C++13s

C++TESK Hardware Extension:
Quick Reference

Version 1.2, 04/09/2013

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

© 2011-2013 Institute for System Programming of RAS (ISP RAS). 25 Alexander Solzhenitsyn st., Moscow, Russia
109004, http://www.ispras.ru.

C++TESK Hardware Extension tool is included into C++TESK Testing ToolKit which can be downloaded from the
page http://forge.ispras.ru/projects/cpptesk-toolKkit.

C++TESK Testing ToolKit is distributed under Apache License 2.0 from January 2004. Complete license can be found
at the following link http://www.apache.org/licenses/.

Please let us know about your proposals and problems while using C++TESK Testing ToolKit sending them to cpptesk-
support@ispras.ru. The forum http://hw-forum.ispras.ru can be also used for such a purpose.

C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013.

http://www.ispras.ru/
http://forge.ispras.ru/projects/cpptesk-toolkit
http://www.apache.org/licenses/
mailto:cpptesk-support@ispras.ru
mailto:cpptesk-support@ispras.ru
http://hw-forum.ispras.ru/

C++m C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Content
Lo 18T o] 4 ISR PP 5
Supporting 0DSOIEtE CONSTIUCTIONScviiiieiieiieiet e 5
N F Lo LT lo oo 01V 7=T 1 £ o] o OSSR 6
Development Of reference MOGENooo i 6
(08 P o) 1TSS Vo OSSR 6
INPUE MESSAGE FANAOMIZENeiiiiiieiiee ettt bbb 7
Comparator OF OULPUL MESSAGEScuveiveeiieiesieesteeteseese et e s e e ste e e s esteetesraesteesaesraesreenesneesreeneens 7
MESSAGE dAA TIEIAS ..o s 8
OPLIONAL MESSAYES. ... eeveereeetieiteeiteeee st ste et e st e st e et e s e e s e e e s te e beestesseesteessesseesteeseesseesteenseaneesseentens 8
RETEIENCE MOUEI ... et e e te e e e reenbe e e sreees 8
L] = Ter TSSOSO 9
Setting up ignoring of failures on OULPUL INTEITACEccooveiiiiiiie 9
PIOCESS ..ttt E e h et R e b e e Rt e e b e R e nn e nne e reennnas 9
PrOCESS PATAMETETS ...ttt nre e s ne e e 10
e (0 T0r= TS o] 0] €1 YOS 10
MOAEliNG OF DEIAYS.oiiieeiie e 11
PrOCESS CAlliNG.....cviiieiiice et rs 11
SEMUIUS FECEIVING. ...ttt bbbttt sb et 12
REACLION SENTING ...evviieieie ettt st e e s be e sreeseesbe e beeseesbaesreeneesreeneens 12
(@] 01T £ 11 0] FOR ST TTPOPRP PP PRO 13
(OF: 11| o Yo 1q 10 11 ([0 o ISP 13
FUNCLION ONEVEIYCYCI.......oiiiiiieeee bbb 13
Development of reference model adapteroovovi i 13
Reference MOdel A0APTETcvi et 13
SYNCNFONIZET ...t e ettt et e s b e et e e st e e esbeesaeeabeesreeenneen 14
INPUL INEEITACE BUAPTETeiieee et ens 15
OULPUL INEEITACE AUAPTET eeiie ittt e e et e et e e e beesneeenee s 15
Output interface listener (deprecated fEAtUIE)cooiiiiiriiiie s 16
REACTION AIDITEL ... et sttt et sbeebesneesbeenbeas 17
TESt COVErage UESCIIPTION.eiuiiiieiiiieit ettt ettt bbbttt e b bbb sbeeneas 17
(O P T o) TS W o0 AT Vo TSP PUPRPSRP 17
TESt COVEIAGE STIUCTUIE ...ttt esn e e e neennnes 18
T LeT (T o) =T - To LTS PUPTROTRRN 18
(@F0) VT - To oo 4] 10 1] [0 oSSR 18

C++@E C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Excluded coverage COMPOSITIONc.uiiieiiiieiieeie ettt sttt st sreesbe e 19
TESE COVEIAGR AlIAS ...c.veeeiieiiecie ettt e e et e e s reesbe e e e sreenreenee e 19
Calculating current test SItUAtioN FUNCLIONooiiiiiiiiicieiee e 20
Tracing test Situation TUNCLION..........cooiiii e 20
DevelopmeNnt OF tESE SCENAITOc..evieeiiiieie ettt ne et 21
(O F S o) o0 U o TSRS S PO TP PP 21
Test scenario initialization MEthodccoveiiiiiiie e 21
Test scenario finalizing Methodccooviiii i 21
Yot o g To N 4= 10 To o USRS 22
ACCeSS t0 iteration VariabIEs ..o 22
TeSt ACtION DIOCK ... e 22
Scenario action FINISNING......c.coiiiie e 23
DIBIAYS. ..ttt bbbttt bbbt 23
Calculating current state FUNCHIONcccooiiiiiiiccee e 24
TESE SCENAITO FUNMNING ...ttt bbb bbb bbbt s e e bbb be e 24
AUXITANY POSSIDIIITIESeviiiecee e et ste e e e te e e sreesre e 24
L= 1 o] OSSR PRRPRPRI 25
DBIOUG PIINT .t b bbbttt bbb 25
DEDUQG PIINE MACTOSeevieieciie sttt ettt e e s e sbe et e e se e s beenbeeneesraenseensesreeneeas 25
Process call StaCk Printing.........ccoviiiiiiiie e 25
(@F0] [0]7=To I [=1o TN T I o] 121 AP SO 26
Controlling INdents in debUQg PriNTooiiiii s 26
DEBUQG PIINEIEVEIS ...t ettt s e e e sreersesreeee s 27
DebUQG Print SEIEING UP . ..ove it sre e 27

C++m C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Introduction

This document is a quick reference of C++TESK Hardware Extension tool (C++TESK, hereafter)
included into C++TESK Testing ToolKit and aimed to automated development of test systems for
HDL-models® of hardware. The tool architecture bases on general UniTESK? conventions.

