
MicroTESK Test Program Generator / User Manual / Simulator memory configuration [Draft]

1

MicroTESK Simulator Memory Configuration

Addresses used by MicroTESK for code and data section can be configured using the following settings:

 (by default, equals 0);

 (by default, equals 0).

The settings are initialized in the method of a template in the following way:

def initialize

 super

 # Memory-related settings

 @base_virtual_address = 0x00001000

 @base_physical_address = 0x00001000

end

Address allocation for code and data sections is done using different mechanisms and must be considered

separately.

Code Sections

NOTE: MicroTESK does not perform memory modeling for code sections. Instructions are not stored in

physical memory and have no physical addresses. They use only virtual addresses.

MicroTESK starts address allocations for code sections at . The VA for the current

allocation is calculated as VA for the previous allocation + size of previous allocation.

Allocation address can be modified using the directive. MicroTESK allows specifying relative and

absolute origins:

 Relative origin: org :delta => n, VA = VA + n

 Absolute origin: org n, VA = + n.

Addresses can be aligned using the directive. By default, align n means align at the border of 2n

bytes.

Data Sections

There two use cases of addressing data which are handled using separate mechanisms:

 Data is allocated in memory using the data{...} construct.

 Data is read or written to memory using load/store instructions.

Loads and stores use the MMU model included into the MicroTESK simulator, which involves address

translation and accesses to cache buffers according to the MMU specifications.

Data sections do not use the MMU model. They place data directly to physical memory starting from

 . Address allocation is controlled by the and directives. They work

similarly to the one used for code sections, but operate with physical addresses:

 Relative origin: org :delta => n, PA = PA + n

 Absolute origin: org n, PA = + n.

MicroTESK Test Program Generator / User Manual / Simulator memory configuration [Draft]

2

Labels in data sections are assigned virtual addresses. To do this, PA is translated into VA. Address

translation does not use the MMU model. Instead, it uses a simplified scheme based on settings that works

as follows:

VA = + (PA -

NOTE: Allocation addresses VA and PA are tracked separately for data and code sections. Therefore, it is

required to take care to avoid address conflicts.

MicroTESK allows using different base addresses for code and data allocations. Data allocations can be

assigned a separate base virtual address. This can be done in the following way (see the pre method of

ArmV8BaseTemplate):

data_config(:text=>'.data', :target=>'M', :base_virtual_address=>0x00002000){

 ...

}

This VA is translated into PA using the simplified address translation scheme (PA =

+ (VA -)) and the result is used as base PA for data allocations.

Method get_address_of

The get_address_of method returns a virtual address associated with a label in a global data section.

The correctness of this address is an issue of correctness of the above-described settings and address

translation logic.

Example: min_max.rb

NOTE: This is a simplified example. It considers PA to be equal VA. This assumption is made because the

address translation mechanism is currently disabled in MMU specifications for ARMv8. Anyway, this should

be enough to illustrate the above-described principles.

Settings:

Setting values are as follows:

 and use the default value 0 (are not initialized).

 for data sections is specified as 0x40180000 (see code below).

data_config(:text=>'.data', :target=>'M', :base_virtual_address=>0x40180000){

 ...

}

Prologue:

Staring VA for code section is specified as 0x2000 (= 0 + origin = 0x2000):

text '.text'

text '.globl _start'

movz x0, vbar_el1_value, 0

msr vbar_el1, x0

bl :_start

org 0x2000

label :_start

MicroTESK Test Program Generator / User Manual / Simulator memory configuration [Draft]

3

Data section:

Data sections starts at VA = 0x40180000 (=0x40180000 + origin=0x0).

VA of :data is 0x40180000 and VA of :end is 0x40180060:

data {

 org 0x0

 label :data

 dword rand(1, 0xffff), rand(1, 0xffff), rand(1, 0xffff), rand(1, 0xffff),

 rand(1, 0xffff), rand(1, 0xffff), rand(1, 0xffff), rand(1, 0xffff),

 rand(1, 0xffff)

 label :end

 space 1

}

Main code:

Code generated for the test case was assigned the following addresses:

0x0000000000002000 adr x0, data

0x0000000000002004 adr x1, end

0x0000000000002008 mov x2, x0

0x000000000000200c ldar x6, [x2, #0]

0x0000000000002010 mov x3, x6

0x0000000000002014 mov x4, x6

for_0000:

0x0000000000002018 cmp x2, x1, LSL #0

0x000000000000201c b.ge exit_for_0000

0x0000000000002020 ldar x6, [x2, #0]

0x0000000000002024 cmp x6, x4, LSL #0

0x0000000000002028 b.gt new_max_value_0000

0x000000000000202c cmp x6, x3, LSL #0

0x0000000000002030 b.lt new_min_value_0000

next_0000:

0x0000000000002034 add x2, x2, #8, LSL #0

0x0000000000002038 b for_0000

new_max_value_0000:

0x000000000000203c mov x4, x6

0x0000000000002040 b next_0000

new_min_value_0000:

0x0000000000002044 mov x3, x6

0x0000000000002048 b next_0000

exit_for_0000:

