Line data Source code
1 : /*
2 : * The input core
3 : *
4 : * Copyright (c) 1999-2002 Vojtech Pavlik
5 : */
6 :
7 : /*
8 : * This program is free software; you can redistribute it and/or modify it
9 : * under the terms of the GNU General Public License version 2 as published by
10 : * the Free Software Foundation.
11 : */
12 :
13 : #include <linux/init.h>
14 : #include <linux/types.h>
15 : #include <linux/input.h>
16 : #include <linux/module.h>
17 : #include <linux/random.h>
18 : #include <linux/major.h>
19 : #include <linux/proc_fs.h>
20 : #include <linux/sched.h>
21 : #include <linux/seq_file.h>
22 : #include <linux/poll.h>
23 : #include <linux/device.h>
24 : #include <linux/mutex.h>
25 : #include <linux/rcupdate.h>
26 : #include <linux/smp_lock.h>
27 : #include "input-compat.h"
28 :
29 : MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 : MODULE_DESCRIPTION("Input core");
31 : MODULE_LICENSE("GPL");
32 :
33 : #define INPUT_DEVICES 256
34 :
35 : /*
36 : * EV_ABS events which should not be cached are listed here.
37 : */
38 1 : static unsigned int input_abs_bypass_init_data[] __initdata = {
39 : ABS_MT_TOUCH_MAJOR,
40 : ABS_MT_TOUCH_MINOR,
41 : ABS_MT_WIDTH_MAJOR,
42 : ABS_MT_WIDTH_MINOR,
43 : ABS_MT_ORIENTATION,
44 : ABS_MT_POSITION_X,
45 : ABS_MT_POSITION_Y,
46 : ABS_MT_TOOL_TYPE,
47 : ABS_MT_BLOB_ID,
48 : ABS_MT_TRACKING_ID,
49 : ABS_MT_PRESSURE,
50 : 0
51 : };
52 1 : static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
53 :
54 1 : static LIST_HEAD(input_dev_list);
55 1 : static LIST_HEAD(input_handler_list);
56 :
57 : /*
58 : * input_mutex protects access to both input_dev_list and input_handler_list.
59 : * This also causes input_[un]register_device and input_[un]register_handler
60 : * be mutually exclusive which simplifies locking in drivers implementing
61 : * input handlers.
62 : */
63 1 : static DEFINE_MUTEX(input_mutex);
64 :
65 1 : static struct input_handler *input_table[8];
66 :
67 : static inline int is_event_supported(unsigned int code,
68 : unsigned long *bm, unsigned int max)
69 0 : {
70 0 : return code <= max && test_bit(code, bm);
71 : }
72 :
73 : static int input_defuzz_abs_event(int value, int old_val, int fuzz)
74 : {
75 0 : if (fuzz) {
76 0 : if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
77 0 : return old_val;
78 :
79 0 : if (value > old_val - fuzz && value < old_val + fuzz)
80 0 : return (old_val * 3 + value) / 4;
81 :
82 0 : if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
83 0 : return (old_val + value) / 2;
84 : }
85 :
86 0 : return value;
87 : }
88 :
89 : /*
90 : * Pass event through all open handles. This function is called with
91 : * dev->event_lock held and interrupts disabled.
92 : */
93 : static void input_pass_event(struct input_dev *dev,
94 : unsigned int type, unsigned int code, int value)
95 : {
96 0 : struct input_handle *handle;
97 0 :
98 0 : rcu_read_lock();
99 0 :
100 0 : handle = rcu_dereference(dev->grab);
101 0 : if (handle)
102 0 : handle->handler->event(handle, type, code, value);
103 : else
104 0 : list_for_each_entry_rcu(handle, &dev->h_list, d_node)
105 0 : if (handle->open)
106 0 : handle->handler->event(handle,
107 : type, code, value);
108 0 : rcu_read_unlock();
109 0 : }
110 :
111 : /*
112 : * Generate software autorepeat event. Note that we take
113 : * dev->event_lock here to avoid racing with input_event
114 : * which may cause keys get "stuck".
115 : */
116 : static void input_repeat_key(unsigned long data)
117 : {
118 0 : struct input_dev *dev = (void *) data;
119 0 : unsigned long flags;
120 0 :
121 0 : spin_lock_irqsave(&dev->event_lock, flags);
122 0 :
123 0 : if (test_bit(dev->repeat_key, dev->key) &&
124 : is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
125 :
126 0 : input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
127 :
128 0 : if (dev->sync) {
129 : /*
130 : * Only send SYN_REPORT if we are not in a middle
131 : * of driver parsing a new hardware packet.
132 : * Otherwise assume that the driver will send
133 : * SYN_REPORT once it's done.
134 : */
135 0 : input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
136 : }
137 :
138 0 : if (dev->rep[REP_PERIOD])
139 0 : mod_timer(&dev->timer, jiffies +
140 : msecs_to_jiffies(dev->rep[REP_PERIOD]));
141 : }
142 :
143 0 : spin_unlock_irqrestore(&dev->event_lock, flags);
144 0 : }
145 :
146 : static void input_start_autorepeat(struct input_dev *dev, int code)
147 : {
148 0 : if (test_bit(EV_REP, dev->evbit) &&
149 0 : dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
150 : dev->timer.data) {
151 0 : dev->repeat_key = code;
152 0 : mod_timer(&dev->timer,
153 : jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
154 : }
155 0 : }
156 :
157 : static void input_stop_autorepeat(struct input_dev *dev)
158 : {
159 0 : del_timer(&dev->timer);
160 0 : }
161 :
162 : #define INPUT_IGNORE_EVENT 0
163 : #define INPUT_PASS_TO_HANDLERS 1
164 : #define INPUT_PASS_TO_DEVICE 2
165 : #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
166 :
167 : static void input_handle_event(struct input_dev *dev,
168 : unsigned int type, unsigned int code, int value)
169 : {
170 0 : int disposition = INPUT_IGNORE_EVENT;
171 0 :
172 0 : switch (type) {
173 0 :
174 0 : case EV_SYN:
175 0 : switch (code) {
176 0 : case SYN_CONFIG:
177 0 : disposition = INPUT_PASS_TO_ALL;
178 0 : break;
179 0 :
180 0 : case SYN_REPORT:
181 0 : if (!dev->sync) {
182 0 : dev->sync = 1;
183 0 : disposition = INPUT_PASS_TO_HANDLERS;
184 : }
185 0 : break;
186 0 : case SYN_MT_REPORT:
187 0 : dev->sync = 0;
188 0 : disposition = INPUT_PASS_TO_HANDLERS;
189 0 : break;
190 0 : }
191 0 : break;
192 0 :
193 0 : case EV_KEY:
194 0 : if (is_event_supported(code, dev->keybit, KEY_MAX) &&
195 : !!test_bit(code, dev->key) != value) {
196 :
197 0 : if (value != 2) {
198 0 : __change_bit(code, dev->key);
199 0 : if (value)
200 0 : input_start_autorepeat(dev, code);
201 : else
202 0 : input_stop_autorepeat(dev);
203 : }
204 :
205 0 : disposition = INPUT_PASS_TO_HANDLERS;
206 : }
207 0 : break;
208 0 :
209 0 : case EV_SW:
210 0 : if (is_event_supported(code, dev->swbit, SW_MAX) &&
211 : !!test_bit(code, dev->sw) != value) {
212 :
213 0 : __change_bit(code, dev->sw);
214 0 : disposition = INPUT_PASS_TO_HANDLERS;
215 : }
216 0 : break;
217 0 :
218 0 : case EV_ABS:
219 0 : if (is_event_supported(code, dev->absbit, ABS_MAX)) {
220 :
221 0 : if (test_bit(code, input_abs_bypass)) {
222 0 : disposition = INPUT_PASS_TO_HANDLERS;
223 0 : break;
224 : }
225 :
226 0 : value = input_defuzz_abs_event(value,
227 : dev->abs[code], dev->absfuzz[code]);
228 :
229 0 : if (dev->abs[code] != value) {
230 0 : dev->abs[code] = value;
231 0 : disposition = INPUT_PASS_TO_HANDLERS;
232 : }
233 : }
234 0 : break;
235 0 :
236 0 : case EV_REL:
237 0 : if (is_event_supported(code, dev->relbit, REL_MAX) && value)
238 0 : disposition = INPUT_PASS_TO_HANDLERS;
239 :
240 0 : break;
241 0 :
242 0 : case EV_MSC:
243 0 : if (is_event_supported(code, dev->mscbit, MSC_MAX))
244 0 : disposition = INPUT_PASS_TO_ALL;
245 :
246 0 : break;
247 0 :
248 0 : case EV_LED:
249 0 : if (is_event_supported(code, dev->ledbit, LED_MAX) &&
250 : !!test_bit(code, dev->led) != value) {
251 :
252 0 : __change_bit(code, dev->led);
253 0 : disposition = INPUT_PASS_TO_ALL;
254 : }
255 0 : break;
256 0 :
257 0 : case EV_SND:
258 0 : if (is_event_supported(code, dev->sndbit, SND_MAX)) {
259 :
260 0 : if (!!test_bit(code, dev->snd) != !!value)
261 0 : __change_bit(code, dev->snd);
262 0 : disposition = INPUT_PASS_TO_ALL;
263 : }
264 0 : break;
265 0 :
266 0 : case EV_REP:
267 0 : if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
268 0 : dev->rep[code] = value;
269 0 : disposition = INPUT_PASS_TO_ALL;
270 : }
271 0 : break;
272 0 :
273 0 : case EV_FF:
274 0 : if (value >= 0)
275 0 : disposition = INPUT_PASS_TO_ALL;
276 0 : break;
277 0 :
278 0 : case EV_PWR:
279 0 : disposition = INPUT_PASS_TO_ALL;
280 0 : break;
281 0 : }
282 :
283 0 : if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
284 0 : dev->sync = 0;
285 :
286 0 : if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
287 0 : dev->event(dev, type, code, value);
288 :
289 0 : if (disposition & INPUT_PASS_TO_HANDLERS)
290 0 : input_pass_event(dev, type, code, value);
291 0 : }
292 :
293 : /**
294 : * input_event() - report new input event
295 : * @dev: device that generated the event
296 : * @type: type of the event
297 : * @code: event code
298 : * @value: value of the event
299 : *
300 : * This function should be used by drivers implementing various input
301 : * devices to report input events. See also input_inject_event().
302 : *
303 : * NOTE: input_event() may be safely used right after input device was
304 : * allocated with input_allocate_device(), even before it is registered
305 : * with input_register_device(), but the event will not reach any of the
306 : * input handlers. Such early invocation of input_event() may be used
307 : * to 'seed' initial state of a switch or initial position of absolute
308 : * axis, etc.
309 : */
310 : void input_event(struct input_dev *dev,
311 : unsigned int type, unsigned int code, int value)
312 0 : {
313 0 : unsigned long flags;
314 0 :
315 0 : if (is_event_supported(type, dev->evbit, EV_MAX)) {
316 :
317 0 : spin_lock_irqsave(&dev->event_lock, flags);
318 0 : add_input_randomness(type, code, value);
319 0 : input_handle_event(dev, type, code, value);
320 0 : spin_unlock_irqrestore(&dev->event_lock, flags);
321 : }
322 0 : }
323 : EXPORT_SYMBOL(input_event);
324 :
325 : /**
326 : * input_inject_event() - send input event from input handler
327 : * @handle: input handle to send event through
328 : * @type: type of the event
329 : * @code: event code
330 : * @value: value of the event
331 : *
332 : * Similar to input_event() but will ignore event if device is
333 : * "grabbed" and handle injecting event is not the one that owns
334 : * the device.
335 : */
336 : void input_inject_event(struct input_handle *handle,
337 : unsigned int type, unsigned int code, int value)
338 : {
339 0 : struct input_dev *dev = handle->dev;
340 0 : struct input_handle *grab;
341 0 : unsigned long flags;
342 0 :
343 0 : if (is_event_supported(type, dev->evbit, EV_MAX)) {
344 0 : spin_lock_irqsave(&dev->event_lock, flags);
345 :
346 0 : rcu_read_lock();
347 0 : grab = rcu_dereference(dev->grab);
348 0 : if (!grab || grab == handle)
349 0 : input_handle_event(dev, type, code, value);
350 0 : rcu_read_unlock();
351 :
352 0 : spin_unlock_irqrestore(&dev->event_lock, flags);
353 : }
354 0 : }
355 : EXPORT_SYMBOL(input_inject_event);
356 :
357 : /**
358 : * input_grab_device - grabs device for exclusive use
359 : * @handle: input handle that wants to own the device
360 : *
361 : * When a device is grabbed by an input handle all events generated by
362 : * the device are delivered only to this handle. Also events injected
363 : * by other input handles are ignored while device is grabbed.
364 : */
365 : int input_grab_device(struct input_handle *handle)
366 : {
367 0 : struct input_dev *dev = handle->dev;
368 0 : int retval;
369 :
370 0 : retval = mutex_lock_interruptible(&dev->mutex);
371 0 : if (retval)
372 0 : return retval;
373 :
374 0 : if (dev->grab) {
375 0 : retval = -EBUSY;
376 0 : goto out;
377 : }
378 :
379 0 : rcu_assign_pointer(dev->grab, handle);
380 0 : synchronize_rcu();
381 :
382 0 : out:
383 0 : mutex_unlock(&dev->mutex);
384 0 : return retval;
385 : }
386 : EXPORT_SYMBOL(input_grab_device);
387 :
388 : static void __input_release_device(struct input_handle *handle)
389 : {
390 0 : struct input_dev *dev = handle->dev;
391 0 :
392 0 : if (dev->grab == handle) {
393 0 : rcu_assign_pointer(dev->grab, NULL);
394 : /* Make sure input_pass_event() notices that grab is gone */
395 0 : synchronize_rcu();
396 :
397 0 : list_for_each_entry(handle, &dev->h_list, d_node)
398 0 : if (handle->open && handle->handler->start)
399 0 : handle->handler->start(handle);
400 : }
401 : }
402 :
403 : /**
404 : * input_release_device - release previously grabbed device
405 0 : * @handle: input handle that owns the device
406 : *
407 : * Releases previously grabbed device so that other input handles can
408 : * start receiving input events. Upon release all handlers attached
409 : * to the device have their start() method called so they have a change
410 : * to synchronize device state with the rest of the system.
411 : */
412 : void input_release_device(struct input_handle *handle)
413 : {
414 0 : struct input_dev *dev = handle->dev;
415 :
416 0 : mutex_lock(&dev->mutex);
417 0 : __input_release_device(handle);
418 0 : mutex_unlock(&dev->mutex);
419 0 : }
420 : EXPORT_SYMBOL(input_release_device);
421 :
422 : /**
423 : * input_open_device - open input device
424 : * @handle: handle through which device is being accessed
425 : *
426 : * This function should be called by input handlers when they
427 : * want to start receive events from given input device.
428 : */
429 : int input_open_device(struct input_handle *handle)
430 : {
431 0 : struct input_dev *dev = handle->dev;
432 0 : int retval;
433 0 :
434 0 : retval = mutex_lock_interruptible(&dev->mutex);
435 0 : if (retval)
436 0 : return retval;
437 :
438 0 : if (dev->going_away) {
439 0 : retval = -ENODEV;
440 0 : goto out;
441 : }
442 :
443 0 : handle->open++;
444 :
445 0 : if (!dev->users++ && dev->open)
446 0 : retval = dev->open(dev);
447 :
448 0 : if (retval) {
449 0 : dev->users--;
450 0 : if (!--handle->open) {
451 : /*
452 : * Make sure we are not delivering any more events
453 : * through this handle
454 : */
455 0 : synchronize_rcu();
456 : }
457 : }
458 :
459 : out:
460 0 : mutex_unlock(&dev->mutex);
461 0 : return retval;
462 : }
463 0 : EXPORT_SYMBOL(input_open_device);
464 :
465 : int input_flush_device(struct input_handle *handle, struct file *file)
466 : {
467 0 : struct input_dev *dev = handle->dev;
468 0 : int retval;
469 :
470 0 : retval = mutex_lock_interruptible(&dev->mutex);
471 0 : if (retval)
472 0 : return retval;
473 :
474 0 : if (dev->flush)
475 0 : retval = dev->flush(dev, file);
476 :
477 0 : mutex_unlock(&dev->mutex);
478 0 : return retval;
479 : }
480 : EXPORT_SYMBOL(input_flush_device);
481 :
482 : /**
483 : * input_close_device - close input device
484 : * @handle: handle through which device is being accessed
485 : *
486 : * This function should be called by input handlers when they
487 : * want to stop receive events from given input device.
488 : */
489 : void input_close_device(struct input_handle *handle)
490 : {
491 0 : struct input_dev *dev = handle->dev;
492 :
493 0 : mutex_lock(&dev->mutex);
494 :
495 0 : __input_release_device(handle);
496 :
497 0 : if (!--dev->users && dev->close)
498 0 : dev->close(dev);
499 :
500 0 : if (!--handle->open) {
501 : /*
502 : * synchronize_rcu() makes sure that input_pass_event()
503 : * completed and that no more input events are delivered
504 : * through this handle
505 : */
506 0 : synchronize_rcu();
507 : }
508 :
509 0 : mutex_unlock(&dev->mutex);
510 0 : }
511 : EXPORT_SYMBOL(input_close_device);
512 :
513 : /*
514 : * Prepare device for unregistering
515 : */
516 : static void input_disconnect_device(struct input_dev *dev)
517 : {
518 0 : struct input_handle *handle;
519 0 : int code;
520 0 :
521 0 : /*
522 0 : * Mark device as going away. Note that we take dev->mutex here
523 0 : * not to protect access to dev->going_away but rather to ensure
524 0 : * that there are no threads in the middle of input_open_device()
525 : */
526 0 : mutex_lock(&dev->mutex);
527 0 : dev->going_away = true;
528 0 : mutex_unlock(&dev->mutex);
529 :
530 0 : spin_lock_irq(&dev->event_lock);
531 :
532 : /*
533 : * Simulate keyup events for all pressed keys so that handlers
534 : * are not left with "stuck" keys. The driver may continue
535 : * generate events even after we done here but they will not
536 : * reach any handlers.
537 : */
538 0 : if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
539 0 : for (code = 0; code <= KEY_MAX; code++) {
540 0 : if (is_event_supported(code, dev->keybit, KEY_MAX) &&
541 0 : __test_and_clear_bit(code, dev->key)) {
542 0 : input_pass_event(dev, EV_KEY, code, 0);
543 : }
544 : }
545 0 : input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
546 : }
547 :
548 0 : list_for_each_entry(handle, &dev->h_list, d_node)
549 0 : handle->open = 0;
550 0 :
551 0 : spin_unlock_irq(&dev->event_lock);
552 0 : }
553 :
554 : static int input_fetch_keycode(struct input_dev *dev, int scancode)
555 : {
556 : switch (dev->keycodesize) {
557 0 : case 1:
558 0 : return ((u8 *)dev->keycode)[scancode];
559 0 :
560 0 : case 2:
561 0 : return ((u16 *)dev->keycode)[scancode];
562 0 :
563 0 : default:
564 0 : return ((u32 *)dev->keycode)[scancode];
565 : }
566 : }
567 :
568 : static int input_default_getkeycode(struct input_dev *dev,
569 : int scancode, int *keycode)
570 : {
571 0 : if (!dev->keycodesize)
572 0 : return -EINVAL;
573 :
574 0 : if (scancode >= dev->keycodemax)
575 0 : return -EINVAL;
576 :
577 0 : *keycode = input_fetch_keycode(dev, scancode);
578 :
579 0 : return 0;
580 : }
581 :
582 : static int input_default_setkeycode(struct input_dev *dev,
583 : int scancode, int keycode)
584 0 : {
585 0 : int old_keycode;
586 0 : int i;
587 0 :
588 0 : if (scancode >= dev->keycodemax)
589 0 : return -EINVAL;
590 :
591 0 : if (!dev->keycodesize)
592 0 : return -EINVAL;
593 :
594 0 : if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
595 0 : return -EINVAL;
596 :
597 : switch (dev->keycodesize) {
598 0 : case 1: {
599 0 : u8 *k = (u8 *)dev->keycode;
600 0 : old_keycode = k[scancode];
601 0 : k[scancode] = keycode;
602 0 : break;
603 0 : }
604 0 : case 2: {
605 0 : u16 *k = (u16 *)dev->keycode;
606 0 : old_keycode = k[scancode];
607 0 : k[scancode] = keycode;
608 0 : break;
609 0 : }
610 0 : default: {
611 0 : u32 *k = (u32 *)dev->keycode;
612 0 : old_keycode = k[scancode];
613 0 : k[scancode] = keycode;
614 0 : break;
615 : }
616 : }
617 :
618 0 : clear_bit(old_keycode, dev->keybit);
619 0 : set_bit(keycode, dev->keybit);
620 :
621 0 : for (i = 0; i < dev->keycodemax; i++) {
622 0 : if (input_fetch_keycode(dev, i) == old_keycode) {
623 0 : set_bit(old_keycode, dev->keybit);
624 0 : break; /* Setting the bit twice is useless, so break */
625 : }
626 : }
627 0 :
628 0 : return 0;
629 : }
630 :
631 : /**
632 : * input_get_keycode - retrieve keycode currently mapped to a given scancode
633 : * @dev: input device which keymap is being queried
634 : * @scancode: scancode (or its equivalent for device in question) for which
635 : * keycode is needed
636 : * @keycode: result
637 : *
638 : * This function should be called by anyone interested in retrieving current
639 : * keymap. Presently keyboard and evdev handlers use it.
640 : */
641 : int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
642 : {
643 0 : if (scancode < 0)
644 0 : return -EINVAL;
645 :
646 0 : return dev->getkeycode(dev, scancode, keycode);
647 : }
648 : EXPORT_SYMBOL(input_get_keycode);
649 :
650 : /**
651 : * input_get_keycode - assign new keycode to a given scancode
652 : * @dev: input device which keymap is being updated
653 : * @scancode: scancode (or its equivalent for device in question)
654 : * @keycode: new keycode to be assigned to the scancode
655 : *
656 : * This function should be called by anyone needing to update current
657 : * keymap. Presently keyboard and evdev handlers use it.
658 : */
659 : int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
660 : {
661 0 : unsigned long flags;
662 0 : int old_keycode;
663 0 : int retval;
664 0 :
665 0 : if (scancode < 0)
666 0 : return -EINVAL;
667 0 :
668 0 : if (keycode < 0 || keycode > KEY_MAX)
669 0 : return -EINVAL;
670 :
671 0 : spin_lock_irqsave(&dev->event_lock, flags);
672 :
673 0 : retval = dev->getkeycode(dev, scancode, &old_keycode);
674 0 : if (retval)
675 0 : goto out;
676 :
677 0 : retval = dev->setkeycode(dev, scancode, keycode);
678 0 : if (retval)
679 0 : goto out;
680 :
681 : /*
682 : * Simulate keyup event if keycode is not present
683 : * in the keymap anymore
684 : */
685 0 : if (test_bit(EV_KEY, dev->evbit) &&
686 : !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
687 : __test_and_clear_bit(old_keycode, dev->key)) {
688 :
689 0 : input_pass_event(dev, EV_KEY, old_keycode, 0);
690 0 : if (dev->sync)
691 0 : input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
692 : }
693 :
694 : out:
695 0 : spin_unlock_irqrestore(&dev->event_lock, flags);
696 :
697 0 : return retval;
698 : }
699 : EXPORT_SYMBOL(input_set_keycode);
700 :
701 : #define MATCH_BIT(bit, max) \
702 : for (i = 0; i < BITS_TO_LONGS(max); i++) \
703 : if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
704 : break; \
705 0 : if (i != BITS_TO_LONGS(max)) \
706 : continue;
707 :
708 : static const struct input_device_id *input_match_device(const struct input_device_id *id,
709 : struct input_dev *dev)
710 : {
711 0 : int i;
712 :
713 0 : for (; id->flags || id->driver_info; id++) {
714 0 :
715 0 : if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
716 0 : if (id->bustype != dev->id.bustype)
717 0 : continue;
718 :
719 0 : if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
720 0 : if (id->vendor != dev->id.vendor)
721 0 : continue;
722 :
723 0 : if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
724 0 : if (id->product != dev->id.product)
725 0 : continue;
726 :
727 0 : if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
728 0 : if (id->version != dev->id.version)
729 0 : continue;
730 :
731 0 : MATCH_BIT(evbit, EV_MAX);
732 0 : MATCH_BIT(keybit, KEY_MAX);
733 0 : MATCH_BIT(relbit, REL_MAX);
734 0 : MATCH_BIT(absbit, ABS_MAX);
735 0 : MATCH_BIT(mscbit, MSC_MAX);
736 0 : MATCH_BIT(ledbit, LED_MAX);
737 0 : MATCH_BIT(sndbit, SND_MAX);
738 0 : MATCH_BIT(ffbit, FF_MAX);
739 0 : MATCH_BIT(swbit, SW_MAX);
740 0 :
741 0 : return id;
742 0 : }
743 0 :
744 0 : return NULL;
745 0 : }
746 :
747 : static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
748 : {
749 0 : const struct input_device_id *id;
750 0 : int error;
751 0 :
752 0 : if (handler->blacklist && input_match_device(handler->blacklist, dev))
753 0 : return -ENODEV;
754 :
755 0 : id = input_match_device(handler->id_table, dev);
756 0 : if (!id)
757 0 : return -ENODEV;
758 :
759 0 : error = handler->connect(handler, dev, id);
760 0 : if (error && error != -ENODEV)
761 0 : printk(KERN_ERR
762 : "input: failed to attach handler %s to device %s, "
763 : "error: %d\n",
764 : handler->name, kobject_name(&dev->dev.kobj), error);
765 :
766 0 : return error;
767 : }
768 :
769 : #ifdef CONFIG_COMPAT
770 :
771 : static int input_bits_to_string(char *buf, int buf_size,
772 : unsigned long bits, bool skip_empty)
773 39 : {
774 78 : int len = 0;
775 39 :
776 195 : if (INPUT_COMPAT_TEST) {
777 78 : u32 dword = bits >> 32;
778 195 : if (dword || !skip_empty)
779 117 : len += snprintf(buf, buf_size, "%x ", dword);
780 39 :
781 39 : dword = bits & 0xffffffffUL;
782 234 : if (dword || !skip_empty || len)
783 351 : len += snprintf(buf + len, max(buf_size - len, 0),
784 : "%x", dword);
785 : } else {
786 156 : if (bits || !skip_empty)
787 78 : len += snprintf(buf, buf_size, "%lx", bits);
788 : }
789 :
790 39 : return len;
791 : }
792 :
793 : #else /* !CONFIG_COMPAT */
794 :
795 : static int input_bits_to_string(char *buf, int buf_size,
796 : unsigned long bits, bool skip_empty)
797 : {
798 : return bits || !skip_empty ?
