Line data Source code
1 : #ifndef _LINUX_MM_H
2 : #define _LINUX_MM_H
3 :
4 : #include <linux/errno.h>
5 :
6 : #ifdef __KERNEL__
7 :
8 : #include <linux/gfp.h>
9 : #include <linux/list.h>
10 : #include <linux/mmzone.h>
11 : #include <linux/rbtree.h>
12 : #include <linux/prio_tree.h>
13 : #include <linux/debug_locks.h>
14 : #include <linux/mm_types.h>
15 :
16 : struct mempolicy;
17 : struct anon_vma;
18 : struct file_ra_state;
19 : struct user_struct;
20 : struct writeback_control;
21 : struct rlimit;
22 :
23 : #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 : extern unsigned long max_mapnr;
25 : #endif
26 :
27 : extern unsigned long num_physpages;
28 : extern unsigned long totalram_pages;
29 : extern void * high_memory;
30 : extern int page_cluster;
31 :
32 : #ifdef CONFIG_SYSCTL
33 : extern int sysctl_legacy_va_layout;
34 : #else
35 : #define sysctl_legacy_va_layout 0
36 : #endif
37 :
38 : #include <asm/page.h>
39 : #include <asm/pgtable.h>
40 : #include <asm/processor.h>
41 :
42 : #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 :
44 : /* to align the pointer to the (next) page boundary */
45 : #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46 :
47 : /*
48 : * Linux kernel virtual memory manager primitives.
49 : * The idea being to have a "virtual" mm in the same way
50 : * we have a virtual fs - giving a cleaner interface to the
51 : * mm details, and allowing different kinds of memory mappings
52 : * (from shared memory to executable loading to arbitrary
53 : * mmap() functions).
54 : */
55 :
56 : extern struct kmem_cache *vm_area_cachep;
57 :
58 : #ifndef CONFIG_MMU
59 : extern struct rb_root nommu_region_tree;
60 : extern struct rw_semaphore nommu_region_sem;
61 :
62 : extern unsigned int kobjsize(const void *objp);
63 : #endif
64 :
65 : /*
66 : * vm_flags in vm_area_struct, see mm_types.h.
67 : */
68 : #define VM_READ 0x00000001 /* currently active flags */
69 : #define VM_WRITE 0x00000002
70 : #define VM_EXEC 0x00000004
71 : #define VM_SHARED 0x00000008
72 :
73 : /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 : #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
75 : #define VM_MAYWRITE 0x00000020
76 : #define VM_MAYEXEC 0x00000040
77 : #define VM_MAYSHARE 0x00000080
78 :
79 : #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
80 : #define VM_GROWSUP 0x00000200
81 : #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
82 : #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
83 :
84 : #define VM_EXECUTABLE 0x00001000
85 : #define VM_LOCKED 0x00002000
86 : #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
87 :
88 : /* Used by sys_madvise() */
89 : #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
90 : #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
91 :
92 : #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
93 : #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
94 : #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
95 : #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
96 : #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
97 : #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
98 : #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
99 : #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
100 : #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
101 : #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
102 :
103 : #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
104 : #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
105 : #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
106 : #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
107 : #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
108 :
109 : #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110 : #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
111 : #endif
112 :
113 : #ifdef CONFIG_STACK_GROWSUP
114 : #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
115 : #else
116 : #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 : #endif
118 :
119 : #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120 : #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121 : #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122 : #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123 : #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
124 :
125 : /*
126 : * special vmas that are non-mergable, non-mlock()able
127 : */
128 : #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
129 :
130 : /*
131 : * mapping from the currently active vm_flags protection bits (the
132 : * low four bits) to a page protection mask..
133 : */
134 : extern pgprot_t protection_map[16];
135 :
136 : #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
137 : #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138 : #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
139 :
140 : /*
141 : * This interface is used by x86 PAT code to identify a pfn mapping that is
142 : * linear over entire vma. This is to optimize PAT code that deals with
143 : * marking the physical region with a particular prot. This is not for generic
144 : * mm use. Note also that this check will not work if the pfn mapping is
145 : * linear for a vma starting at physical address 0. In which case PAT code
146 : * falls back to slow path of reserving physical range page by page.
147 : */
148 : static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
149 : {
150 : return (vma->vm_flags & VM_PFN_AT_MMAP);
151 : }
152 :
153 : static inline int is_pfn_mapping(struct vm_area_struct *vma)
154 : {
155 : return (vma->vm_flags & VM_PFNMAP);
156 : }
157 1 :
158 : /*
159 : * vm_fault is filled by the the pagefault handler and passed to the vma's
160 : * ->fault function. The vma's ->fault is responsible for returning a bitmask
161 : * of VM_FAULT_xxx flags that give details about how the fault was handled.
162 : *
163 : * pgoff should be used in favour of virtual_address, if possible. If pgoff
164 : * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
165 : * mapping support.
166 : */
167 : struct vm_fault {
168 : unsigned int flags; /* FAULT_FLAG_xxx flags */
169 : pgoff_t pgoff; /* Logical page offset based on vma */
170 : void __user *virtual_address; /* Faulting virtual address */
171 :
172 : struct page *page; /* ->fault handlers should return a
173 : * page here, unless VM_FAULT_NOPAGE
174 1 : * is set (which is also implied by
175 : * VM_FAULT_ERROR).
176 : */
177 : };
178 :
179 : /*
180 : * These are the virtual MM functions - opening of an area, closing and
181 : * unmapping it (needed to keep files on disk up-to-date etc), pointer
182 : * to the functions called when a no-page or a wp-page exception occurs.
