
MicroTESK Test Program Generator / User Manual / Test Engine [Draft]

1

Test Engine

Parameters
 is an upper bound for the number of executions of a single branch instruction;

 is an upper bound for the number of execution traces to be returned.

More information on the parameters is given in the “Execution Traces Enumeration” section.

Description
Functioning of the test engine includes the following steps:

1. construction of a branch structure of an abstract test sequence;

2. enumeration of execution traces of the branch structure;

3. concretization of the test sequence for each execution trace:

a. construction of a control code;

b. construction of an initialization code.

Let be the size of the delay slot for an architecture under scrutiny (e.g., for MIPS, and for

ARM).

Branch Structure Construction
Step 1 consists in scanning the instructions of the abstract test sequence and constructing the branch

structure. A branch structure is a finite and nonempty sequence of the kind
 , where

 is a type of the th element, and is a target label of

the th element (it is defined for and elements only). A branch structure satisfies the following

constraints:

1. if and only if ;

2. if , then ;

3. if and only if .

The following features of the branch structure construction should be emphasized:

1. an abstract call is classified as if it is supplied with a situation whose name ends with “if-then”,

e.g.:
beq r1, :label

 do situation('beq-if-then', ...) end

2. an abstract call is classified as if it is supplied with a situation whose name ends with “goto”,

e.g.:
b :label

 do situation('b-goto', ...) end

Execution Traces Enumeration
To describe the next step, it is worth introducing the following denotations. If , then

denotes the index of the or element that proceeds the th element. If , then

 .

Step 2 consists in enumerating execution traces for the constructed branch structure. Given a branch

structure
 , an execution trace is a sequence of the kind

 , where is an

integer, and satisfies the following constraints:

1. ;

MicroTESK Test Program Generator / User Manual / Test Engine [Draft]

2

2. if and only if ;

3. if
 , then

 ;

4. if
 or

if
 and or

if
 and :

a. ;

5. if
 and or

if
 and :

a. if
 :

i. ;

b. if
 :

i.
;

Execution traces are enumerated in a random order. To guide the trace enumeration process, the following

parameters are used:

 specifies the maximum number of occurrences of an or element in an

execution trace:

o a trace, where there exists an index , such that and the number of ’s

occurrences is greater than , is rejected;

o the default value is .

 specifies the upper bound for the number of execution traces to be returned:

o if and the number of execution traces (for a given value of the

 parameter) exceeds , the engine returns the first

 traces;

o the default value is (no limit).

Test Sequence Concretization
Step 3 consists in concretizing the test sequence for the given execution trace. It includes two stages:

1. construction of control code;

2. construction of initialization code.

Stage 1 consists in injecting a special code, so-called control code, into and elements of the

branch structure. The goal is to guarantee that the test sequence is executed as it is specified in the

execution trace. In other words, the control code changes the registers used by the conditional branches in

such a way that every time the instruction is executed, the calculated condition is equal to the one specified

in the execution trace.

The control code construction is based on data streams specified as values of the “stream” parameter of the

situations of the conditional branches, e.g. (MIPS):

beq r1, :label

 do situation('beq-if-then', :stream => 'stream1') end

A data stream can be thought as a pair , where is an array, and is an index. Three code

patterns expressed in the terms of the target assembly language are defined for each data stream type:

 , , and . These

patterns compose a stream preparator, e.g. (ARM):

stream_preparator(:data_source => 'REG', :index_source => 'REG') {

 init {

MicroTESK Test Program Generator / User Manual / Test Engine [Draft]

3

 adr index_source, start_label

 }

 read {

 ldar data_source, index_source

 add index_source, index_source, 8, 0

 }

 write {

 stlr data_source, index_source

 add index_source, index_source, 8, 0

 }

}

A data stream instance is declared as follows (ARM):

data {

 # Array storing the values of the register used by the conditional branch

 label :branch_data

 dword 0x0, 0x0, 0x0, 0x0, ...

}

...