799 : snprintf(buf, buf_size, "%lx", bits) : 0;
800 : }
801 :
802 : #endif
803 :
804 : #ifdef CONFIG_PROC_FS
805 :
806 1 : static struct proc_dir_entry *proc_bus_input_dir;
807 1 : static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
808 1 : static int input_devices_state;
809 :
810 : static inline void input_wakeup_procfs_readers(void)
811 : {
812 0 : input_devices_state++;
813 0 : wake_up(&input_devices_poll_wait);
814 0 : }
815 :
816 : static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
817 : {
818 2 : poll_wait(file, &input_devices_poll_wait, wait);
819 2 : if (file->f_version != input_devices_state) {
820 1 : file->f_version = input_devices_state;
821 1 : return POLLIN | POLLRDNORM;
822 : }
823 :
824 1 : return 0;
825 : }
826 2 :
827 : union input_seq_state {
828 : struct {
829 : unsigned short pos;
830 : bool mutex_acquired;
831 : };
832 : void *p;
833 : };
834 :
835 : static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
836 : {
837 4 : union input_seq_state *state = (union input_seq_state *)&seq->private;
838 2 : int error;
839 2 :
840 2 : /* We need to fit into seq->private pointer */
841 : BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
842 :
843 2 : error = mutex_lock_interruptible(&input_mutex);
844 4 : if (error) {
845 2 : state->mutex_acquired = false;
846 6 : return ERR_PTR(error);
847 : }
848 :
849 2 : state->mutex_acquired = true;
850 :
851 4 : return seq_list_start(&input_dev_list, *pos);
852 : }
853 :
854 : static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
855 : {
856 6 : return seq_list_next(v, &input_dev_list, pos);
857 : }
858 :
859 : static void input_seq_stop(struct seq_file *seq, void *v)
860 : {
861 8 : union input_seq_state *state = (union input_seq_state *)&seq->private;
862 :
863 8 : if (state->mutex_acquired)
864 4 : mutex_unlock(&input_mutex);
865 4 : }
866 :
867 : static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
868 : unsigned long *bitmap, int max)
869 : {
870 18 : int i;
871 36 : bool skip_empty = true;
872 18 : char buf[18];
873 18 :
874 18 : seq_printf(seq, "B: %s=", name);
875 :
876 90 : for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
877 108 : if (input_bits_to_string(buf, sizeof(buf),
878 18 : bitmap[i], skip_empty)) {
879 18 : skip_empty = false;
880 108 : seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
881 : }
882 : }
883 :
884 : /*
885 : * If no output was produced print a single 0.
886 : */
887 36 : if (skip_empty)
888 18 : seq_puts(seq, "0");
889 :
890 18 : seq_putc(seq, '\n');
891 18 : }
892 :
893 : static int input_devices_seq_show(struct seq_file *seq, void *v)
894 : {
895 6 : struct input_dev *dev = container_of(v, struct input_dev, node);
896 6 : const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
897 2 : struct input_handle *handle;
898 2 :
899 4 : seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
900 2 : dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
901 2 :
902 16 : seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
903 16 : seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
904 14 : seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
905 16 : seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
906 4 : seq_printf(seq, "H: Handlers=");
907 2 :
908 18 : list_for_each_entry(handle, &dev->h_list, d_node)
909 6 : seq_printf(seq, "%s ", handle->name);
910 6 : seq_putc(seq, '\n');
911 :
912 4 : input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
913 8 : if (test_bit(EV_KEY, dev->evbit))
914 4 : input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
915 12 : if (test_bit(EV_REL, dev->evbit))
916 4 : input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
917 12 : if (test_bit(EV_ABS, dev->evbit))
918 4 : input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
919 12 : if (test_bit(EV_MSC, dev->evbit))
920 4 : input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
921 12 : if (test_bit(EV_LED, dev->evbit))
922 4 : input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
923 12 : if (test_bit(EV_SND, dev->evbit))
924 4 : input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
925 12 : if (test_bit(EV_FF, dev->evbit))
926 4 : input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
927 12 : if (test_bit(EV_SW, dev->evbit))
928 4 : input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
929 :
930 4 : seq_putc(seq, '\n');
931 :
932 4 : kfree(path);
933 4 : return 0;
934 : }
935 :
936 1 : static const struct seq_operations input_devices_seq_ops = {
937 : .start = input_devices_seq_start,
938 : .next = input_devices_seq_next,
939 : .stop = input_seq_stop,
940 : .show = input_devices_seq_show,
941 : };
942 :
943 : static int input_proc_devices_open(struct inode *inode, struct file *file)
944 : {
945 4 : return seq_open(file, &input_devices_seq_ops);
946 : }
947 :
948 1 : static const struct file_operations input_devices_fileops = {
949 : .owner = THIS_MODULE,
950 : .open = input_proc_devices_open,
951 : .poll = input_proc_devices_poll,
952 : .read = seq_read,
953 : .llseek = seq_lseek,
954 : .release = seq_release,
955 : };
956 :
957 : static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
958 : {
959 4 : union input_seq_state *state = (union input_seq_state *)&seq->private;
960 2 : int error;
961 2 :
962 2 : /* We need to fit into seq->private pointer */
963 : BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
964 :
965 2 : error = mutex_lock_interruptible(&input_mutex);
966 4 : if (error) {
967 2 : state->mutex_acquired = false;
968 6 : return ERR_PTR(error);
969 : }
970 :
971 2 : state->mutex_acquired = true;
972 2 : state->pos = *pos;
973 :
974 4 : return seq_list_start(&input_handler_list, *pos);
975 : }
976 :
977 : static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
978 : {
979 4 : union input_seq_state *state = (union input_seq_state *)&seq->private;
980 2 :
981 2 : state->pos = *pos + 1;
982 4 : return seq_list_next(v, &input_handler_list, pos);
983 : }
984 :
985 : static int input_handlers_seq_show(struct seq_file *seq, void *v)
986 : {
987 6 : struct input_handler *handler = container_of(v, struct input_handler, node);
988 4 : union input_seq_state *state = (union input_seq_state *)&seq->private;
989 2 :
990 2 : seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
991 6 : if (handler->fops)
992 2 : seq_printf(seq, " Minor=%d", handler->minor);
993 2 : seq_putc(seq, '\n');
994 :
995 2 : return 0;
996 : }
997 :