183 : */
184 : struct vm_operations_struct {
185 : void (*open)(struct vm_area_struct * area);
186 : void (*close)(struct vm_area_struct * area);
187 : int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
188 :
189 : /* notification that a previously read-only page is about to become
190 : * writable, if an error is returned it will cause a SIGBUS */
191 : int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
192 :
193 : /* called by access_process_vm when get_user_pages() fails, typically
194 : * for use by special VMAs that can switch between memory and hardware
195 : */
196 : int (*access)(struct vm_area_struct *vma, unsigned long addr,
197 : void *buf, int len, int write);
198 : #ifdef CONFIG_NUMA
199 : /*
200 : * set_policy() op must add a reference to any non-NULL @new mempolicy
201 : * to hold the policy upon return. Caller should pass NULL @new to
202 : * remove a policy and fall back to surrounding context--i.e. do not
203 : * install a MPOL_DEFAULT policy, nor the task or system default
204 : * mempolicy.
205 : */
206 : int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
207 :
208 : /*
209 : * get_policy() op must add reference [mpol_get()] to any policy at
210 : * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
211 : * in mm/mempolicy.c will do this automatically.
212 : * get_policy() must NOT add a ref if the policy at (vma,addr) is not
213 : * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
214 : * If no [shared/vma] mempolicy exists at the addr, get_policy() op
215 : * must return NULL--i.e., do not "fallback" to task or system default
216 : * policy.
217 : */
218 : struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
219 : unsigned long addr);
220 : int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
221 : const nodemask_t *to, unsigned long flags);
222 : #endif
223 : };
224 :
225 : struct mmu_gather;
226 : struct inode;
227 :
228 : #define page_private(page) ((page)->private)
229 : #define set_page_private(page, v) ((page)->private = (v))
230 :
231 : /*
232 : * FIXME: take this include out, include page-flags.h in
233 : * files which need it (119 of them)
234 : */
235 : #include <linux/page-flags.h>
236 :
237 : /*
238 : * Methods to modify the page usage count.
239 : *
240 : * What counts for a page usage:
241 : * - cache mapping (page->mapping)
242 : * - private data (page->private)
243 : * - page mapped in a task's page tables, each mapping
244 : * is counted separately
245 : *
246 : * Also, many kernel routines increase the page count before a critical
247 : * routine so they can be sure the page doesn't go away from under them.
248 : */
249 :
250 : /*
251 : * Drop a ref, return true if the refcount fell to zero (the page has no users)
252 : */
253 : static inline int put_page_testzero(struct page *page)
254 : {
255 : VM_BUG_ON(atomic_read(&page->_count) == 0);
256 : return atomic_dec_and_test(&page->_count);
257 : }
258 :
259 : /*
260 : * Try to grab a ref unless the page has a refcount of zero, return false if
261 : * that is the case.
262 : */
263 : static inline int get_page_unless_zero(struct page *page)
264 : {
265 : return atomic_inc_not_zero(&page->_count);
266 : }
267 :
268 : /* Support for virtually mapped pages */
269 : struct page *vmalloc_to_page(const void *addr);
270 : unsigned long vmalloc_to_pfn(const void *addr);
271 :
272 : /*
273 : * Determine if an address is within the vmalloc range
274 : *
275 : * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
276 : * is no special casing required.
277 : */
278 : static inline int is_vmalloc_addr(const void *x)
279 : {
280 : #ifdef CONFIG_MMU
281 : unsigned long addr = (unsigned long)x;
282 :
283 : return addr >= VMALLOC_START && addr < VMALLOC_END;
284 : #else
285 : return 0;
286 : #endif
287 : }
288 : #ifdef CONFIG_MMU
289 : extern int is_vmalloc_or_module_addr(const void *x);
290 : #else
291 : static inline int is_vmalloc_or_module_addr(const void *x)
292 : {
293 : return 0;
294 : }
295 : #endif
296 :
297 : static inline struct page *compound_head(struct page *page)
298 : {
299 : if (unlikely(PageTail(page)))
300 : return page->first_page;
301 : return page;
302 : }
303 :
304 : static inline int page_count(struct page *page)
305 : {
306 : return atomic_read(&compound_head(page)->_count);
307 : }
308 :
309 : static inline void get_page(struct page *page)
310 : {
311 : page = compound_head(page);
312 : VM_BUG_ON(atomic_read(&page->_count) == 0);
313 : atomic_inc(&page->_count);
314 : }
315 :
316 : static inline struct page *virt_to_head_page(const void *x)
317 : {
318 : struct page *page = virt_to_page(x);
319 : return compound_head(page);
320 : }
321 :
322 : /*
323 : * Setup the page count before being freed into the page allocator for
324 : * the first time (boot or memory hotplug)
325 : */
326 : static inline void init_page_count(struct page *page)
327 : {
328 : atomic_set(&page->_count, 1);
329 : }
330 :
331 : void put_page(struct page *page);
332 : void put_pages_list(struct list_head *pages);
333 :
334 : void split_page(struct page *page, unsigned int order);
335 :
336 : /*
337 : * Compound pages have a destructor function. Provide a
338 : * prototype for that function and accessor functions.
339 : * These are _only_ valid on the head of a PG_compound page.
340 : */
341 : typedef void compound_page_dtor(struct page *);
342 :
343 : static inline void set_compound_page_dtor(struct page *page,
344 : compound_page_dtor *dtor)
345 : {
346 : page[1].lru.next = (void *)dtor;
347 : }
348 :
349 : static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
350 : {
351 : return (compound_page_dtor *)page[1].lru.next;
352 : }
353 :
354 : static inline int compound_order(struct page *page)
355 : {
356 : if (!PageHead(page))
357 : return 0;
358 : return (unsigned long)page[1].lru.prev;
359 : }
360 :
361 : static inline void set_compound_order(struct page *page, unsigned long order)
362 : {
363 : page[1].lru.prev = (void *)order;
364 : }
365 :
366 : /*
367 : * Multiple processes may "see" the same page. E.g. for untouched
368 : * mappings of /dev/null, all processes see the same page full of
369 : * zeroes, and text pages of executables and shared libraries have
370 : * only one copy in memory, at most, normally.