Test system is meant to be a special program which evaluates the functional correctness of target
system, applying some input data (stimuli) and analyzing received results of their application
(reactions). Typical test system consists of three common components: (1) stimulus generator
making sequences of stimuli (test sequences), (2) test oracle checking correctness of reactions, and
(3) test completeness evaluator.

The document describes facilities of C++TESK aimed to development of mentioned test system
components, and consists of four common chapters.

e Development of reference model

e Development of reference model adapter
e Description of test coverage

e Development of test scenario

First two chapters touch upon development of test oracle basic parts: reference model covering
functionality of target system, and reference model adapter binding reference model with target
system. The third chapter is devoted to the test completeness estimation on the base of test
coverage. The last chapter concerns development of test scenario which is the main part of stimulus
generator.

More detailed toolkit review is given in «C++TESK Testing ToolKit: User Guide».
Installation process of C++TESK is described in «C++TESK Testing ToolKit: Installation Guide».

Supporting obsolete constructions

Updates of C++TESK do not interfere in the compilation and running of test systems developed for
older versions of C++TESK. When the toolkit has incompatible with older versions update, this
update is marked by a build number in form of yymmdd, i.e. 110415 — the 15" of April, 2011. The
update is available only if macro CPPTESKHW_VERSION3 is appropriately defined. E.g.,
~-DCPPTESKHW VERSION=110415 enables usage of incompatible updated having been made by
the 15" of April, 2011 (including this date). Each build of the toolkit has the whole list of such
changes.

Obsolete constructions of the toolkit are not described in this document. Possibilities of the toolkit,
being incompatible with having become obsolete constructions, are presented with the build
number, since which they have been available. E.g., the sentence “the means are supported from
110415 build” means that usage of these means requires two conditions: (1) using toolkit build has
the number 110415 or greater, (2) the compilation option ~-DCPPTESKHW VERSION=number,
where number is not less than 110415, is used.

If some obsolete constructions are not used or prevent the toolkit from further development, they
might become unsupported. In this case, during compilation of test system using these
constructions, a message with advices about correction of test system will be shown.

! HDL (Hardware Description Language) — class of program languages used for description of hardware.

2 http://www.unitesk.ru

Using gcc compiler it can be done by the option ~-Dmacro name=value.

http://www.unitesk.ru/

C++m C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

During compilation of test systems, developed by means of C++TESK, usage of the compiler
option ~-DCPPTESKHW VERSION=number is highly recommended.

Naming convention

The core of the toolkit is developed as a C++ library. Available means are grouped into the
following namespaces.

e cpptesk::hw— means for development of reference models and their adapters;
e cpptesk::ts— basic means for test system development;

e cpptesk::ts::coverage — means for test coverage description;

e cpptesk::ts::engine — library with test engines®;

e cpptesk::tracer — means for tracing;

e cpptesk::tracer::coverage — means for coverage tracing.

A lot of C++TESK means are implemented in form of macros. To avoid conflicts of names, names
of all macros start with prefix CPPTESK , e.g., CPPTESK MODEL (name). Generally, each
macro has two aliases: shortened name (without CPPTESK prefix) and short name, (after
additional “compression” of shortened name). E.g., macro CPPTESK ITERATION BEGIN has
two aliases: ITERATION BEGIN and IBEGIN. To use shortened and short names, macros
CPPTESK SHORT NAMES and CPPTESK SHORT SHORT NAMES should be defined,
respectively.

Development of reference model

Reference model is a structured set of classes describing functionality of target system at some
abstraction level®. Reference model consists of message classes describing format of input and
output data (structures of stimuli and reactions), main class and set of auxiliary classes. Hereafter, a
main class of reference model will be meant under term reference model.

Class of message

Message classes are declared by macro CPPTESK MESSAGE (name). Row with macro
CPPTESK_SUPPORT CLONE (name) defining the message clone method name* clone ()
should be written inside of the each message class declaration.
Example:

#include <hw/message.hpp>

CPPTESK MESSAGE (MyMessage) {
public:
CPPTESK_SUPPORT CLONE (MyMessage)

}i
Notice: Row CPPTESK SUPPORT CLONE (name) is obligatory.

4 Test engines are toolkit library components used for producing of stimulus sequence. Test engines use test

scenario (see chapter “Development of test scenario”’)

> The toolkit allows developing of both abstract functional models and detailed models describing target system

cycle-accurately.

6

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Input message randomizer

Virtual method randomize () (randomizer of the message) should be overloaded in each input
message class. There are two macros CPPTESK {DECLARE | DEFINE} RANDOMIZER for this
purpose.

Example:
CPPTESK MESSAGE (MyMessage) {

CPPTESK_DECLARE RANDOMIZER () ;
private:

int data;
}i

CPPTESK _DEFINE RANDOMIZER (MyMessage) {
data = CPPTESK RANDOM (int) ;
}

The following macros can be used for randomization of data fields.
e CPPTESK RANDOM (type) — generation of random integer value;

e CPPTESK RANDOM WIDTH (type, length) — generation of random integer value of
given number of bits;

e CPPTESK RANDOM FIELD(type, min bit, max bit) — generation of random
integer value with zero bits outside the given range;

e CPPTESK RANDOM RANGE (type, min value, max value) — generation of
random integer value from given integer range;

e CPPTESK RANDOM CHOICE (type, value 1, ..., value n) — random
choice from given set of any type values.

Notice: randomizer may not be defined if all data fields are defined by special macros (see chapter
“Message data fields”).

Comparator of output messages

Virtual method compare () (comparator of messages) should be overloaded in each output
message class. There are two macro CPPTESK {DECLARE |DEFINE} COMPARATOR for this
purpose (build is not less than 110428).

Example:
CPPTESK MESSAGE (MyMessage) {

CPPTESK DECLARE COMPARATOR () ;
private:
int data;

}s

CPPTESK_DEFINE_COMPARATOR(MyMessage) {
const MyMessage &rhs = CPPTESK CONST CAST MESSAGE (MyMessage) ;
// 1in case of difference between messages return not empty string
if (data != rhs.data)
{ return "incorrect data"; }
// empty string is interpreted as absence of difference
return COMPARE OK;
}

Notice: comparator may not be defined if all data fields are defined by special macros (see chapter
“Message data fields™).