998 1 : static const struct seq_operations input_handlers_seq_ops = {
999 : .start = input_handlers_seq_start,
1000 : .next = input_handlers_seq_next,
1001 : .stop = input_seq_stop,
1002 : .show = input_handlers_seq_show,
1003 : };
1004 :
1005 : static int input_proc_handlers_open(struct inode *inode, struct file *file)
1006 : {
1007 4 : return seq_open(file, &input_handlers_seq_ops);
1008 : }
1009 :
1010 1 : static const struct file_operations input_handlers_fileops = {
1011 : .owner = THIS_MODULE,
1012 : .open = input_proc_handlers_open,
1013 : .read = seq_read,
1014 : .llseek = seq_lseek,
1015 : .release = seq_release,
1016 : };
1017 :
1018 : static int __init input_proc_init(void)
1019 : {
1020 1 : struct proc_dir_entry *entry;
1021 :
1022 1 : proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1023 2 : if (!proc_bus_input_dir)
1024 1 : return -ENOMEM;
1025 :
1026 2 : entry = proc_create("devices", 0, proc_bus_input_dir,
1027 : &input_devices_fileops);
1028 2 : if (!entry)
1029 1 : goto fail1;
1030 :
1031 2 : entry = proc_create("handlers", 0, proc_bus_input_dir,
1032 : &input_handlers_fileops);
1033 2 : if (!entry)
1034 1 : goto fail2;
1035 :
1036 1 : return 0;
1037 1 :
1038 1 : fail2: remove_proc_entry("devices", proc_bus_input_dir);
1039 2 : fail1: remove_proc_entry("bus/input", NULL);
1040 3 : return -ENOMEM;
1041 : }
1042 :
1043 : static void input_proc_exit(void)
1044 : {
1045 3 : remove_proc_entry("devices", proc_bus_input_dir);
1046 3 : remove_proc_entry("handlers", proc_bus_input_dir);
1047 3 : remove_proc_entry("bus/input", NULL);
1048 3 : }
1049 :
1050 : #else /* !CONFIG_PROC_FS */
1051 : static inline void input_wakeup_procfs_readers(void) { }
1052 : static inline int input_proc_init(void) { return 0; }
1053 : static inline void input_proc_exit(void) { }
1054 : #endif
1055 :
1056 : #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1057 : static ssize_t input_dev_show_##name(struct device *dev, \
1058 : struct device_attribute *attr, \
1059 : char *buf) \
1060 : { \
1061 : struct input_dev *input_dev = to_input_dev(dev); \
1062 : \
1063 : return scnprintf(buf, PAGE_SIZE, "%s\n", \
1064 : input_dev->name ? input_dev->name : ""); \
1065 : } \
1066 : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1067 :
1068 11 : INPUT_DEV_STRING_ATTR_SHOW(name);
1069 11 : INPUT_DEV_STRING_ATTR_SHOW(phys);
1070 11 : INPUT_DEV_STRING_ATTR_SHOW(uniq);
1071 1 :
1072 2 : static int input_print_modalias_bits(char *buf, int size,
1073 3 : char name, unsigned long *bm,
1074 2 : unsigned int min_bit, unsigned int max_bit)
1075 28 : {
1076 54 : int len = 0, i;
1077 27 :
1078 270 : len += snprintf(buf, max(size, 0), "%c", name);
1079 162 : for (i = min_bit; i < max_bit; i++)
1080 135 : if (bm[BIT_WORD(i)] & BIT_MASK(i))
1081 297 : len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1082 54 : return len;
1083 : }
1084 :
1085 : static int input_print_modalias(char *buf, int size, struct input_dev *id,
1086 : int add_cr)
1087 3 : {
1088 3 : int len;
1089 3 :
1090 27 : len = snprintf(buf, max(size, 0),
1091 3 : "input:b%04Xv%04Xp%04Xe%04X-",
1092 3 : id->id.bustype, id->id.vendor,
1093 3 : id->id.product, id->id.version);
1094 3 :
1095 12 : len += input_print_modalias_bits(buf + len, size - len,
1096 3 : 'e', id->evbit, 0, EV_MAX);
1097 12 : len += input_print_modalias_bits(buf + len, size - len,
1098 3 : 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1099 12 : len += input_print_modalias_bits(buf + len, size - len,
1100 3 : 'r', id->relbit, 0, REL_MAX);
1101 12 : len += input_print_modalias_bits(buf + len, size - len,
1102 : 'a', id->absbit, 0, ABS_MAX);
1103 9 : len += input_print_modalias_bits(buf + len, size - len,
1104 : 'm', id->mscbit, 0, MSC_MAX);
1105 9 : len += input_print_modalias_bits(buf + len, size - len,
1106 : 'l', id->ledbit, 0, LED_MAX);
1107 9 : len += input_print_modalias_bits(buf + len, size - len,
1108 : 's', id->sndbit, 0, SND_MAX);
1109 9 : len += input_print_modalias_bits(buf + len, size - len,
1110 : 'f', id->ffbit, 0, FF_MAX);
1111 9 : len += input_print_modalias_bits(buf + len, size - len,
1112 : 'w', id->swbit, 0, SW_MAX);
1113 :
1114 6 : if (add_cr)
1115 27 : len += snprintf(buf + len, max(size - len, 0), "\n");
1116 :
1117 3 : return len;
1118 : }
1119 :
1120 : static ssize_t input_dev_show_modalias(struct device *dev,
1121 : struct device_attribute *attr,
1122 : char *buf)
1123 1 : {
1124 3 : struct input_dev *id = to_input_dev(dev);
1125 1 : ssize_t len;
1126 1 :
1127 4 : len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1128 1 :
1129 8 : return min_t(int, len, PAGE_SIZE);
1130 : }
1131 1 : static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1132 :
1133 1 : static struct attribute *input_dev_attrs[] = {
1134 : &dev_attr_name.attr,
1135 : &dev_attr_phys.attr,
1136 : &dev_attr_uniq.attr,
1137 : &dev_attr_modalias.attr,
1138 : NULL
1139 : };
1140 :
1141 1 : static struct attribute_group input_dev_attr_group = {
1142 : .attrs = input_dev_attrs,
1143 : };
1144 :
1145 : #define INPUT_DEV_ID_ATTR(name) \
1146 : static ssize_t input_dev_show_id_##name(struct device *dev, \
1147 : struct device_attribute *attr, \
1148 : char *buf) \
1149 : { \
1150 : struct input_dev *input_dev = to_input_dev(dev); \
1151 : return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1152 : } \
1153 : static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1154 :
1155 5 : INPUT_DEV_ID_ATTR(bustype);
1156 5 : INPUT_DEV_ID_ATTR(vendor);
1157 5 : INPUT_DEV_ID_ATTR(product);
1158 6 : INPUT_DEV_ID_ATTR(version);
1159 2 :
1160 4 : static struct attribute *input_dev_id_attrs[] = {
1161 3 : &dev_attr_bustype.attr,
1162 2 : &dev_attr_vendor.attr,
1163 1 : &dev_attr_product.attr,
1164 : &dev_attr_version.attr,
1165 : NULL
1166 : };
1167 :
1168 1 : static struct attribute_group input_dev_id_attr_group = {
1169 : .name = "id",
1170 : .attrs = input_dev_id_attrs,
1171 : };
1172 :
1173 : static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1174 : int max, int add_cr)
1175 : {
1176 21 : int i;
1177 42 : int len = 0;
1178 42 : bool skip_empty = true;
1179 21 :
1180 126 : for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1181 273 : len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1182 42 : bitmap[i], skip_empty);
1183 63 : if (len) {
1184 42 : skip_empty = false;
1185 63 : if (i > 0)
1186 210 : len += snprintf(buf + len, max(buf_size - len, 0), " ");
1187 21 : }
1188 : }
1189 :
1190 : /*
1191 : * If no output was produced print a single 0.