371 : *
372 : * For the non-reserved pages, page_count(page) denotes a reference count.
373 : * page_count() == 0 means the page is free. page->lru is then used for
374 : * freelist management in the buddy allocator.
375 : * page_count() > 0 means the page has been allocated.
376 : *
377 : * Pages are allocated by the slab allocator in order to provide memory
378 : * to kmalloc and kmem_cache_alloc. In this case, the management of the
379 : * page, and the fields in 'struct page' are the responsibility of mm/slab.c
380 : * unless a particular usage is carefully commented. (the responsibility of
381 : * freeing the kmalloc memory is the caller's, of course).
382 : *
383 : * A page may be used by anyone else who does a __get_free_page().
384 : * In this case, page_count still tracks the references, and should only
385 : * be used through the normal accessor functions. The top bits of page->flags
386 : * and page->virtual store page management information, but all other fields
387 : * are unused and could be used privately, carefully. The management of this
388 : * page is the responsibility of the one who allocated it, and those who have
389 : * subsequently been given references to it.
390 : *
391 : * The other pages (we may call them "pagecache pages") are completely
392 : * managed by the Linux memory manager: I/O, buffers, swapping etc.
393 : * The following discussion applies only to them.
394 : *
395 : * A pagecache page contains an opaque `private' member, which belongs to the
396 : * page's address_space. Usually, this is the address of a circular list of
397 : * the page's disk buffers. PG_private must be set to tell the VM to call
398 : * into the filesystem to release these pages.
399 : *
400 : * A page may belong to an inode's memory mapping. In this case, page->mapping
401 : * is the pointer to the inode, and page->index is the file offset of the page,
402 : * in units of PAGE_CACHE_SIZE.
403 : *
404 : * If pagecache pages are not associated with an inode, they are said to be
405 : * anonymous pages. These may become associated with the swapcache, and in that
406 : * case PG_swapcache is set, and page->private is an offset into the swapcache.
407 : *
408 : * In either case (swapcache or inode backed), the pagecache itself holds one
409 : * reference to the page. Setting PG_private should also increment the
410 : * refcount. The each user mapping also has a reference to the page.
411 : *
412 : * The pagecache pages are stored in a per-mapping radix tree, which is
413 : * rooted at mapping->page_tree, and indexed by offset.
414 : * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
415 : * lists, we instead now tag pages as dirty/writeback in the radix tree.
416 : *
417 : * All pagecache pages may be subject to I/O:
418 : * - inode pages may need to be read from disk,
419 : * - inode pages which have been modified and are MAP_SHARED may need
420 : * to be written back to the inode on disk,
421 : * - anonymous pages (including MAP_PRIVATE file mappings) which have been
422 : * modified may need to be swapped out to swap space and (later) to be read
423 : * back into memory.
424 : */
425 :
426 : /*
427 : * The zone field is never updated after free_area_init_core()
428 : * sets it, so none of the operations on it need to be atomic.
429 : */
430 :
431 :
432 : /*
433 : * page->flags layout:
434 : *
435 : * There are three possibilities for how page->flags get
436 : * laid out. The first is for the normal case, without
437 : * sparsemem. The second is for sparsemem when there is
438 : * plenty of space for node and section. The last is when
439 : * we have run out of space and have to fall back to an
440 : * alternate (slower) way of determining the node.
441 : *
442 : * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
443 : * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
444 : * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
445 : */
446 : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
447 : #define SECTIONS_WIDTH SECTIONS_SHIFT
448 : #else
449 : #define SECTIONS_WIDTH 0
450 : #endif
451 :
452 : #define ZONES_WIDTH ZONES_SHIFT
453 :
454 : #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
455 : #define NODES_WIDTH NODES_SHIFT
456 : #else
457 : #ifdef CONFIG_SPARSEMEM_VMEMMAP
458 : #error "Vmemmap: No space for nodes field in page flags"
459 : #endif
460 : #define NODES_WIDTH 0
461 : #endif
462 :
463 : /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
464 : #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
465 : #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
466 : #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
467 :
468 : /*
469 : * We are going to use the flags for the page to node mapping if its in
470 : * there. This includes the case where there is no node, so it is implicit.
471 : */
472 : #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
473 : #define NODE_NOT_IN_PAGE_FLAGS
474 : #endif
475 :
476 : #ifndef PFN_SECTION_SHIFT
477 : #define PFN_SECTION_SHIFT 0
478 : #endif
479 :
480 : /*
481 : * Define the bit shifts to access each section. For non-existant
482 : * sections we define the shift as 0; that plus a 0 mask ensures
483 : * the compiler will optimise away reference to them.
484 : */
485 : #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
486 : #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
487 : #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
488 :
489 : /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
490 : #ifdef NODE_NOT_IN_PAGEFLAGS
491 : #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
492 : #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
493 : SECTIONS_PGOFF : ZONES_PGOFF)
494 : #else
495 : #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
496 : #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
497 : NODES_PGOFF : ZONES_PGOFF)
498 : #endif
499 :
500 : #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
501 :
502 : #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
503 : #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
504 : #endif
505 :
506 : #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
507 : #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
508 : #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
509 : #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
510 :
511 : static inline enum zone_type page_zonenum(struct page *page)
512 : {
513 : return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
514 : }
515 :
516 : /*
517 : * The identification function is only used by the buddy allocator for
518 : * determining if two pages could be buddies. We are not really
519 : * identifying a zone since we could be using a the section number
520 : * id if we have not node id available in page flags.
521 : * We guarantee only that it will return the same value for two
522 : * combinable pages in a zone.
