all target subsystems of the mentioned ver-
sions of the Linux kernel against the most relevant requirement specifications,
namely, generic:memory, linux:{alloc:{irq, spinlock}, arch:io, drivers:base:{class,
dma-mapping}, fs:sysfs, kernel:locking:{mutex, rwlock, spinlock}, kernel:{module,
rcu:update:lock}} (12 specifications in total).

Fig. 3 shows a dependency of obtained verdicts for each Linux kernel version.
The Safe verdict means that the software verification tool was able to prove the
absence of violations of checked requirements. The Unsafe verdict corresponds to
a violation. The Unknown verdict means that the software verification tool was
not able to issue either Safe or Unsafe, e.g. because of it needed more CPU time
than it had. All subsystems were verified with different numbers of extensions
depending on a Linux kernel version. To place plots for all subsystems in one
figure, we provide average numbers of verdicts by dividing absolute ones on
corresponding numbers of extensions.

One can see that CHAR and TTY subsystems are quite stable while there
are several jumps on plots for the GPIO subsystem. Here there are additional
reasons of these deviations than for function coverage at Fig. 1. For instance,
in Linux 3.17 and Linux 3.18 developers violated requirements specification
linux:kernel:locking:spinlock that was detected by Klever.

We could not find any faults for CHAR and TTY subsystems that confirms
their maturity. For the TTY subsystem about 62% of false alarms are relevant to
the subsystem itself and 38% ones are relevant to device drivers verified together
with it. All false alarms issued for the subsystem are due to inaccurate specifi-
cations. For the GPIO subsystem about 51% of Unsafes correspond to faults.
One fault is in the subsystem. We already mentioned it, it was introduced in
Linux 3.17 and fixed in Linux 3.19. Other 2 faults were detected at error paths
in device drivers and they still exist in the newest versions of the Linux kernel.
Regarding GPIO 59% of false alarms are for the subsystem and 41% are for
device drivers. To get rid of about 86% of false alarms in the subsystem it is
necessary to fix existing specifications and to develop new ones. Remaining 14%
ones were reported due to inaccuracies of CPAchecker.

There are several directions of development to improve verification results.
The first direction is an improvement of specifications to mitigate false alarms.
The second one is to simplify target subsystems by replacing complex functions
with models or by splitting them into several subsystems for independent veri-
fication. This can help obtaining more Safes and Unsafes instead of Unknowns
(timeouts).

5.2 Finding Known Faults in Linux Monolithic Kernel Subsystems

We tried to find already fixed faults in target Linux monolithic kernel subsystems
for estimating the suggested method ability to perform thorough checking. We
analyzed manually all commits except merging ones made to the mainline Git
repository6 between tags v3.9 and v3.19 to source files of target subsystems. In

6 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

15



total 488 commits matched these conditions. Among them we chose commits that
fix violations of requirements for which there are corresponding specifications in
Klever. There were fixes of 8 such faults (Table 3).

Table 3. Faults fixed in target Linux monolithic kernel subsystems

Subsystem name Commit hash Requirements specification Detection status

CHAR
08d2d00b291e generic:memory 7 (another architecture)
b5325a02aa84 generic:memory 3 (extra source files)
61c6375d5523 generic:memory 7 (another configuration)

GPIO
e9595f84a627 generic:memory 3 (extra source files)
00acc3dc2480 linux:kernel:locking:spinlock 3

TTY
b216df538481 generic:memory 7 (needs specification)
07584d4a356e linux:kernel:module 3 (dead code)
1d9e689c934b generic:memory 7 (too complex)

A fault fixed in commit 00acc3dc2480 was already considered in the pre-
vious subsection. Klever could find it without additional efforts. We analyzed
target subsystems together with those parts of other subsystems that define
several helper functions to detect faults fixed in commits b5325a02aa84 and
e9595f84a627. Klever could not find a fault fixed in commit 07584d4a356e since
it proved that corresponding code is dead.

To reveal a fault fixed in commit 08d2d00b291e it is necessary to verify the
CHAR subsystem for architecture x86 32. For a fault fixed in commit 61c6375d5523
a corresponding source file is built for another configuration rather than for
allmodconfig. For detecting a fault fixed in commit b216df538481 one should
develop an environment model specification for work queues. We could not find
out a fault fixed in commit 1d9e689c934b because of it turned out to be too
complex for the software verification tool.

6 Conclusion

Researchers and proof engineers verify formally either special purpose operating
system kernels or relatively small parts of large monolithic kernels that form a
basis of most widely used, general-purpose operating systems. Therefore, there is
still a huge gap between one of the most critical software used by billions of people
and formal verification methods and tools. As a step towards closing this gap,
this paper introduces a new method that enables rather thorough checking and
finding hard-to-detect faults for various versions of monolithic kernels without
requiring considerable efforts for configuring tools and developing specifications.
Also, the method allows improving verification results step by step.

Evaluation of the suggested method on subsystems of the Linux monolithic
kernel showed that the same tool configurations and specifications are suitable
for verifying subsystems of a large range of Linux kernel versions. We could

16



detect one fault in one of target subsystems, but there is room for improvement
primarily by means of developing specifications. Also, we found 2 unknown faults
in device drivers analyzed together with target subsystems. Regarding known
faults, we were able to reveal 4 of 8 of them after slight adjustments. For finding
the remaining faults it is necessary to perform verification for other architecture
and configuration and to develop an additional environment model specification.

We encourage researchers to adapt the suggested method and its implementa-
tion for verification of other operating system monolithic kernels. But one should
clearly realize that it will be necessary to spend quite a long time for developing
models and specifications unless some of them were developed in advance like
for operating system device drivers [2–7].
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Pichardie, D., Pierce, B.C., Pollack, R., Tolmach, A.: A verified information-flow
architecture. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL’14, New York, NY, USA, ACM
(2014) 165–178

18. Leino, K.R.M.: Developing verified programs with Dafny. In: Proceedings of the
2013 International Conference on Software Engineering. ICSE’13, Piscataway, NJ,
USA, IEEE Press (2013) 1488–1490

19. DeHon, A., Karel, B., Knight, Jr., T.F., Malecha, G., Montagu, B., Morisset, R.,
Morrisett, G., Pierce, B.C., Pollack, R., Ray, S., Shivers, O., Smith, J.M., Sullivan,
G.: Preliminary design of the SAFE platform. In: Proceedings of the 6th Workshop
on Programming Languages and Operating Systems. PLOS’11, New York, NY,
USA, ACM (2011) 1–5

20. Yang, J., Hawblitzel, C.: Safe to the last instruction: Automated verification of a
type-safe operating system. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI’10, New York, NY,
USA, ACM (2010) 99–110

21. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4)
(October 2009) 1–54

22. Beyer, D.: Software verification with validation of results (Report on SV-COMP
2017). In Legay, A., Margaria, T., eds.: Proceedings of the 23rd International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’17, Berlin, Heidelberg, Springer (2017) 331–349

23. Musuvathi, M., Engler, D.R.: Model checking large network protocol implementa-
tions. In: Proceedings of the 1st Conference on Symposium on Networked Systems
Design and Implementation. NSDI’04, Berkeley, CA, USA, USENIX Association
(2004) 12–12
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