1192 : */
1193 42 : if (len == 0)
1194 21 : len = snprintf(buf, buf_size, "%d", 0);
1195 :
1196 42 : if (add_cr)
1197 189 : len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1198 :
1199 21 : return len;
1200 : }
1201 :
1202 : #define INPUT_DEV_CAP_ATTR(ev, bm) \
1203 : static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1204 : struct device_attribute *attr, \
1205 : char *buf) \
1206 : { \
1207 : struct input_dev *input_dev = to_input_dev(dev); \
1208 : int len = input_print_bitmap(buf, PAGE_SIZE, \
1209 : input_dev->bm##bit, ev##_MAX, \
1210 : true); \
1211 : return min_t(int, len, PAGE_SIZE); \
1212 : } \
1213 : static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1214 :
1215 14 : INPUT_DEV_CAP_ATTR(EV, ev);
1216 14 : INPUT_DEV_CAP_ATTR(KEY, key);
1217 14 : INPUT_DEV_CAP_ATTR(REL, rel);
1218 15 : INPUT_DEV_CAP_ATTR(ABS, abs);
1219 16 : INPUT_DEV_CAP_ATTR(MSC, msc);
1220 17 : INPUT_DEV_CAP_ATTR(LED, led);
1221 18 : INPUT_DEV_CAP_ATTR(SND, snd);
1222 19 : INPUT_DEV_CAP_ATTR(FF, ff);
1223 20 : INPUT_DEV_CAP_ATTR(SW, sw);
1224 6 :
1225 7 : static struct attribute *input_dev_caps_attrs[] = {
1226 6 : &dev_attr_ev.attr,
1227 5 : &dev_attr_key.attr,
1228 4 : &dev_attr_rel.attr,
1229 3 : &dev_attr_abs.attr,
1230 2 : &dev_attr_msc.attr,
1231 1 : &dev_attr_led.attr,
1232 : &dev_attr_snd.attr,
1233 : &dev_attr_ff.attr,
1234 : &dev_attr_sw.attr,
1235 : NULL
1236 : };
1237 :
1238 1 : static struct attribute_group input_dev_caps_attr_group = {
1239 : .name = "capabilities",
1240 : .attrs = input_dev_caps_attrs,
1241 : };
1242 :
1243 1 : static const struct attribute_group *input_dev_attr_groups[] = {
1244 : &input_dev_attr_group,
1245 : &input_dev_id_attr_group,
1246 : &input_dev_caps_attr_group,
1247 : NULL
1248 : };
1249 :
1250 : static void input_dev_release(struct device *device)
1251 : {
1252 3 : struct input_dev *dev = to_input_dev(device);
1253 1 :
1254 2 : input_ff_destroy(dev);
1255 1 : kfree(dev);
1256 :
1257 2 : module_put(THIS_MODULE);
1258 1 : }
1259 :
1260 : /*
1261 : * Input uevent interface - loading event handlers based on
1262 : * device bitfields.
1263 : */
1264 : static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1265 : const char *name, unsigned long *bitmap, int max)
1266 : {
1267 12 : int len;
1268 12 :
1269 48 : if (add_uevent_var(env, "%s=", name))
1270 12 : return -ENOMEM;
1271 :
1272 48 : len = input_print_bitmap(&env->buf[env->buflen - 1],
1273 : sizeof(env->buf) - env->buflen,
1274 : bitmap, max, false);
1275 36 : if (len >= (sizeof(env->buf) - env->buflen))
1276 12 : return -ENOMEM;
1277 :
1278 12 : env->buflen += len;
1279 12 : return 0;
1280 : }
1281 :
1282 : static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1283 : struct input_dev *dev)
1284 2 : {
1285 2 : int len;
1286 :
1287 8 : if (add_uevent_var(env, "MODALIAS="))
1288 2 : return -ENOMEM;
1289 :
1290 8 : len = input_print_modalias(&env->buf[env->buflen - 1],
1291 : sizeof(env->buf) - env->buflen,
1292 : dev, 0);
1293 6 : if (len >= (sizeof(env->buf) - env->buflen))
1294 2 : return -ENOMEM;
1295 :
1296 2 : env->buflen += len;
1297 2 : return 0;
1298 : }
1299 :
1300 : #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1301 : do { \
1302 : int err = add_uevent_var(env, fmt, val); \
1303 : if (err) \
1304 : return err; \
1305 : } while (0)
1306 :
1307 : #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1308 : do { \
1309 : int err = input_add_uevent_bm_var(env, name, bm, max); \
1310 : if (err) \
1311 : return err; \
1312 : } while (0)
1313 :
1314 : #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1315 : do { \
1316 : int err = input_add_uevent_modalias_var(env, dev); \
1317 : if (err) \
1318 : return err; \
1319 : } while (0)
1320 :
1321 : static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1322 : {
1323 3 : struct input_dev *dev = to_input_dev(device);
1324 1 :
1325 7 : INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1326 1 : dev->id.bustype, dev->id.vendor,
1327 1 : dev->id.product, dev->id.version);
1328 4 : if (dev->name)
1329 7 : INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1330 7 : if (dev->phys)
1331 9 : INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1332 10 : if (dev->uniq)
1333 11 : INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1334 1 :
1335 17 : INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1336 5 : if (test_bit(EV_KEY, dev->evbit))
1337 8 : INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1338 7 : if (test_bit(EV_REL, dev->evbit))
1339 8 : INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1340 7 : if (test_bit(EV_ABS, dev->evbit))
1341 8 : INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1342 7 : if (test_bit(EV_MSC, dev->evbit))
1343 8 : INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1344 7 : if (test_bit(EV_LED, dev->evbit))
1345 8 : INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1346 7 : if (test_bit(EV_SND, dev->evbit))
1347 8 : INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1348 7 : if (test_bit(EV_FF, dev->evbit))
1349 8 : INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1350 7 : if (test_bit(EV_SW, dev->evbit))
1351 8 : INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1352 1 :
1353 11 : INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1354 1 :
1355 2 : return 0;
1356 1 : }
1357 1 :
1358 1 : #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1359 1 : do { \
1360 1 : int i; \
1361 : bool active; \
1362 : \
1363 : if (!test_bit(EV_##type, dev->evbit)) \
1364 : break; \
1365 : \
1366 : for (i = 0; i < type##_MAX; i++) { \
1367 : if (!test_bit(i, dev->bits##bit)) \
1368 : continue; \
1369 : \
1370 : active = test_bit(i, dev->bits); \
1371 : if (!active && !on) \
1372 : continue; \
1373 : \
1374 : dev->event(dev, EV_##type, i, on ? active : 0); \
1375 : } \
1376 : } while (0)
1377 :
1378 : #ifdef CONFIG_PM
1379 : static void input_dev_reset(struct input_dev *dev, bool activate)
1380 : {
1381 : if (!dev->event)
1382 : return;
1383 :
1384 : INPUT_DO_TOGGLE(dev, LED, led, activate);
1385 : INPUT_DO_TOGGLE(dev, SND, snd, activate);
1386 :
1387 : if (activate && test_bit(EV_REP, dev->evbit)) {
1388 : dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1389 : dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1390 : }
1391 : }
1392 :
1393 : static int input_dev_suspend(struct device *dev)
1394 : {
1395 : struct input_dev *input_dev = to_input_dev(dev);
1396 :
1397 : mutex_lock(&input_dev->mutex);
1398 : input_dev_reset(input_dev, false);
1399 : mutex_unlock(&input_dev->mutex);
1400 :
1401 : return 0;
1402 : }
1403 :
1404 : static int input_dev_resume(struct device *dev)
1405 : {
1406 : struct input_dev *input_dev = to_input_dev(dev);
1407 :
1408 : mutex_lock(&input_dev->mutex);
1409 : input_dev_reset(input_dev, true);
1410 : mutex_unlock(&input_dev->mutex);
1411 :
1412 : return 0;
1413 : }
1414 :
1415 : static const struct dev_pm_ops input_dev_pm_ops = {
1416 : .suspend = input_dev_suspend,
1417 : .resume = input_dev_resume,
1418 : .poweroff = input_dev_suspend,
1419 : .restore = input_dev_resume,
1420 : };
1421 : #endif /* CONFIG_PM */
1422 :
1423 1 : static struct device_type input_dev_type = {
1424 : .groups = input_dev_attr_groups,
1425 : .release = input_dev_release,
1426 : .uevent = input_dev_uevent,
1427 : #ifdef CONFIG_PM
1428 : .pm = &input_dev_pm_ops,
1429 : #endif
1430 : };
1431 :
1432 : static char *input_devnode(struct device *dev, mode_t *mode)
1433 : {
1434 5 : return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1435 1 : }
1436 :
1437 1 : struct class input_class = {
1438 : .name = "input",
1439 : .devnode = input_devnode,
1440 : };
1441 : EXPORT_SYMBOL_GPL(input_class);
1442 :
1443 : /**
1444 : * input_allocate_device - allocate memory for new input device
1445 : *
1446 : * Returns prepared struct input_dev or NULL.
1447 : *
1448 : * NOTE: Use input_free_device() to free devices that have not been
1449 : * registered; input_unregister_device() should be used for already
1450 : * registered devices.
1451 : */
1452 : struct input_dev *input_allocate_device(void)
1453 : {
1454 0 : struct input_dev *dev;
1455 0 :
1456 0 : dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1457 0 : if (dev) {
1458 0 : dev->dev.type = &input_dev_type;
1459 0 : dev->dev.class = &input_class;
1460 0 : device_initialize(&dev->dev);
1461 0 : mutex_init(&dev->mutex);
1462 0 : spin_lock_init(&dev->event_lock);
1463 0 : INIT_LIST_HEAD(&dev->h_list);
1464 0 : INIT_LIST_HEAD(&dev->node);
1465 :
1466 0 : __module_get(THIS_MODULE);
1467 : }
1468 :
1469 0 : return dev;
1470 : }
1471 : EXPORT_SYMBOL(input_allocate_device);
1472 :
1473 : /**
1474 : * input_free_device - free memory occupied by input_dev structure
1475 : * @dev: input device to free
1476 : *
1477 : * This function should only be used if input_register_device()
1478 : * was not called yet or if it failed. Once device was registered
1479 : * use input_unregister_device() and memory will be freed once last
1480 : * reference to the device is dropped.
1481 : *
1482 : * Device should be allocated by input_allocate_device().
1483 : *
1484 : * NOTE: If there are references to the input device then memory
1485 : * will not be freed until last reference is dropped.
1486 : */
1487 : void input_free_device(struct input_dev *dev)
1488 : {
1489 0 : if (dev)
1490 0 : input_put_device(dev);
1491 0 : }
1492 : EXPORT_SYMBOL(input_free_device);
1493 :
1494 : /**
1495 : * input_set_capability - mark device as capable of a certain event
1496 : * @dev: device that is capable of emitting or accepting event
1497 : * @type: type of the event (EV_KEY, EV_REL, etc...)
1498 : * @code: event code
1499 : *
1500 : * In addition to setting up corresponding bit in appropriate capability
1501 : * bitmap the function also adjusts dev->evbit.
1502 : */
1503 : void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1504 : {
1505 : switch (type) {
1506 0 : case EV_KEY:
1507 0 : __set_bit(code, dev->keybit);
1508 0 : break;
1509 0 :
1510 0 : case EV_REL:
1511 0 : __set_bit(code, dev->relbit);
1512 0 : break;
1513 0 :
1514 0 : case EV_ABS:
1515 0 : __set_bit(code, dev->absbit);
1516 0 : break;
1517 0 :
1518 0 : case EV_MSC:
1519 0 : __set_bit(code, dev->mscbit);
1520 0 : break;
1521 0 :
1522 0 : case EV_SW:
1523 0 : __set_bit(code, dev->swbit);
1524 0 : break;
1525 0 :
1526 0 : case EV_LED:
1527 0 : __set_bit(code, dev->ledbit);
1528 0 : break;
1529 0 :
1530 0 : case EV_SND:
1531 0 : __set_bit(code, dev->sndbit);
1532 0 : break;
1533 0 :
1534 0 : case EV_FF:
1535 0 : __set_bit(code, dev->ffbit);
1536 0 : break;
1537 0 :
1538 0 : case EV_PWR:
1539 : /* do nothing */
1540 0 : break;
1541 0 :
1542 0 : default:
1543 0 : printk(KERN_ERR
1544 : "input_set_capability: unknown type %u (code %u)\n",
1545 : type, code);
1546 0 : dump_stack();
1547 0 : return;
1548 : }
1549 :
1550 0 : __set_bit(type, dev->evbit);
1551 0 : }
1552 : EXPORT_SYMBOL(input_set_capability);
1553 :
1554 : /**
1555 : * input_register_device - register device with input core
1556 : * @dev: device to be registered
1557 : *
1558 : * This function registers device with input core. The device must be
1559 : * allocated with input_allocate_device() and all it's capabilities
1560 : * set up before registering.
1561 : * If function fails the device must be freed with input_free_device().
1562 : * Once device has been successfully registered it can be unregistered
1563 : * with input_unregister_device(); input_free_device() should not be
1564 : * called in this case.
1565 : */
1566 : int input_register_device(struct input_dev *dev)
1567 : {
1568 0 : static atomic_t input_no = ATOMIC_INIT(0);
1569 0 : struct input_handler *handler;
1570 0 : const char *path;
1571 0 : int error;
1572 0 :
1573 0 : __set_bit(EV_SYN, dev->evbit);
1574 0 :
1575 0 : /*
1576 : * If delay and period are pre-set by the driver, then autorepeating
1577 : * is handled by the driver itself and we don't do it in input.c.
1578 : */
1579 :
1580 0 : init_timer(&dev->timer);
1581 0 : if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1582 0 : dev->timer.data = (long) dev;
1583 0 : dev->timer.function = input_repeat_key;
1584 0 : dev->rep[REP_DELAY] = 250;
1585 0 : dev->rep[REP_PERIOD] = 33;
1586 : }
1587 :
1588 0 : if (!dev->getkeycode)
1589 0 : dev->getkeycode = input_default_getkeycode;
1590 :
1591 0 : if (!dev->setkeycode)
1592 0 : dev->setkeycode = input_default_setkeycode;
1593 :
1594 0 : dev_set_name(&dev->dev, "input%ld",
1595 : (unsigned long) atomic_inc_return(&input_no) - 1);
1596 :
1597 0 : error = device_add(&dev->dev);
1598 0 : if (error)
1599 0 : return error;
1600 :
1601 0 : path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1602 0 : printk(KERN_INFO "input: %s as %s\n",
1603 0 : dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1604 0 : kfree(path);
1605 :
1606 0 : error = mutex_lock_interruptible(&input_mutex);
1607 0 : if (error) {
1608 0 : device_del(&dev->dev);
1609 0 : return error;
1610 : }
1611 :
1612 0 : list_add_tail(&dev->node, &input_dev_list);
1613 :
1614 0 : list_for_each_entry(handler, &input_handler_list, node)
1615 0 : input_attach_handler(dev, handler);
1616 0 :
1617 0 : input_wakeup_procfs_readers();
1618 :
1619 0 : mutex_unlock(&input_mutex);
1620 :
1621 0 : return 0;
1622 : }
1623 : EXPORT_SYMBOL(input_register_device);
1624 :
1625 : /**
1626 : * input_unregister_device - unregister previously registered device
1627 : * @dev: device to be unregistered
1628 : *
1629 : * This function unregisters an input device. Once device is unregistered
1630 : * the caller should not try to access it as it may get freed at any moment.
1631 : */
1632 : void input_unregister_device(struct input_dev *dev)
1633 : {
1634 0 : struct input_handle *handle, *next;
1635 0 :
1636 0 : input_disconnect_device(dev);
1637 0 :
1638 0 : mutex_lock(&input_mutex);
1639 0 :
1640 0 : list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1641 0 : handle->handler->disconnect(handle);
1642 0 : WARN_ON(!list_empty(&dev->h_list));
1643 :
1644 0 : del_timer_sync(&dev->timer);
1645 0 : list_del_init(&dev->node);
1646 :
1647 0 : input_wakeup_procfs_readers();
1648 :
1649 0 : mutex_unlock(&input_mutex);
1650 :
1651 0 : device_unregister(&dev->dev);
1652 0 : }
1653 : EXPORT_SYMBOL(input_unregister_device);
1654 :
1655 : /**
1656 : * input_register_handler - register a new input handler
1657 : * @handler: handler to be registered
1658 : *
1659 : * This function registers a new input handler (interface) for input
1660 : * devices in the system and attaches it to all input devices that
1661 : * are compatible with the handler.