523 : */
524 : static inline int page_zone_id(struct page *page)
525 : {
526 : return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
527 : }
528 :
529 : static inline int zone_to_nid(struct zone *zone)
530 : {
531 : #ifdef CONFIG_NUMA
532 : return zone->node;
533 : #else
534 : return 0;
535 : #endif
536 : }
537 :
538 : #ifdef NODE_NOT_IN_PAGE_FLAGS
539 : extern int page_to_nid(struct page *page);
540 : #else
541 : static inline int page_to_nid(struct page *page)
542 : {
543 : return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
544 : }
545 : #endif
546 :
547 : static inline struct zone *page_zone(struct page *page)
548 : {
549 : return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
550 : }
551 :
552 : #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
553 : static inline unsigned long page_to_section(struct page *page)
554 : {
555 286 : return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
556 : }
557 : #endif
558 :
559 : static inline void set_page_zone(struct page *page, enum zone_type zone)
560 : {
561 : page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
562 : page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
563 : }
564 :
565 : static inline void set_page_node(struct page *page, unsigned long node)
566 : {
567 : page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
568 : page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
569 : }
570 :
571 : static inline void set_page_section(struct page *page, unsigned long section)
572 : {
573 : page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
574 : page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
575 : }
576 :
577 : static inline void set_page_links(struct page *page, enum zone_type zone,
578 : unsigned long node, unsigned long pfn)
579 : {
580 : set_page_zone(page, zone);
581 : set_page_node(page, node);
582 : set_page_section(page, pfn_to_section_nr(pfn));
583 : }
584 :
585 : /*
586 : * Some inline functions in vmstat.h depend on page_zone()
587 : */
588 : #include <linux/vmstat.h>
589 :
590 : static __always_inline void *lowmem_page_address(struct page *page)
591 : {
592 2860 : return __va(page_to_pfn(page) << PAGE_SHIFT);
593 286 : }
594 286 :
595 286 : #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
596 286 : #define HASHED_PAGE_VIRTUAL
597 : #endif
598 :
599 : #if defined(WANT_PAGE_VIRTUAL)
600 : #define page_address(page) ((page)->virtual)
601 : #define set_page_address(page, address) \
602 : do { \
603 : (page)->virtual = (address); \
604 : } while(0)
605 : #define page_address_init() do { } while(0)
606 : #endif
607 :
608 : #if defined(HASHED_PAGE_VIRTUAL)
609 : void *page_address(struct page *page);
610 : void set_page_address(struct page *page, void *virtual);
611 : void page_address_init(void);
612 : #endif
613 :
614 : #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
615 : #define page_address(page) lowmem_page_address(page)
616 : #define set_page_address(page, address) do { } while(0)
617 : #define page_address_init() do { } while(0)
618 : #endif
619 :
620 : /*
621 : * On an anonymous page mapped into a user virtual memory area,
622 : * page->mapping points to its anon_vma, not to a struct address_space;
623 : * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
624 : *
625 : * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
626 : * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
627 : * and then page->mapping points, not to an anon_vma, but to a private
628 : * structure which KSM associates with that merged page. See ksm.h.
629 : *
630 : * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
631 : *
632 : * Please note that, confusingly, "page_mapping" refers to the inode
633 : * address_space which maps the page from disk; whereas "page_mapped"
634 : * refers to user virtual address space into which the page is mapped.
635 : */
636 : #define PAGE_MAPPING_ANON 1
637 : #define PAGE_MAPPING_KSM 2
638 : #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
639 :
640 : extern struct address_space swapper_space;
641 : static inline struct address_space *page_mapping(struct page *page)
642 : {
643 : struct address_space *mapping = page->mapping;
644 :
645 : VM_BUG_ON(PageSlab(page));
646 : if (unlikely(PageSwapCache(page)))
647 : mapping = &swapper_space;
648 : else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
649 : mapping = NULL;
650 : return mapping;
651 : }
652 :
653 : /* Neutral page->mapping pointer to address_space or anon_vma or other */
654 : static inline void *page_rmapping(struct page *page)
655 : {
656 : return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
657 : }
658 :
659 : static inline int PageAnon(struct page *page)
660 : {
661 : return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
662 : }
663 :
664 : /*
665 : * Return the pagecache index of the passed page. Regular pagecache pages
666 : * use ->index whereas swapcache pages use ->private
667 : */
668 : static inline pgoff_t page_index(struct page *page)
669 : {
670 : if (unlikely(PageSwapCache(page)))
671 : return page_private(page);
672 : return page->index;
673 : }
674 :
675 : /*
676 : * The atomic page->_mapcount, like _count, starts from -1:
677 : * so that transitions both from it and to it can be tracked,
678 : * using atomic_inc_and_test and atomic_add_negative(-1).
679 : */
680 : static inline void reset_page_mapcount(struct page *page)
681 : {
682 : atomic_set(&(page)->_mapcount, -1);
683 : }
684 :
685 : static inline int page_mapcount(struct page *page)
686 : {
687 : return atomic_read(&(page)->_mapcount) + 1;
688 : }
689 :
690 : /*
691 : * Return true if this page is mapped into pagetables.
692 : */
693 : static inline int page_mapped(struct page *page)
694 : {
695 : return atomic_read(&(page)->_mapcount) >= 0;
696 : }
697 :
698 : /*
699 : * Different kinds of faults, as returned by handle_mm_fault().
700 : * Used to decide whether a process gets delivered SIGBUS or
701 : * just gets major/minor fault counters bumped up.