C++@E C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Message data fields
The following macros are aimed to declaration of integer data fields.

e CPPTESK DECLARE FIELD (name, length)
declares integer field with given name and length.

e CPPTESK DECLARE MASKED FIELD (name, length, mask)
declares integer field with given name, length, and mask.

e CPPTESK DECLARE BIT (name)
declares bit field with given name.
Example:
#include <hw/message.hpp>

CPPTESK MESSAGE (MyMessage) {

public:
CPPTESK_DECLARE_MASKED_FIELD(addr, 32, OxXffffFFFO);
CPPTESK_DECLARE_FIELD(data, 32);
CPPTESK_DECLARE_BIT(flag);

bi
Notice: length of the data fields should not exceed 64 bits.

All declared data fields should be registered in message class constructor by means of macro
CPPTESK_ADD FIELD(full name) or, when the data field should not be taken into account
by comparator, by means of CPPTESK ADD INCOMPARABLE FIELD (full name).
Example:

MyMessage: :MyMessage () {
CPPTESK_ADD FIELD (MyMessage: :addr) ;
CPPTESK ADD FIELD (MyMessage::data);
CPPTESK _ADD INCOMPARABLE FIELD (MyMessage::flag);
}

Notice: full_name means usage both name of method and name of class.

Optional messages

Output message can be declared to be optional (not obligatory for receiving) if the following
method is used.

void setOptional (optional or not optional);
Notice: Default value of the parameter “optional_or_not_optional” is true, i.e. if there has not been
correspondent implementation output message by a certain timeout, the message will be simply
deleted without showing of an error. At the same time, the optional message is added to the
interface arbiter and might affect to the matching of other output messages. If correspondent

implementation reactions are received after the timeout and they are to be ignored, the flag of the
message being optional should be set in message class constructor.

Reference model

Reference model (main class of the reference model) is declared by macro
CPPTESK MODEL (name).

Example:
#include <hw/model.hpp>

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

CPPTESK_MODEL (MyModel) {

}i

Reference model contains declaration of input and output interfaces, operations, auxiliary
processes, and data necessary for operation description.

Interface

Input and output interfaces of the reference model are declared by means of two macros
CPPTESK DECLARE {INPUT|OUTPUT} (name), respectively.

Example:
#include <hw/model.hpp>

CPPTESK MODEL (MyModel) {

public:
CPPTESK DECLARE INPUT (input iface);
CPPTESK DECLARE OUTPUT (output iface);

}i

All declared interfaces should be registered in reference model constructor by means of two macros
CPPTESK ADD {INPUT|OUTPUT} (name).

Example:

MyModel: :MyModel () {
CPPTESK _ADD INPUT (input iface);
CPPTESK_ADD OUTPUT (output iface);

}

Setting up ignoring of failures on output interface
To disable showing errors of a certain type on a given interface is possible by means of the method:

void setFailurelIgnoreTypes (disabling error types mask);
Disabling error types include errors of implementation reaction absence (MISSING REACTION)
and specification reaction absence (UNEXPECTED REACTION) on the given interface. Error types
can be grouped by bit operation “or”.

Process

Processes are the main means of functional specification of hardware. Processes are subdivided into
operations (see chapter “Operation”) and internal processes. Operations describe processing of
stimuli of a certain types by the target system. Internal processes are used for definition of the other,
more complex processes, including operations.

Declaration and definition of reference model processes are made by means of macros
CPPTESK {DECLARE|DEFINE} PROCESS (name). Definition of the process should be
started by calling macro CPPTESK START PROCESS (), and finished by calling macro
CPPTESK STOP PROCESS ().

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Example:
#include <hw/model.hpp>

CPPTESK MODEL (MyModel) {
public:

CPPTESK DECLARE PROCESS (internal process);
bi

CPPTESK DEFINE PROCESS (MyModel::internal process) {
CPPTESK_ START PROCESS () ;

CPPTESK_ STOP_ PROCESS () ;
}

Notice: macro CPPTESK START PROCESS () may be used only once in definition of the
process, and usually precedes the main process code. Semantics of CPPTESK STOP PROCESS ()
is similar to the semantics of operator return — when the macro is called, the process finished.

Notice: keyword process is reserved and cannot be used for naming of processes.

Process parameters

Process should have three obligatory parameters: (1) process execution context, (2) associated with
process interface, and (3) message. To access process parameters is possible by means of the
following macros.

e CPPTESK GET PROCESS () — get process context;
e CPPTESK GET IFACE () — get process interface;
e CPPTESK GET MESSAGE () — get message.

To cast message parameter to the necessary type is possible by means of the following macros.
e CPPTESK CAST MESSAGE (message class),
e CPPTESK CONST CAST MESSAGE (message class).

Example:
#include <hw/model.hpp>

CPPTESK DEFINE PROCESS (MyModel::internal process) {
// copy message to the local variable
MyMessage msg = CPPTESK CAST MESSAGE (MyMessage) ;
// get reference to the message
MyMessage &msg ref = CPPTESK CAST MESSAGE (MyMessage) ;
// get constant reference to the message
const MyMessage &const msg ref = CPPTESK CONST CAST MESSAGE (MyMessage);

}

Process priority

During execution, each process is assigned with a priority, unsigned integer value from range [1,
255] (O is reserved). Priority affects the order of process execution inside of one cycle (processes
with higher priority run first). Priorities may be used in matching of implementation and
specification reactions (see chapter “Reaction arbiter”). When started, all processes are assigned
with the same priority (NORMAL PRIORITY). To change the priority is possible by means of the
following macros.

10

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

e CPPTESK GET PRIORITY () — get process priority.

e CPPTESK SET PRIORITY (priority) — Setprocess priority.

Some priority values are defined in the enumeration type priority t (cpptesk::hw

namespace). The most general of them are the following ones.
e NORMAL PRIORITY — normal priority;
e LOWEST PRIORITY — the lowest priority;
e HIGHEST PRIORITY — the highest priority.

