
MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

1

Test template processor
A test template is described as a hierarchy of blocks. Like any other hierarchical structure, a block can be

defined recursively. I.e. a block is defined either as a basic block or as an ordered collection of blocks with

specified parameters (see the «Parameters» section). A basic block is an instruction (or, to be more precise,

an abstract instruction call with partially specified arguments). Here is an example of a block (ARM):

block { # upper level block

 block { # nested block

 add x0, x1, _, _ # basic block

 add x1, x2, _, _

 add x2, x3, _, _

 }

 block {

 sub x0, x1, _, _

 sub x1, x2, _, _

 sub x2, x3, _, _

 }

 block {

 cmp x0, 0, _

 cmp x1, 0, _

 cmp x2, 0, _

 }

}

Note: a non-basic block can be empty:

Each block implements a sequence iterator: iterators of non-basic blocks are constructed from iterators of

nested blocks by applying operations specified by parameters (see the «Parameters» section) to them; a

basic block iterator returns only one sequence that contains only one instruction call.

There are two special cases of block:

Sequence

A block of the type can be considered basic: its iterator returns only a single sequence that

consists of instructions specified in the block. An example for ARM is below.

sequence { # single sequence

 add x0, x1, _, _

 add x1, x2, _, _

 add x2, x3, _, _

}

Atomic

A block of the type is similar for a block. Its iterator also returns only a single sequence

that consists of instructions specified in the block. An important distinction is that this sequence is atomic.

This means that it will never be mixed with other instructions.

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

2

Iterate

A block of the type iterates through sequences returned by its nested blocks. The number of

sequences it returns equals , where is the number of sequences returned by the iterator of

the -th nested block. An example for ARM is below.

iterate { # three sequences of one instruction

 add x0, x1, _, _

 add x1, x2, _, _

 add x2, x3, _, _

}

Parameters
Non-basic blocks can have parameters. They define the algorithm of constructing a block iterator from

iterators of nested blocks. The list of supported parameters:

 — method of combining sequences returned by nested block iterators (see

«Combinator» section);

 — method of modifying a sequence combination (see the «Permutator» section);

 — method of composing a sequence (see the «Compositor» section);

 — method of rearranging sequences (see the «Rearranger» section);

 — method of modifying a sequence (see the «Obfuscator» section).

A method of constructing a block iterator from nested block iterators is presented in the «Description»

section.

Description
The test template processor does its job in the following steps:

1. iterating through instruction sequences;

a. processing each of the sequences with one of the test processors (, and

).

Constructing an iterator of a non-basic block is performed by sequentially applying the following

components:

1. combinator (see the «Combinator» section);

2. permutator (see the «Permutator» section);

3. compositor (see the «Compositor» section);

4. rearranger (see the «Rearranger» section);

5. obfuscator (see the «Obfuscator» section).

Note: it is possible to extend the tool with custom combinators, permutators, compositors, rearrangers and

obfuscators.

Example
Facilities of combinator, permutator, compositor, rearranger and obfuscator are demonstrated in the

following example:

several combined sequences

block(

 :combinator => ‘combinator-name’,

 :permutator => ‘permutator-name’,

 :compositor => ‘compositor-name’,

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

3

 :rearranger => ‘rearranger-name’,

 :obfuscator => ‘obfuscator-name’) {

 # 3 sequences of length 1: {A11}, {A21}, and {A31}

 iterate { # block A

 A11,

 A21,

 A31,

 }

 # 2 sequences of length 2: {B11, B12}, and {B21, B22}

 iterate { # block B

 sequence { B11, B12 }

 sequence { B21, B22 }

 }

 # 1 sequence of length 3: {C11, C12, C13}

 iterate { # block C

 sequence { C11, C12, C13 }

 }

}

Combinator
Combinator is a component of the test template processor which combines sequences returned by iterators

of nested blocks:

 input: ordered collection of sequence iterators;

 output: iterator of sequence combinations.

A sequence combination is a tuple of several sequences (their number matches the number of nested

blocks).

Available combinators (possible values of combinator-name):

 (see the «Combinator » section);

 (see the «Combinator » section);

 (see the «Combinator » section).

The default combinator is .

Combinator

Combinator synchronously iterates over sequences retuned by nested blocks. Combining is

finished when all of nested iterators are exhausted. Each time when a separate nested iterator is exhausted,

it is reinitialized.

The number of combinations returned by combinator equals , where is the

number of sequences returned by the iterator of the -th block.