1662 : */
1663 : int input_register_handler(struct input_handler *handler)
1664 : {
1665 0 : struct input_dev *dev;
1666 0 : int retval;
1667 0 :
1668 0 : retval = mutex_lock_interruptible(&input_mutex);
1669 0 : if (retval)
1670 0 : return retval;
1671 :
1672 0 : INIT_LIST_HEAD(&handler->h_list);
1673 :
1674 0 : if (handler->fops != NULL) {
1675 0 : if (input_table[handler->minor >> 5]) {
1676 0 : retval = -EBUSY;
1677 0 : goto out;
1678 : }
1679 0 : input_table[handler->minor >> 5] = handler;
1680 : }
1681 :
1682 0 : list_add_tail(&handler->node, &input_handler_list);
1683 :
1684 0 : list_for_each_entry(dev, &input_dev_list, node)
1685 0 : input_attach_handler(dev, handler);
1686 0 :
1687 0 : input_wakeup_procfs_readers();
1688 :
1689 0 : out:
1690 0 : mutex_unlock(&input_mutex);
1691 0 : return retval;
1692 : }
1693 : EXPORT_SYMBOL(input_register_handler);
1694 :
1695 : /**
1696 : * input_unregister_handler - unregisters an input handler
1697 : * @handler: handler to be unregistered
1698 : *
1699 : * This function disconnects a handler from its input devices and
1700 : * removes it from lists of known handlers.
1701 : */
1702 : void input_unregister_handler(struct input_handler *handler)
1703 : {
1704 0 : struct input_handle *handle, *next;
1705 0 :
1706 0 : mutex_lock(&input_mutex);
1707 0 :
1708 0 : list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1709 0 : handler->disconnect(handle);
1710 0 : WARN_ON(!list_empty(&handler->h_list));
1711 0 :
1712 0 : list_del_init(&handler->node);
1713 :
1714 0 : if (handler->fops != NULL)
1715 0 : input_table[handler->minor >> 5] = NULL;
1716 :
1717 0 : input_wakeup_procfs_readers();
1718 :
1719 0 : mutex_unlock(&input_mutex);
1720 0 : }
1721 : EXPORT_SYMBOL(input_unregister_handler);
1722 :
1723 : /**
1724 : * input_handler_for_each_handle - handle iterator
1725 : * @handler: input handler to iterate
1726 : * @data: data for the callback
1727 : * @fn: function to be called for each handle
1728 : *
1729 : * Iterate over @bus's list of devices, and call @fn for each, passing
1730 : * it @data and stop when @fn returns a non-zero value. The function is
1731 : * using RCU to traverse the list and therefore may be usind in atonic
1732 : * contexts. The @fn callback is invoked from RCU critical section and
1733 : * thus must not sleep.
1734 : */
1735 : int input_handler_for_each_handle(struct input_handler *handler, void *data,
1736 : int (*fn)(struct input_handle *, void *))
1737 : {
1738 0 : struct input_handle *handle;
1739 0 : int retval = 0;
1740 0 :
1741 0 : rcu_read_lock();
1742 0 :
1743 0 : list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1744 0 : retval = fn(handle, data);
1745 0 : if (retval)
1746 0 : break;
1747 : }
1748 :
1749 0 : rcu_read_unlock();
1750 :
1751 0 : return retval;
1752 : }
1753 : EXPORT_SYMBOL(input_handler_for_each_handle);
1754 :
1755 : /**
1756 : * input_register_handle - register a new input handle
1757 : * @handle: handle to register
1758 : *
1759 : * This function puts a new input handle onto device's
1760 : * and handler's lists so that events can flow through
1761 : * it once it is opened using input_open_device().
1762 : *
1763 : * This function is supposed to be called from handler's
1764 : * connect() method.
1765 : */
1766 : int input_register_handle(struct input_handle *handle)
1767 : {
1768 0 : struct input_handler *handler = handle->handler;
1769 0 : struct input_dev *dev = handle->dev;
1770 0 : int error;
1771 :
1772 : /*
1773 : * We take dev->mutex here to prevent race with
1774 : * input_release_device().
1775 : */
1776 0 : error = mutex_lock_interruptible(&dev->mutex);
1777 0 : if (error)
1778 0 : return error;
1779 0 : list_add_tail_rcu(&handle->d_node, &dev->h_list);
1780 0 : mutex_unlock(&dev->mutex);
1781 :
1782 : /*
1783 : * Since we are supposed to be called from ->connect()
1784 : * which is mutually exclusive with ->disconnect()
1785 : * we can't be racing with input_unregister_handle()
1786 : * and so separate lock is not needed here.
1787 : */
1788 0 : list_add_tail_rcu(&handle->h_node, &handler->h_list);
1789 :
1790 0 : if (handler->start)
1791 0 : handler->start(handle);
1792 :
1793 0 : return 0;
1794 : }
1795 : EXPORT_SYMBOL(input_register_handle);
1796 :
1797 : /**
1798 : * input_unregister_handle - unregister an input handle
1799 : * @handle: handle to unregister
1800 : *
1801 : * This function removes input handle from device's
1802 : * and handler's lists.
1803 : *
1804 : * This function is supposed to be called from handler's
1805 : * disconnect() method.
1806 : */
1807 : void input_unregister_handle(struct input_handle *handle)
1808 : {
1809 0 : struct input_dev *dev = handle->dev;
1810 :
1811 0 : list_del_rcu(&handle->h_node);
1812 :
1813 : /*
1814 : * Take dev->mutex to prevent race with input_release_device().
1815 : */
1816 0 : mutex_lock(&dev->mutex);
1817 0 : list_del_rcu(&handle->d_node);
1818 0 : mutex_unlock(&dev->mutex);
1819 :
1820 0 : synchronize_rcu();
1821 0 : }
1822 : EXPORT_SYMBOL(input_unregister_handle);
1823 :
1824 : static int input_open_file(struct inode *inode, struct file *file)
1825 : {
1826 1 : struct input_handler *handler;
1827 2 : const struct file_operations *old_fops, *new_fops = NULL;
1828 1 : int err;
1829 1 :
1830 2 : lock_kernel();
1831 1 : /* No load-on-demand here? */
1832 4 : handler = input_table[iminor(inode) >> 5];
1833 16 : if (!handler || !(new_fops = fops_get(handler->fops))) {
1834 3 : err = -ENODEV;
1835 3 : goto out;
1836 : }
1837 :
1838 : /*
1839 : * That's _really_ odd. Usually NULL ->open means "nothing special",
1840 : * not "no device". Oh, well...
1841 : */
1842 6 : if (!new_fops->open) {
1843 8 : fops_put(new_fops);
1844 3 : err = -ENODEV;
1845 3 : goto out;
1846 : }
1847 2 : old_fops = file->f_op;
1848 2 : file->f_op = new_fops;
1849 :
1850 8 : err = new_fops->open(inode, file);
1851 :
1852 4 : if (err) {
1853 10 : fops_put(file->f_op);
1854 19 : file->f_op = fops_get(old_fops);
1855 : }
1856 16 : fops_put(old_fops);
1857 : out:
1858 6 : unlock_kernel();
1859 6 : return err;
1860 : }
1861 5 :
1862 1 : static const struct file_operations input_fops = {
1863 : .owner = THIS_MODULE,
1864 : .open = input_open_file,
1865 : };
1866 :
1867 : static void __init input_init_abs_bypass(void)
1868 : {
1869 1 : const unsigned int *p;
1870 :
1871 5 : for (p = input_abs_bypass_init_data; *p; p++)
1872 3 : input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
1873 1 : }
1874 :
1875 : static int __init input_init(void)
1876 : {
1877 1 : int err;
1878 2 :
1879 3 : input_init_abs_bypass();
1880 :
1881 2 : err = class_register(&input_class);
1882 2 : if (err) {
1883 1 : printk(KERN_ERR "input: unable to register input_dev class\n");
1884 1 : return err;
1885 : }
1886 :
1887 4 : err = input_proc_init();
1888 2 : if (err)
1889 1 : goto fail1;
1890 :
1891 2 : err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
1892 2 : if (err) {
1893 1 : printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
1894 1 : goto fail2;
1895 : }
1896 :
1897 1 : return 0;
1898 1 :
1899 2 : fail2: input_proc_exit();
1900 2 : fail1: class_unregister(&input_class);
1901 3 : return err;
1902 : }
1903 :
1904 : static void __exit input_exit(void)
1905 : {
1906 4 : input_proc_exit();
1907 4 : unregister_chrdev(INPUT_MAJOR, "input");
1908 2 : class_unregister(&input_class);
1909 2 : }
1910 :
1911 : subsys_initcall(input_init);
1912 : module_exit(input_exit);
|