Example:

#include <hw/model.hpp>
#include <iostream>

CPPTESK DEFINE PROCESS (MyModel::internal process) {

std::cout << "process priority is " << std::dec
<< CPPTESK_GET PRIORITY () << std::end;

CPPTESK_SET PRIORITY (cpptesk::hw::HIGHEST PRIORITY) ;
}

Modeling of delays
To model delays in processes is possible by means of the following macros.

e CPPTESK CYCLE ()
delay of one cycle.

e CPPTESK DELAY (number of cycles)
delay of several cycles.

e CPPTESK WAIT (condition)
delay till condition is satisfied.

e CPPTESK WAIT TIMEOUT (condition, timeout)
limited in time delay till condition is satisfied.
Example:

#include <hw/model.hpp>
#include <iostream>

CPPTESK DEFINE PROCESS (MyModel::internal process) {
std::cout << "cycle: " << std::dec << time () << std::end;
// delay of one cycle

CPPTESK CYCLE () ;
std::cout << "cycle: " << std::dec << time () << std::end;

// wait till outputs.ready 1is true,
// but not more than 100 cycles
CPPTESK WAIT TIMEOUT (outputs.ready, 100);

}

Process calling

Reference model process calling from another process is made by means of
CPPTESK CALL PROCESS (mode, process name, interface, message),

macro
where

11

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

mode might be either PARALLEL or SEQUENTIAL. In the first case separated process is created,
which is executed in parallel with the parent process. In the second case consequent execution is
performed, where returning to the parent process execution is possible only after child process has
been finished.

Example:
#include <hw/model.hpp>
CPPTESK DEFINE PROCESS (MyModel: :some process) ({

// call separated process
CPPTESK CALL PROCESS (PARALLEL, internal_process,
CPPTESK GET TIFACE (), CPPTESK GET MESSAGE());

// call process and wait till it has been finished
CPPTESK_CALL PROCESS (SEQUENTIAL, internal process,
CPPTESK GET IFACE (), CPPTESK GET MESSAGE());

}

Notice: to call new processes is possible from any reference model methods, not only from methods
describing processes. Macro CPPTESK CALL PARALLEL(process name, interface,
message) should be used in this case. Calling process with mode SEQUENTIAL from the method
not being a process is prohibited.

Stimulus receiving

Inside of the process, receiving of stimulus on one of the input interfaces can be modeled. It is
possible by means of macro CPPTESK _RECV_STIMULUS (mode, interface, message).
Executing this macro, test system applies the stimulus to the target system via adapter of the
correspondent input interface (see chapter «lInput interface adapter»). Semantics of the mode
parameter is described in the chapter «Process calling».

Example:

#include <hw/model.hpp>

CPPTESK _DEFINE PROCESS (MyModel: :some process) {
// modeling of stimulus receiving
CPPTESK RECV_STIMULUS (PARALLEL, input_iface, input_msg);

}

Reaction sending

Modeling of reaction sending is done by the macro CPPTESK SEND REACTION (mode,
interface, message). Executing this macro, test system calls adapter of the correspondent
output interface. The adapter starts waiting for the proper implementation reaction. When being
received, the reaction is transformed into object of the correspondent message class (see chapter
“Adapter of the output interface”). Then test system compares reference message with received
message by means of comparator (see chapter “Comparator of output messages”). Semantics of the
mode parameter is described in the chapter “Process calling”.

Example:
#include <hw/model.hpp>

CPPTESK DEFINE PROCESS (MyModel::some process) {
// modeling of reaction sending
CPPTESK_SEND REACTION (SEQUENTIAL, output iface, output msg);

12

C++@E C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Operation

Declaration and definition of interface operations of reference model is made by means of macros
CPPTESK {DECLARE |DEFINE} STIMULUS (name). The definition should start from macro
CPPTESK START STIMULUS (mode), and stop by macro CPPTESK STOP STIMULUS ().
Example:

#include <hw/model.hpp>

CPPTESK MODEL (MyModel) {
public:
CPPTESK DECLARE STIMULUS (operation);

}i

CPPTESK DEFINE STIMULUS (MyModel: :operation) ({
CPPTESK_START_STIMULUS(PARALLEL);

CPPTESK STOP_STIMULUS () ;
}

Notice: operations are particular cases of processes, so that all the constructions from chapter
“Process” can be used in them.

Notice: calling macro CPPTESK START STIMULUS (mode) is equivalent to the calling macro
CPPTESK RECV_STIMULUS (mode, ...), Where interface and message parameters are
assigned with correspondent operation parameters.

Callback function

In the main class of reference model, several callback functions are defined. The functions can be
overloaded in the reference model. The main callback function is onEveryCycle ().

Function onEveryCycle

Function onEveryCycle () is called at the beginning of each reference model execution cycle.

Example:
#include <hw/model.hpp>

CPPTESK_MODEL (MyModel) {
public:
virtual void onEveryCycle();

}s

void MyModel: :onEveryCycle () {
std::cout << "onEveryCycle: time=" << std::dec << time () << std::endl;

}
Development of reference model adapter

Reference model adapter (mediator) is a component of test system, binding reference model with
target system. The adapter serializes input message objects into sequences of input signal values,
deserializes sequences of output signal values into output message objects, and matches received
from target system reactions with reference values.

Reference model adapter

Reference model adapter is a subclass of reference model class. It is declared by means of the
macro CPPTESK ADAPTER (adapter name, model name).

13

C++m C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Example:
#include <hw/media.hpp>
CPPTESK ADAPTER (MyAdapter, MyModel) {

}i

Synchronization methods, input and output interface adapters, output interface listeners, and
reaction arbiters are declared in reference model adapter.

Synchronizer

Synchronizer is a low-level part of reference model adapter, responsible for synchronization of test
system with being tested HDL-model. Synchronizer is implemented by overloading the following
five methods of reference model adapter.

e void initialize () — testsystem initialization;

e void finialize () — testsystem finalization;

e void setInputs () — synchronization of inputs;

e void getOutputs () — synchronization of outputs;

e void simulate ()— synchronization of time.

When hardware models written in Verilog being verified, these methods can be implemented by
standard interface VVPI (Verilog Procedural Interface). Also, tool VeriTool® can be used for
automation of synchronizer development. In this case, macro
CPPTESK_VERITOOL ADAPTER (adapter name, model name) can be used for
facilitating of the efforts.