Example

Combinator returns the following combinations:

#1 #2 #3

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

4

Combinator

Combinator constructs all possible combinations of sequences returned by iterators of nested

blocks.

The number of combinations produced by combinator equals , where is the

number of sequences returned by the iterator of the -th block.

Example

Combinator returns the following combinations:

#1 #2 #3 #4 #5 #6

Combinator

Combinator produces one random combination of sequences returned by iterators of nested

blocks.

The number of combinations produced by combinator equals .

Example

Combinator can return the following combination:

#1

Permutator
Permutator is a component of the test template processor which modifies combinations returned by

combinator by rearranging some sequences:

 input: iterator of sequence combinations;

 output: iterator of modified sequence combinations.

Available permutator (possible values of permutator-name):

 (see the «Permutator » section);

 (see the «Permutator » section).

The default permutator is .

Permutator

Permutator leaves each combination unchanged.

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

5

Example

Combinator и permutator applied together return exactly the same combinations as

combinator applied alone:

#1 #2 #3 #4 #5 #6

Permutator

Permutator changes the order of sequences in a combination in a random manner.

Example

Combinator and permutator applied together can return the following combinations:

#1 #2 #3 #4 #5 #6

Compositor
Compositor is a component of the test template processor that merges (multiplexes) sequences belonging to

a combination into a single sequence preserving the initial order of instructions in each sequence:

 input: combination of sequences;

 output: merged sequence.

Available compositors (possible values of compositor-name):

 (see the «Compositor » section);

 (see the «Compositor » section);

 (see the «Compositor » section).

The default compositor is .

Compositor

Compositor merges sequences by placing them one after another.

Example

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

6

Compositor

Compositor merges sequences in a round robin fashion: the next in turn instruction of the next in

turn sequence starting from the first sequence is added to the resulting sequence until all sequences are

exhausted. If a separate sequence is exhausted, it is removed from processing.

Example

Compositor

Compositor merges sequences in a random manner preserving the initial order of instructions in

each sequence.

Example

Rearranger
Rearranger is a component of the test template processor that rearranges sequences constructed by

compositor:

 input: collection of sequences;

 output: modified collection of sequences.

Available rearrangers (possible values of rearranger-name):

 (see the «Rearranger » section);

 (see the « Rearranger » section).

The default rearranger is .

Rearranger

Rearranger leaves the collection of sequences unmodified.

Rearranger

Rearranger merges a collection of sequences into a single sequence by concatenating them.

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

7

Example

 (1)

Obfuscator
Obfuscator is a component of the test template processor that modifies sequences returned by rearranger

by permuting some instructions:

 input: sequence;

 output: modified sequence.

Available obfuscators (possible values of obfuscator-name):

 (see the «Obfuscator » section);

 (see the «Obfuscator » section).

The default obfuscator is .

Obfuscator

Obfuscator leaves instruction sequence unchanged.

Example

Obfuscator

Obfuscator changes the order of instructions in a sequence in a random manner.

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

8

Example

Requirements
At present, test templates must fulfill the following requirements:

1. Blocks and must not contain nested blocks.

2. Blocks and support only the parameter.

3. Blocks support only the and parameters.

Restrictions
1. Blocks with no parameters are temporary forbidden.

2. Deprecated: empty blocks are not supported.

Example
Let us illustrate how the test template processor works with the following parameter values:

 combinator ;

 permutator ;

 compositor ;

 rearranger ;

 obfuscator .

Combinator

Permutator

Compositor

Rearranger

Obfuscator

Iterators of nested blocks A, B
and C are initialized.

A combination of next in turn
sequences of blocks ,
 and is constructed.

A random permutation of
sequences is constructed

The sequences in the
combination are concatenated

Collection of sequences is
left unchanged

The sequence is left
unchanged

Iterator of block is
exhausted; it is reinitialized.

A combination of next in turn
sequences of blocks ,
 and is constructed.

A random permutation of
sequences is constructed

The sequences in the
combination are concatenated

Collection of sequences is
left unchanged

The sequence is left
unchanged

MicroTESK Test Program Generator / User Manual / Test template processor [Draft]

9

Iterators of blocks and
are exhausted; they are
reinitialized.

A combination of next in turn
sequences of blocks ,
 and is constructed.

A random permutation of
sequences is constructed

The sequences in the
combination are concatenated

Collection of sequences is
left unchanged

The sequence is left
unchanged

Iterators of all nested blocks
are exhausted; constructing
combinations is finished.