702 : */
703 :
704 : #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
705 :
706 : #define VM_FAULT_OOM 0x0001
707 : #define VM_FAULT_SIGBUS 0x0002
708 : #define VM_FAULT_MAJOR 0x0004
709 : #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
710 : #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
711 :
712 : #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
713 : #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
714 :
715 : #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
716 :
717 : /*
718 : * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
719 : */
720 : extern void pagefault_out_of_memory(void);
721 :
722 : #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
723 :
724 : extern void show_free_areas(void);
725 :
726 : int shmem_lock(struct file *file, int lock, struct user_struct *user);
727 : struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
728 : int shmem_zero_setup(struct vm_area_struct *);
729 :
730 : #ifndef CONFIG_MMU
731 : extern unsigned long shmem_get_unmapped_area(struct file *file,
732 : unsigned long addr,
733 : unsigned long len,
734 : unsigned long pgoff,
735 : unsigned long flags);
736 : #endif
737 :
738 : extern int can_do_mlock(void);
739 : extern int user_shm_lock(size_t, struct user_struct *);
740 : extern void user_shm_unlock(size_t, struct user_struct *);
741 :
742 : /*
743 : * Parameter block passed down to zap_pte_range in exceptional cases.
744 : */
745 : struct zap_details {
746 : struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
747 : struct address_space *check_mapping; /* Check page->mapping if set */
748 : pgoff_t first_index; /* Lowest page->index to unmap */
749 : pgoff_t last_index; /* Highest page->index to unmap */
750 : spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
751 : unsigned long truncate_count; /* Compare vm_truncate_count */
752 : };
753 :
754 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755 : pte_t pte);
756 :
757 : int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
758 : unsigned long size);
759 : unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
760 : unsigned long size, struct zap_details *);
761 : unsigned long unmap_vmas(struct mmu_gather **tlb,
762 : struct vm_area_struct *start_vma, unsigned long start_addr,
763 : unsigned long end_addr, unsigned long *nr_accounted,
764 : struct zap_details *);
765 :
766 : /**
767 : * mm_walk - callbacks for walk_page_range
768 : * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
769 : * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
770 : * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
771 : * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
772 : * @pte_hole: if set, called for each hole at all levels
773 : * @hugetlb_entry: if set, called for each hugetlb entry
774 : *
775 : * (see walk_page_range for more details)
776 : */
777 : struct mm_walk {
778 : int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
779 : int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
780 : int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
781 : int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
782 : int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
783 : int (*hugetlb_entry)(pte_t *, unsigned long, unsigned long,
784 : struct mm_walk *);
785 : struct mm_struct *mm;
786 : void *private;
787 : };
788 :
789 : int walk_page_range(unsigned long addr, unsigned long end,
790 : struct mm_walk *walk);
791 : void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
792 : unsigned long end, unsigned long floor, unsigned long ceiling);
793 : int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
794 : struct vm_area_struct *vma);
795 : void unmap_mapping_range(struct address_space *mapping,
796 : loff_t const holebegin, loff_t const holelen, int even_cows);
797 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
798 : unsigned long *pfn);
799 : int follow_phys(struct vm_area_struct *vma, unsigned long address,
800 : unsigned int flags, unsigned long *prot, resource_size_t *phys);
801 : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
802 : void *buf, int len, int write);
803 :
804 : static inline void unmap_shared_mapping_range(struct address_space *mapping,
805 : loff_t const holebegin, loff_t const holelen)
806 : {
807 : unmap_mapping_range(mapping, holebegin, holelen, 0);
808 : }
809 :
810 : extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
811 : extern int vmtruncate(struct inode *inode, loff_t offset);
812 : extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
813 :
814 : int truncate_inode_page(struct address_space *mapping, struct page *page);
815 : int generic_error_remove_page(struct address_space *mapping, struct page *page);
816 :
817 : int invalidate_inode_page(struct page *page);
818 :
819 : #ifdef CONFIG_MMU
820 : extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
821 : unsigned long address, unsigned int flags);
822 : #else
823 : static inline int handle_mm_fault(struct mm_struct *mm,
824 : struct vm_area_struct *vma, unsigned long address,
825 : unsigned int flags)
826 : {
827 : /* should never happen if there's no MMU */
828 : BUG();
829 : return VM_FAULT_SIGBUS;
830 : }
831 : #endif
832 :
833 : extern int make_pages_present(unsigned long addr, unsigned long end);
834 : extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
835 :
836 : int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
837 : unsigned long start, int nr_pages, int write, int force,
838 : struct page **pages, struct vm_area_struct **vmas);
839 : int get_user_pages_fast(unsigned long start, int nr_pages, int write,
840 : struct page **pages);
841 : struct page *get_dump_page(unsigned long addr);
842 :
843 : extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
844 : extern void do_invalidatepage(struct page *page, unsigned long offset);
845 :
846 : int __set_page_dirty_nobuffers(struct page *page);
847 : int __set_page_dirty_no_writeback(struct page *page);
848 : int redirty_page_for_writepage(struct writeback_control *wbc,
849 : struct page *page);
850 : void account_page_dirtied(struct page *page, struct address_space *mapping);
851 : int set_page_dirty(struct page *page);
852 : int set_page_dirty_lock(struct page *page);
853 : int clear_page_dirty_for_io(struct page *page);
854 :
855 : extern unsigned long move_page_tables(struct vm_area_struct *vma,
856 : unsigned long old_addr, struct vm_area_struct *new_vma,
857 : unsigned long new_addr, unsigned long len);
858 : extern unsigned long do_mremap(unsigned long addr,
859 : unsigned long old_len, unsigned long new_len,
860 : unsigned long flags, unsigned long new_addr);
861 : extern int mprotect_fixup(struct vm_area_struct *vma,
862 : struct vm_area_struct **pprev, unsigned long start,
863 : unsigned long end, unsigned long newflags);
864 :
865 : /*
866 : * doesn't attempt to fault and will return short.
867 : */
868 : int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
869 : struct page **pages);
870 :
871 : /*
872 : * A callback you can register to apply pressure to ageable caches.
873 : *
874 : * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
875 : * look through the least-recently-used 'nr_to_scan' entries and
876 : * attempt to free them up. It should return the number of objects
877 : * which remain in the cache. If it returns -1, it means it cannot do
878 : * any scanning at this time (eg. there is a risk of deadlock).
879 : *
880 : * The 'gfpmask' refers to the allocation we are currently trying to
881 : * fulfil.
882 : *
883 : * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
884 : * querying the cache size, so a fastpath for that case is appropriate.
885 : */
886 : struct shrinker {
887 : int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
888 : int seeks; /* seeks to recreate an obj */
889 :
890 : /* These are for internal use */
891 : struct list_head list;
892 : long nr; /* objs pending delete */
893 : };
894 : #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
895 : extern void register_shrinker(struct shrinker *);
896 : extern void unregister_shrinker(struct shrinker *);
897 :
898 : int vma_wants_writenotify(struct vm_area_struct *vma);
899 :
900 : extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
901 :
902 : #ifdef __PAGETABLE_PUD_FOLDED
903 : static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
904 : unsigned long address)
905 : {
906 : return 0;
907 : }
908 : #else
909 : int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
910 : #endif
911 :
912 : #ifdef __PAGETABLE_PMD_FOLDED
913 : static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
914 : unsigned long address)
915 : {
916 : return 0;
917 : }
918 : #else
919 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
920 : #endif
921 :
922 : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
923 : int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
924 :
925 : /*
926 : * The following ifdef needed to get the 4level-fixup.h header to work.
927 : * Remove it when 4level-fixup.h has been removed.
928 : */
929 : #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
930 : static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
931 : {
932 : return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
933 : NULL: pud_offset(pgd, address);
934 : }
935 :
936 : static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
937 : {
938 : return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
939 : NULL: pmd_offset(pud, address);
940 : }
941 : #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
942 :
943 : #if USE_SPLIT_PTLOCKS
944 : /*
945 : * We tuck a spinlock to guard each pagetable page into its struct page,
946 : * at page->private, with BUILD_BUG_ON to make sure that this will not
947 : * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
948 : * When freeing, reset page->mapping so free_pages_check won't complain.
949 : */
950 : #define __pte_lockptr(page) &((page)->ptl)
951 : #define pte_lock_init(_page) do { \
952 : spin_lock_init(__pte_lockptr(_page)); \
953 : } while (0)
954 : #define pte_lock_deinit(page) ((page)->mapping = NULL)
955 : #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
956 : #else /* !USE_SPLIT_PTLOCKS */
957 : /*
958 : * We use mm->page_table_lock to guard all pagetable pages of the mm.
959 : */
960 : #define pte_lock_init(page) do {} while (0)
961 : #define pte_lock_deinit(page) do {} while (0)
962 : #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
963 : #endif /* USE_SPLIT_PTLOCKS */
964 :
965 : static inline void pgtable_page_ctor(struct page *page)
966 : {
967 : pte_lock_init(page);
968 : inc_zone_page_state(page, NR_PAGETABLE);
969 : }
970 :
971 : static inline void pgtable_page_dtor(struct page *page)
972 : {
973 : pte_lock_deinit(page);
974 : dec_zone_page_state(page, NR_PAGETABLE);
975 : }
976 :
977 : #define pte_offset_map_lock(mm, pmd, address, ptlp) \
978 : ({ \
979 : spinlock_t *__ptl = pte_lockptr(mm, pmd); \
980 : pte_t *__pte = pte_offset_map(pmd, address); \
981 : *(ptlp) = __ptl; \
982 : spin_lock(__ptl); \
983 : __pte; \
984 : })
985 :
986 : #define pte_unmap_unlock(pte, ptl) do { \
987 : spin_unlock(ptl); \
988 : pte_unmap(pte); \
989 : } while (0)
990 :
991 : #define pte_alloc_map(mm, pmd, address) \
992 : ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
993 : NULL: pte_offset_map(pmd, address))
994 :
995 : #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
996 : ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
997 : NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
998 :
999 : #define pte_alloc_kernel(pmd, address) \
1000 : ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1001 : NULL: pte_offset_kernel(pmd, address))
1002 :
1003 : extern void free_area_init(unsigned long * zones_size);
1004 : extern void free_area_init_node(int nid, unsigned long * zones_size,
1005 : unsigned long zone_start_pfn, unsigned long *zholes_size);
1006 : #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1007 : /*
1008 : * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1009 : * zones, allocate the backing mem_map and account for memory holes in a more
1010 : * architecture independent manner. This is a substitute for creating the
1011 : * zone_sizes[] and zholes_size[] arrays and passing them to
1012 : * free_area_init_node()
1013 : *
1014 : * An architecture is expected to register range of page frames backed by
1015 : * physical memory with add_active_range() before calling
1016 : * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1017 : * usage, an architecture is expected to do something like
1018 : *
1019 : * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1020 : * max_highmem_pfn};
1021 : * for_each_valid_physical_page_range()
1022 : * add_active_range(node_id, start_pfn, end_pfn)
1023 : * free_area_init_nodes(max_zone_pfns);
1024 : *
1025 : * If the architecture guarantees that there are no holes in the ranges
1026 : * registered with add_active_range(), free_bootmem_active_regions()
1027 : * will call free_bootmem_node() for each registered physical page range.
1028 : * Similarly sparse_memory_present_with_active_regions() calls
1029 : * memory_present() for each range when SPARSEMEM is enabled.
1030 : *
1031 : * See mm/page_alloc.c for more information on each function exposed by
1032 : * CONFIG_ARCH_POPULATES_NODE_MAP
1033 : */
1034 : extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1035 : extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1036 : unsigned long end_pfn);
1037 : extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1038 : unsigned long end_pfn);
1039 : extern void remove_all_active_ranges(void);
1040 : void sort_node_map(void);
1041 : unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1042 : unsigned long end_pfn);
1043 : extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1044 : unsigned long end_pfn);
1045 : extern void get_pfn_range_for_nid(unsigned int nid,
1046 : unsigned long *start_pfn, unsigned long *end_pfn);
1047 : extern unsigned long find_min_pfn_with_active_regions(void);
1048 : extern void free_bootmem_with_active_regions(int nid,
1049 : unsigned long max_low_pfn);
1050 : typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1051 : extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1052 : extern void sparse_memory_present_with_active_regions(int nid);
1053 : #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1054 :
1055 : #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1056 : !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1057 : static inline int __early_pfn_to_nid(unsigned long pfn)
1058 : {
1059 : return 0;
1060 : }
1061 : #else
1062 : /* please see mm/page_alloc.c */
1063 : extern int __meminit early_pfn_to_nid(unsigned long pfn);
1064 : #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1065 : /* there is a per-arch backend function. */
1066 : extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1067 : #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1068 : #endif
1069 :
1070 : extern void set_dma_reserve(unsigned long new_dma_reserve);
1071 : extern void memmap_init_zone(unsigned long, int, unsigned long,
1072 : unsigned long, enum memmap_context);
1073 : extern void setup_per_zone_wmarks(void);
1074 : extern void calculate_zone_inactive_ratio(struct zone *zone);
1075 : extern void mem_init(void);
1076 : extern void __init mmap_init(void);
1077 : extern void show_mem(void);
1078 : extern void si_meminfo(struct sysinfo * val);
1079 : extern void si_meminfo_node(struct sysinfo *val, int nid);
1080 : extern int after_bootmem;
1081 :
1082 : #ifdef CONFIG_NUMA
1083 : extern void setup_per_cpu_pageset(void);
1084 : #else
1085 : static inline void setup_per_cpu_pageset(void) {}
1086 : #endif
1087 :
1088 : extern void zone_pcp_update(struct zone *zone);
1089 :
1090 : /* nommu.c */
1091 : extern atomic_long_t mmap_pages_allocated;
1092 : extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1093 :
1094 : /* prio_tree.c */
1095 : void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1096 : void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1097 : void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1098 : struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1099 : struct prio_tree_iter *iter);
1100 :
1101 : #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1102 : for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1103 : (vma = vma_prio_tree_next(vma, iter)); )
1104 :
1105 : static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1106 : struct list_head *list)
1107 : {
1108 : vma->shared.vm_set.parent = NULL;
1109 : list_add_tail(&vma->shared.vm_set.list, list);
1110 : }
1111 :
1112 : /* mmap.c */
1113 : extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1114 : extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1115 : unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1116 : extern struct vm_area_struct *vma_merge(struct mm_struct *,
1117 : struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1118 : unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1119 : struct mempolicy *);
1120 : extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1121 : extern int split_vma(struct mm_struct *,
1122 : struct vm_area_struct *, unsigned long addr, int new_below);
1123 : extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1124 : extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1125 : struct rb_node **, struct rb_node *);
1126 : extern void unlink_file_vma(struct vm_area_struct *);
1127 : extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1128 : unsigned long addr, unsigned long len, pgoff_t pgoff);
1129 : extern void exit_mmap(struct mm_struct *);
1130 :
1131 : extern int mm_take_all_locks(struct mm_struct *mm);
1132 : extern void mm_drop_all_locks(struct mm_struct *mm);
1133 :
1134 : #ifdef CONFIG_PROC_FS
1135 : /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1136 : extern void added_exe_file_vma(struct mm_struct *mm);
1137 : extern void removed_exe_file_vma(struct mm_struct *mm);
1138 : #else
1139 : static inline void added_exe_file_vma(struct mm_struct *mm)
1140 : {}
1141 :
1142 : static inline void removed_exe_file_vma(struct mm_struct *mm)
1143 : {}
1144 : #endif /* CONFIG_PROC_FS */
1145 :
1146 : extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1147 : extern int install_special_mapping(struct mm_struct *mm,
1148 : unsigned long addr, unsigned long len,
1149 : unsigned long flags, struct page **pages);
1150 :
1151 : extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1152 :
1153 : extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1154 : unsigned long len, unsigned long prot,
1155 : unsigned long flag, unsigned long pgoff);
1156 : extern unsigned long mmap_region(struct file *file, unsigned long addr,
1157 : unsigned long len, unsigned long flags,
1158 : unsigned int vm_flags, unsigned long pgoff);
1159 :
1160 : static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1161 : unsigned long len, unsigned long prot,
1162 : unsigned long flag, unsigned long offset)
1163 : {
1164 : unsigned long ret = -EINVAL;
1165 : if ((offset + PAGE_ALIGN(len)) < offset)
1166 : goto out;
1167 : if (!(offset & ~PAGE_MASK))
1168 : ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1169 : out:
1170 : return ret;
1171 : }
1172 :
1173 : extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1174 :
1175 : extern unsigned long do_brk(unsigned long, unsigned long);
1176 :
1177 : /* filemap.c */
1178 : extern unsigned long page_unuse(struct page *);
1179 : extern void truncate_inode_pages(struct address_space *, loff_t);
1180 : extern void truncate_inode_pages_range(struct address_space *,
1181 : loff_t lstart, loff_t lend);
1182 :
1183 : /* generic vm_area_ops exported for stackable file systems */