Example:

#include <hw/veritool/media.hpp>
// file generated by tool VeriTool
#include <interface.h>

CPPTESK_VERITOOL ADAPTER (MyAdapter, MyModel) ({

}i

Used for definition of synchronization methods functions and data structures (fields inputs and
outputs) are generated automatically by tool VeriTool analyzing Verilog hardware model
interface.

Notice: when macro CPPTESK VERITOOL ADAPTER being used, fields inputs u outputs
should not be declared and methods and methods of synchronizer should not be overloaded.

Notice: tool VeriTool provides access to values of all HDL-model signals, including internal ones.
To get access is possible by means of macros CPPTESK GET SIGNAL (signal type,
signal name) for getting value of signal testbench.target.signal_name (signal_type is meant to
be from the following list: int, uint64_t, etc.), and CPPTESK SET SIGNAL (signal type,
signal name, new value) for setting to a new value the signal testbench.target.signal_name
(signal_type is meant to be the same as for getting value macro).

6 http://forge.ispras.ru/projects/veritool

14

http://forge.ispras.ru/projects/veritool

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Input interface adapter

Input interface adapter is a process defined in reference model adapter and bound with one of the
input interfaces. Input interface adapter is called by CPPTESK START STIMULUS (mode)
macro (see chapter “Operation”) or by CPPTESK RECV STIMULUS (mode, interface,
message) macro (see chapter “Stimulus receiving”). Declaration and definition of input interface
adapters are done in typical for processes way.

It should be noticed, that just before the serialization, the input interface adapter should capture the
interface. Capturing is made by macro CPPTESK CAPTURE IFACE (). Correspondently, after
the serialization, the interface should be released by macro CPPTESK RELEASE IFACE ().

Example:
#include <hw/media.hpp>

CPPTESK_ADAPTER (MyAdapter, MyModel) ({
CPPTESK DECLARE PROCESS (serialize input);

}i

CPPTESK DEFINE PROCESS (MyAdapter::serialize input) {
MyMessage msg = CPPTESK CAST MESSAGE (MyMessage) ;
// start serialization process
CPPTESK_START PROCESS() ;
// capture input interface
CPPTESK _CAPTURE IFACE();
// set operation start strobe

inputs.start = 1;

// set information signals
inputs.addr = msg.get addr();
inputs.data = msg.get data();

// one cycle delay
CPPTESK_CYCLE () ;
// reset of operation strobe
inputs.start = 0;
// release input interface
CPPTESK _RELEASE IFACE();
// stop serialization process
CPPTESK_STOP PROCESS () ;

}

Binding of adapter and interface is made in reference model constructor by means of macro
CPPTESK SET INPUT ADAPTER (interface name, adapter full name).

Example:
MyAdapter: :MyAdapter
CPPTESK SET INPUT ADAPTER (input iface, MyAdater::serialize input);
bi

Notice: when input interface adapter being registered, its full name (including the name of reference
model adapter class) should be used.

Output interface adapter

Output interface adapter is a process defined in reference model adapter and bound with one of the
output interfaces, Output interface adapter is called by CPPTESK SEND REACTION (mode,
interface, message) macro (see chapter “Reaction sending”). Declaration and definition of
output interface adapters are done by means of the following macros.

15

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

e CPPTESK WAIT REACTION (condition)
wait for reaction and allow reaction arbiter to access the reaction;

e CPPTESK NEXT REACTION ()
releasing of reaction arbiter (see chapter “Reaction arbiter”).

Example:
#include <hw/media.hpp>

CPPTESK ADAPTER (MyAdapter, MyModel) ({
CPPTESK DECLARE PROCESS (deserialize output);

}i

CPPTESK DEFINE PROCESS (MyAdapter::deserialize input) {
// get reference to the message object
MyMessage &msg = CPPTESK CAST MESSAGE (MyMessage) ;
// start deserialization process
CPPTESK START PROCESS () ;
// wait for result strobe
CPPTESK WAIT REACTION (outputs.result);
// read data
msg.set data (outputs.data);
// release reaction arbiter
CPPTESK _NEXT REACTION() ;
// stop deserialization process
CPPTESK_STOP_PROCESS () ;

}

The waiting for the implementation reaction time is restricted by a timeout. The timeout is set by
macro CPPTESK SET REACTION TIMEOUT (timeout), which as well as macro
CPPTESK_SET OUTPUT_ ADAPTER (interface name, adapter full name)is called
in constructor of reference model adapter.

Example:

MyAdapter: :MyAdapter
CPPTESK SET OUTPUT ADAPTER (output iface, MyAdater::deserialize output);
CPPTESK_SET REACTION TIMEOUT (100);

}i

Notice: when output interface adapter being registered, its full name (including the name of
reference model adapter class) should be used.

Output interface listener (deprecated feature)

Output interface listener is a special-purpose process, waiting for appearing of implementation
reactions at the beginning of each cycle, and registering error in case of unexpected reactions.
Definition of listeners is made by CPPTESK DEFINE BASIC OUTPUT LISTENER (name,
interface name, condition) macro.
Example:

#include <hw/media.hpp>

CPPTESK ADAPTER (MyAdapter, MyModel) ({
CPPTESK_DEFINE_BASIC_OUTPUT_LISTENER(output_listener,
output iface, outputs.result);

b

Output interface listener is started in constructor of reference model adapter by macro
CPPTESK CALL OUTPUT LISTENER (listener full name, interface name).

16

C++m C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Example:
MyAdapter: :MyAdapter

CPPTESK CALL OUTPUT LISTENER (MyAdapter::output listener, output iface);
b

Reaction arbiter

Reaction arbiter (output interface arbiter) is aimed for matching implementation reactions
(received from HDL-model) with specification reactions (calculated by reference model). Having
been matched, the reaction pairs are sent to comparator, showing an error if there is difference in
data between two reactions (see chapter “Comparator of output messages”).

The common types of arbiters are the following.

e CPPTESK FIFO ARBITER — implementation reaction having been received, the arbiter
prefers specification reaction which was created by the earliest among the other reactions
call of macro CPPTESK SEND REACTION () (see chapter “Reaction sending”).

e CPPTESK PRIORITY ARBITER — the arbiter prefers specification reaction which was
created with the highest priority by macro CPPTESK SEND REACTION () (see chapter
“Process priority”).