Stream Label Data Address Size

stream :branch_data, x0, x10, 128

Stage 2 consists in constructing an initialization code. It also uses data streams, but in this case, the and

 patterns are applied instead of .

Requirements
Currently, the test engine imposes the following requirements on test templates:

1. Each conditional branch instruction should be supplied with a situation whose name ends with “if-

then”, e.g. (MIPS):
beq r1, :label

 do situation('beq-if-then', ...) end

2. The parameter is obligatory for situations of conditional branch instructions, e.g. (MIPS):
beq r1, :label

 do situation('beq-if-then', :stream => 'branch_data') end

3. A conditional branch instruction’s register should coincide with the register of the

corresponding data stream.

4. and registers of data streams should be pairwise different.

5. registers should not be used inside test templates.

6. Each unconditional branch instruction should be supplied with a situation whose name ends with

“goto”, e.g. (MIPS):
b :label

 do situation('b-goto', ...) end

Limitations
1. Situations of non-branch instructions are ignored.

Example
Here is an example illustrating how the test engine works (ARM).

class BranchGenerationTemplate < ArmV8BaseTemplate

 def pre

MicroTESK Test Program Generator / User Manual / Test Engine [Draft]

4

 super

 data {

 org 0

 align 8

 # Arrays storing the values of the registers of the conditional

branches

 label :branch_data_0

 dword 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0

 label :branch_data_1

 dword 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,

 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0

 }

 # Data stream preparator

 stream_preparator(:data_source => 'REG', :index_source => 'REG') {

 init {

 adr index_source, start_label

 }

 read {

 ldar data_source, index_source

 add index_source, index_source, 8, 0

 }

 write {

 stlr data_source, index_source

 add index_source, index_source, 8, 0

 }

 }

 end

 def run

 # Data stream instances for the conditional branches

 stream :branch_data_0, x0, x10, 32

 stream :branch_data_1, x1, x11, 32

 # Request to the branch test engine:

 # select one execution trace,

 # where each branch instruction is called at most twice

 sequence(:engine => 'branch',

 :branch_exec_limit => 2,

 :trace_count_limit => 1) {

 label :label0

 nop

 cbnz x0, :label0

 do situation('cbnz-if-then', :stream => 'branch_data_0') end

 nop

 cbz x1, :label1

 do situation('cbz-if-then', :stream => 'branch_data_1') end

MicroTESK Test Program Generator / User Manual / Test Engine [Draft]

5

 nop

 b_imm :label0

 do situation('b-goto') end

 label :label1

 nop

 }.run 10 # Repeat 10 times

 end

end

In Step 1, a branch structure is constructed (for ARM,):

0. nop

1. cbnz x0, :label0

2. nop

3. cbz x1, :label1

4. nop

5. b_imm :label0

6. nop

7.

In step 2, a single execution trace (), such that the number of calls of each branch

instruction does not exceed two (), is selected, e.g., :

0. : nop

1. : cbnz x0, :label0

2. : nop

3. : cbnz x0, :label0

4. : nop

5. : cbz x1, :label1

6. : nop

7. :

In step 3, the test sequence is concretized — a control and initialization code is constructed:

 // Initialization code (preparation)

 adr x10, branch_data_0 // init(branch_data_0)

 movz x0, #0x938f, LSL #0 // cbnz: true

 stlr x0, [x10, #0] // write(branch_data_0)

 add x10, x10, #8, LSL #0

 movz x0, #0x0, LSL #0 // cbnz: false

 stlr x0, [x10, #0] // write(branch_data_0)

 add x10, x10, #8, LSL #0

 adr x10, branch_data_0 // init(branch_data_0)

 movz x1, #0x0, LSL #0 // cbz: true

 // Test sequence (stimulus)

label0_0000:

 nop

 ldar x0, [x10, #0] // Control code

 add x10, x10, #8, LSL #0 // read(branch_data_0)

 cbnz x0, label0_0000

 nop

 cbz x1, label1_0000

 nop

 b label0_0000

MicroTESK Test Program Generator / User Manual / Test Engine [Draft]

6

label1_0000:

 nop