1184 : extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1185 :
1186 : /* mm/page-writeback.c */
1187 : int write_one_page(struct page *page, int wait);
1188 : void task_dirty_inc(struct task_struct *tsk);
1189 :
1190 : /* readahead.c */
1191 : #define VM_MAX_READAHEAD 128 /* kbytes */
1192 : #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1193 :
1194 : int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1195 : pgoff_t offset, unsigned long nr_to_read);
1196 :
1197 : void page_cache_sync_readahead(struct address_space *mapping,
1198 : struct file_ra_state *ra,
1199 : struct file *filp,
1200 : pgoff_t offset,
1201 : unsigned long size);
1202 :
1203 : void page_cache_async_readahead(struct address_space *mapping,
1204 : struct file_ra_state *ra,
1205 : struct file *filp,
1206 : struct page *pg,
1207 : pgoff_t offset,
1208 : unsigned long size);
1209 :
1210 : unsigned long max_sane_readahead(unsigned long nr);
1211 : unsigned long ra_submit(struct file_ra_state *ra,
1212 : struct address_space *mapping,
1213 : struct file *filp);
1214 :
1215 : /* Do stack extension */
1216 : extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1217 : #ifdef CONFIG_IA64
1218 : extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1219 : #endif
1220 : extern int expand_stack_downwards(struct vm_area_struct *vma,
1221 : unsigned long address);
1222 :
1223 : /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1224 : extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1225 : extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1226 : struct vm_area_struct **pprev);
1227 :
1228 : /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1229 : NULL if none. Assume start_addr < end_addr. */
1230 : static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1231 : {
1232 : struct vm_area_struct * vma = find_vma(mm,start_addr);
1233 :
1234 : if (vma && end_addr <= vma->vm_start)
1235 : vma = NULL;
1236 : return vma;
1237 : }
1238 :
1239 : static inline unsigned long vma_pages(struct vm_area_struct *vma)
1240 : {
1241 : return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1242 : }
1243 :
1244 : pgprot_t vm_get_page_prot(unsigned long vm_flags);
1245 : struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1246 : int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1247 : unsigned long pfn, unsigned long size, pgprot_t);
1248 : int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1249 : int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1250 : unsigned long pfn);
1251 : int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1252 : unsigned long pfn);
1253 :
1254 : struct page *follow_page(struct vm_area_struct *, unsigned long address,
1255 : unsigned int foll_flags);
1256 : #define FOLL_WRITE 0x01 /* check pte is writable */
1257 : #define FOLL_TOUCH 0x02 /* mark page accessed */
1258 : #define FOLL_GET 0x04 /* do get_page on page */
1259 : #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1260 : #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1261 :
1262 : typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1263 : void *data);
1264 : extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1265 : unsigned long size, pte_fn_t fn, void *data);
1266 :
1267 : #ifdef CONFIG_PROC_FS
1268 : void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1269 : #else
1270 : static inline void vm_stat_account(struct mm_struct *mm,
1271 : unsigned long flags, struct file *file, long pages)
1272 : {
1273 : }
1274 : #endif /* CONFIG_PROC_FS */
1275 :
1276 : #ifdef CONFIG_DEBUG_PAGEALLOC
1277 : extern int debug_pagealloc_enabled;
1278 :
1279 : extern void kernel_map_pages(struct page *page, int numpages, int enable);
1280 :
1281 : static inline void enable_debug_pagealloc(void)
1282 : {
1283 : debug_pagealloc_enabled = 1;
1284 : }
1285 : #ifdef CONFIG_HIBERNATION
1286 : extern bool kernel_page_present(struct page *page);
1287 : #endif /* CONFIG_HIBERNATION */
1288 : #else
1289 : static inline void
1290 : kernel_map_pages(struct page *page, int numpages, int enable) {}
1291 : static inline void enable_debug_pagealloc(void)
1292 : {
1293 : }
1294 : #ifdef CONFIG_HIBERNATION
1295 : static inline bool kernel_page_present(struct page *page) { return true; }
1296 : #endif /* CONFIG_HIBERNATION */
1297 : #endif
1298 :
1299 : extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1300 : #ifdef __HAVE_ARCH_GATE_AREA
1301 : int in_gate_area_no_task(unsigned long addr);
1302 : int in_gate_area(struct task_struct *task, unsigned long addr);
1303 : #else
1304 : int in_gate_area_no_task(unsigned long addr);
1305 : #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1306 : #endif /* __HAVE_ARCH_GATE_AREA */
1307 :
1308 : int drop_caches_sysctl_handler(struct ctl_table *, int,
1309 : void __user *, size_t *, loff_t *);
1310 : unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1311 : unsigned long lru_pages);
1312 :
1313 : #ifndef CONFIG_MMU
1314 : #define randomize_va_space 0
1315 : #else
1316 : extern int randomize_va_space;
1317 : #endif
1318 :
1319 : const char * arch_vma_name(struct vm_area_struct *vma);
1320 : void print_vma_addr(char *prefix, unsigned long rip);
1321 :
1322 : struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1323 : pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1324 : pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1325 : pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1326 : pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1327 : void *vmemmap_alloc_block(unsigned long size, int node);
1328 : void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1329 : int vmemmap_populate_basepages(struct page *start_page,
1330 : unsigned long pages, int node);
1331 : int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1332 : void vmemmap_populate_print_last(void);
1333 :
1334 : extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
1335 : size_t size);
1336 : extern void refund_locked_memory(struct mm_struct *mm, size_t size);
1337 :
1338 : enum mf_flags {
1339 : MF_COUNT_INCREASED = 1 << 0,
1340 : };
1341 : extern void memory_failure(unsigned long pfn, int trapno);
1342 : extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1343 : extern int unpoison_memory(unsigned long pfn);
1344 : extern int sysctl_memory_failure_early_kill;
1345 : extern int sysctl_memory_failure_recovery;
1346 : extern void shake_page(struct page *p, int access);
1347 : extern atomic_long_t mce_bad_pages;
1348 : extern int soft_offline_page(struct page *page, int flags);
1349 :
1350 : #endif /* __KERNEL__ */
1351 : #endif /* _LINUX_MM_H */
|