To declare reaction arbiter in reference model adapter class is possible by means of macro
CPPTESK DECLARE ARBITER(type, name). To bind arbiter with output interface is
possible by means of macro CPPTESK SET ARBITER (interface, arbiter), which
should be called in constructor of reference model adapter.

Example:

#include <hw/media.hpp>
CPPTESK_ADAPTER (MyAdapter, MyModel) ({

CPPTESK_DECLARE_ARBITER (CPPTESK_FIFO_ARBITER, output_iface_arbiter) ;
bi

MyAdapter: :MyAdapter () {
CPPTESK SET ARBITER (output iface, output iface arbiter);

}

Test coverage description

Test coverage is aimed for evaluation of test completeness. As a rule, test coverage structure is
described explicitly by enumerating of all possible in the test situations (test situations). To describe
complex test situations, composition of simpler test coverage structures is used.

Test coverage can be described in the main class of reference model or moved to external class (test
coverage class). In the second case, the class with test coverage description should have a reference
to the reference model (see chapter “Test coverage class”).

Class of test coverage

Class of test coverage is a class containing definition of test coverage structure and functions
calculating test situations. As test coverage is defined in terms of reference model, test coverage
class should have a reference to the main class of reference model. To trace test situations, test
coverage class has test situation tracer — an object of CoverageTracker class (namespace
cpptesk: :tracer: :coverage) and function tracing test situations.

17

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Example:

#include <ts/coverage.hpp>
#include <tracer/tracer.hpp>

class MyModel;

// Declaration of test coverage class
class MyCoverage {
public:
MyCoverage (MyModel &model) : model (model) {}

// Test situation tracer
CoverageTracker tracker;

// Description of test coverage structure
CPPTESK _DEFINE ENUMERATED COVERAGE (MY COVERAGE, "My coverage", (
(SITUATION 1, "Situation 1"),

(SITUATION N, "Situation N")
));

// Function calculating test situation: signature of the function
// contains all necessary for it parameters
MY COVERAGE cov MY COVERAGE(...) const;

// Function tracing test situations: signature of the function
// 1s the same as signature of the previous function
void trace MY COVERAGE (...);

private:
// Reference to the reference model

MyModel &model;
}i

Test coverage structure

Test coverage structure is described by means of enumerated coverage, coverage compositions,
excluded coverage composition, and test coverage aliases.

Enumerated coverage

Enumerated coverage, as it goes from the coverage name, is defined by explicit enumeration of all
possible test situations by macro CPPTESK DEFINE ENUMERATED COVERAGE (coverage,
description, situations), Where coverageis an identifier of the coverage type,
description is a string, and situations is the list of situations like ((id,
description), ...).

Example:
#include <ts/coverage.hpp>

CPPTESK DEFINE ENUMERATED COVERAGE (FIFO FULLNESS, "FIFO fullness", (
(FIFO EMPTY, "Empty"),

(fifo_FULL, "Full")
))
Coverage composition

Coverage composition allows creation of test situation structure basing on two test coverage
structures, containing Cartesian product of situations from both initial structures. Coverage
composition is made by means of macro CPPTESK DEFINE COMPOSED COVERAGE (type,

18

C++@E C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

description, coverage 1, coverage 2). Description of new test situations is made
according to the pattern "%s, $s".

Example:
#include <ts/coverage.hpp>

CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
(A1, "A one"),
(A2, "A two")

))

CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_B, "Coverage B", (
(B1, "B one"),
(B2, "B two")

))

// Product of structures A and B makes the following situations:

// (COVERAGE AxB::Id(Al, B1), "A one, B one")

// (COVERAGE AxB::Id(Al1, B2), "A one, B two")

// (COVERAGE AxB::Id(A2, Bl), "A two, B one")

// (COVERAGE AxB::Id(A2, B2), "A two, B two")

CPPTESK_DEFINE_COMPOSED_COVERAGE(COVERAGE_AXB, "Coverage AxB",
COVERAGE A, COVERAGE B);

Excluded coverage composition

To make product of test coverage structures and exclude unreachable test situations is possible by
macro CPPTESK DEFINE COMPOSED COVERAGE EXCLUDING (type, description,
coverage 1, coverage 2, excluded), where excluded is the list like
({coverage 1::1id, coverage 2::1id}, ...). Instead of test situation identifier,
macro ANY () can be used. To product coverage structures being products themselves,
correspondent tuples should be used instead of pairs.

Example:
#include <ts/coverage.hpp>

CPPTESK DEFINE ENUMERATED COVERAGE (COVERAGE A, "Coverage A", (
(A1, "A one"),
(A2, "A two")

))

CPPTESK DEFINE ENUMERATED COVERAGE (COVERAGE B, "Coverage B", (
(B1, "B one"),
(B2, "B two")

))

// The following composition makes the following test situations:

// (COVERAGE AxB::Id(Al1, B2), "A one, B two")

// (COVERAGE AxB::Id(A2, Bl), "A two, B one'")

// (COVERAGE AxB::Id(A2, B2), "A two, B two")

CPPTESK DEFINE COMPOSED COVERAGE EXCLUDING (COVERAGE AxB, "Coverage AxB",
COVERAGE A, COVERAGE B, ({COVERAGE A::Al, COVERAGE B::Bl}));

Test coverage alias

To make a test coverage alias (test coverage with different name, but with the same test situations),
macro CPPTESK DEFINE ALIAS COVERAGE (alias, description, coverage)
should be used.

Example:

#include <ts/coverage.hpp>

19

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

CPPTESK_DEFINE_ENUMERATED_COVERAGE(COVERAGE_A, "Coverage A", (
(A1, "A one"),
(A2, "A two")

))

// COVERAGE B - alias of COVERAGE A
CPPTESK DEFINE ALIAS COVERAGE (COVERAGE B, "Coverage B", COVERAGE A);

Calculating current test situation function

Calculating current test situation function is a function, which returns identifier of the current test
situation (see chapter “Structure of the test coverage”), having analyzed the reference model state
and (possibly) input parameters of the operation. Identifier of test situation for enumerated coverage
looks like coverage::identifier and class: :coverage::identifier when used
outside of test coverage class. Calculating current test situation function for production of coverage
structures can be obtained by calling functions for particular coverage structures and “production”
of their results (operator * should be appropriately overloaded).

Example:
#include <ts/coverage.hpp>

class MyCoverage {
// definition of the enumerated coverage structure COVERAGE A
CPPTESK DEFINE ENUMERATED COVERAGE (COVERAGE A, "Coverage A", (
(Al, "A one"),
(A2, "A two")
));
// test situation calculating function for coverage COVERAGE A
COVERAGE A cov_COVERAGE A(int a) const ({
switch (a) {
case 1: return COVERAGE A::Al;
case 2: return COVERAGE A::A2;
}

assert (false);

}

// definition of COVERAGE B - alias of COVERAGE A
CPPTESK DEFINE ALIAS COVERAGE (COVERAGE B, "Coverage B", COVERAGE_A);
// test situation calculating function for coverage COVERAGE B
COVERAGE B cov_COVERAGE B(int Db) const ({

return cov_COVERAGE A (b);
}

// definition of COVERAGE AxB - production of COVERAGE A and COVERAGE B
CPPTESK _DEFINE COMPOSED COVERAGE (COVERAGE AxB, "Coverage AxB",
COVERAGE A, COVERAGE B);s
// test situation calculating function of coverage COVERAGE AxB
COVERAGE AxB cov_COVERAGE AxB(int a, int b) const {
return cov_COVERAGE A(a) * cov_COVERAGE B (Db);

}

}i

Tracing test situation function

Tracing test situation function is defined for each upper-level test coverage structure. As tracing
function calls test situation calculating function, their parameters usually coincide. Implementation
of this function is based on test situation tracer, being an object of class CoverageTracker
(namespace cpptesk: :tracer: :coverage).

Example:

20

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

#include <ts/coverage.hpp>
#include <tracer/tracer.hpp>

CoverageTracker tracer;

void trace COVERAGE A(int a) {
tracer << cov_COVERAGE A(a);

}

Development of test scenario

Test scenario is a high-level specification of test, which being interpreted by test engine (see
chapter “Test scenario running”) is used by test system for test sequence generation. Test scenario
is developed as a special class named scenario class.

Class of scenario
Scenario class is declared by macro CPPTESK SCENARIO (name).
Example:

#include <ts/scenario.hpp>
CPPTESK SCENARIO (MyScenario) {
private:
// testing is done via reference model adapter

MyAdapter dut;
}i

Test scenario initialization and finalization methods, scenario methods, and current state function
are declared in scenario class.

Test scenario initialization method

Test scenario initialization method includes actions which should have been made right before test
start. It is defined by overloading of base class virtual method bool init (int argc, char
**argv). Itreturns t rue in case of successful initialization and fa1se in case of some problem.
Exmple:

#include <ts/scenario.hpp>

CPPTESK SCENARIO (MyScenario) {
public:
virtual bool init(int argc, char **argv) ({
dut.initialize ()
std::cout << "Test has started..." << std::endl;

}s

Test scenario finalizing method

Test scenario finalizing method contains actions which should be done right after test finish. It is
defined by overloading of base class virtual method void finish ().

Example:
#include <ts/scenario.hpp>

CPPTESK_SCENARIO (MyScenario) {

public:
virtual void finish() {
dut.finalize () ;
std::cout << "Test has finished..." << std::endl;

21

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

}
}i

Scenario method

Scenario methods iterate parameters of input messages and run operations by means of reference
model adapter. One scenario class may contain several scenario method declarations. Scenario
method returns value of bool type, which is interpreted as a flag of some problem. The only
parameter of scenario method is an iteration context, which is an object containing variables to be
iterated by scenario method (iteration variables). Definition of scenario method starts from calling
macro CPPTESK ITERATION BEGIN, and finishes with CPPTESK ITERATION END.
Example:

#include <ts/scenario.hpp>

CPPTESK_SCENARIO (MyScenario) {
public:
bool scenario(cpptesk::ts::IntCtx &ctx);

}i

bool MyScenario::scenario (cpptesk::ts::IntCtx &ctx) {
CPPTESK ITERATION BEGIN

CPPTESK ITERATION END
}

Scenario methods are registered by macro CPPTESK _ADD SCENARIO METHOD (full name)
in scenario class constructor.

Example:

MyScenario: :MyScenario () {
CPPTESK_ADD_SCENARIO_METHOD(MyScenario::scenario);

}

Access to iteration variables

Iteration variables are fields of iteration context, which is a parameter of scenario method. To
access iteration variables is possible by macro CPPTESK ITERATION VARIABLE (name),
where name is a name of one of the iteration context fields.

Example:
#include <ts/scenario.hpp>

bool MyScenario::scenario(cpptesk::ts::IntCtx &ctx)
// get reference to iteration variable
int &i = CPPTESK ITERATION VARIABLE (i) ;
CPPTESK ITERATION BEGIN
for(i = 0; i < 10; i++) {

}
CPPTESK ITERATION END

}

Test action block

Test action (preparation of input message and start of operation) is made in a code block
CPPTESK ITERATION ACTION{ ... } located in scenario method.

Example:

22

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

#include <ts/scenario.hpp>

CPPTESK_ITERATION_BEGIN
for(i = 0; i < 10; i++) {

// test action block
CPPTESK_ITERATION ACTION {
// input message randomization
CPPTESK RANDOMIZE MESSAGE (input msg);
input msg.set addr(i);
// start operation
CPPTESK_CALL STIMULUS OF (dut, MyModel::operation,
dut.input iface, input msg);

}

}
CPPTESK ITERATION END

Scenario action finishing

Each iteration of scenario method is finished by CPPTESK ITERATION YIELD (verdict)
macro, quitting from scenario method. When being called next time, scenario method will continue
its execution from next iteration.

Example:

#include <ts/scenario.hpp>

CPPTESK_ITERATION_BEGIN
for(i = 0; i < 10; i++) {

// test action block
CPPTESK_ITERATION_ACTION {

// quit from scenario method and return verdict
CPPTESK_ITERATION_YIELD(dut.verdict());

}

}
CPPTESK ITERATION END

Delays

Making delays (sending of stimuli at different time of HDL-model simulation) in tests requires
development of at least one method with calling reference model method cycle (). In case of
possibility of parallel stimulus running, the most convenient way of usage method cycle () is to
call this method from purposely created scenario method nop () ’. Notice that in this case method
cycle () should not be called from any other method.

IIpumep:
#include <ts/scenario.hpp>

bool MyScenario::nop (cpptesk::ts::IntCtx& ctx) {
CPPTESK ITERATION BEGIN
CPPTESK ITERATION ACTION {
dut.cycle();
CPPTESK ITERATION YIELD (dut.verdict());

}
CPPTESK ITERATION END

7 Name of this method is unrestricted.

23

C++@E C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Notice: scenario method nop () should be registered before any other scenario methods.

Calculating current state function

Calculating current state function is needed for test engines, using exploration of target system state
graph for creation of test sequences. Returning by function value is interpreted as system state.
Type of the returning value and function name are unrestricted. Method does not allow parameters.
Example:

#include <ts/scenario.hpp>

CPPTESK_SCENARIO (MyScenario) {

public:

int get model state() {
return dut.buffer.size();

}
}i

Setting up of calculating current state function is made by method void setup(...). in test
scenario constructor.

Example:
#include <ts/scenario.hpp>

MyScenario: :MyScenario () {
setup ("My scenario",
UseVirtual::init,
UseVirtual::finish,
&MyScenario::get model state);

}

Test scenario running

Test scenario running at local computer is made by calling function 1ocalmain (engine,
scenario.getTestScenario (), argc, argv) (namespace cpptesk::ts).

Available test engines are the following (namespace cpptesk: :ts: :engine).
e fsm— generator of test sequence based on state graph exploration;
e rnd — generator of randomized test sequence.

Example:
#include <netfsm/engines.hpp>

using namespace cpptesk::ts;
using namespace cpptesk::ts::engine;

MyScenario scenario;
localmain (fsm, scenario.getTestScenario(), argc, argv);

Auxiliary possibilities

C++TESK toolkit includes the following auxiliary possibilities: assertions and debug print. These
possibilities can be used in reference models and in all test system components (adapters, test
scenarios, etc). Their main aim is to facilitate debug of test system.

24

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Assertions

Assertions are predicates (logic constructions) used for description of program properties and, as a
rule, checked during runtime. If assertion is violated (predicate shows false), error is fixed and
program is stopped. To make assertions is possible by CPPTESK ASSERTION (predicate,
description) macro, where predicate is a checking property, and description is a
string describing error bound with violation of this property.

Example:

#include <hw/assertion.hpp>
CPPTESK ASSERTION (pointer, "pointer is null");

Debug print

Debug print is devoted to debug of test system. In contrast to typical printing by means of, e.g.,
STL streams, adjustment of debug print is easier (turning on/off, changing of printing color, etc).

Debug print macros

Debug print is commonly made by macro CPPTESK DEBUG PRINT (level, message),
where Ievel is a level of debug print (see chapter “Debug print levels”) and message is a
printing debug message, and macro CPPTESK DEBUG PRINTF (level, formal,
parameters), Where (format, parameters) is a formatted string and values of used in
the string parameters in the same format as they are used by C library function printf ().
Example:

#include <hw/debug.hpp>

using namespace cpptesk::hw;

CPPTESK DEBUG_ PRINT (DEBUG USER, "The input message is "
<< CPPTESK_GET MESSAGE());

CPPTESK DEBUG PRINTF (DEBUG USER, "counter=3%d", counter);

Notice: as a debug message in macro CPPTESK DEBUG PRINT () any “stream expression”
(allowed for usage in standard C++ STL output streams expressions) can be used.

To add location information of debug macro to debug message (file name and string number) is
possible by means of macros CPPTESK DEBUG PRINT FILE LINE() and
CPPTESK DEBUG PRINTF FILE LINE (). Their parameters are the same as of macros
mentioned above.

Process call stack printing

To print process call stack of reference model is possible by macro CPPTESK CALL STACK(),
which can be used inside and instead of debug message of macro CPPTESK DEBUG PRINT ().
Example:

#include <hw/model.hpp>

CPPTESK _DEFINE PROCESS (MyModel: :some process) {
CPPTESK START PROCESS () ;

CPPTESK DEBUG_ PRINT (DEBUG USER, "Call stack is "

<< CPPTESK_CALL STACK());

CPPTESK_STOP PROCESS () ;

25

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

}
Notice: macro CPPTESK CALL STACK () can be used only inside on reference model.

Colored debug print

To facilitate manual search of debug messages of a certain type among all debug print is possible by
means of colored debug print macros CPPTESK COLORED DEBUG PRINT (level, color,

background color, message), CPPTESK COLORED DEBUG PRINTEF (level,
color, background color, format, parameters), and also macros
CPPTESK COLORED DEBUG PRINT FILE LINE () and

CPPTESK COLORED DEBUG PRINTF FILE LINE ().
The following color constants are defined (namespace cpptesk: : hw):

e BLACK — black;

e RED—red;

e GREEN — green;

e YELLOW— yellow;

e BLUE — blue;

e MAGENTA — purple;

e CYAN—cyan;

e WHITE — white.
Example:

#include <hw/debug.hpp>

using namespace cpptesk::hw;

CPPTESK_COLORED_DEBUG_PRINT_FILE_LINE(DEBUG_USER, RED, BLACK,
"The input message is " << CPPTESK GET MESSAGE());

CPPTESK_COLORED_DEBUG_PRINTF(DEBUG_USER, WHITE, BLACK,
"counter=%d", counter);

Controlling indents in debug print

To control indents in debug print is possible by CPPTESK SET DEBUG INDENT (indent),
CPPTESK BEGIN DEBUG INDENT, and CPPTESK END DEBUG INDENT macros. Macro
CPPTESK SET DEBUG INDENT sets indent value (not negative integer) returning its old value.
Macros CPPTESK BEGIN DEBUG INDENT and CPPTESK END DEBUG INDENT are used in
complementary way: the first one increases indent, the second one decreases indent by one point.

Example:
#include <hw/debug.hpp>

using namespace cpptesk::hw;
unsigned old indent = CPPTESK SET DEBUG INDENT (2);
CPPTESK BEGIN DEBUG INDENT

{
CPPTESK DEBUG PRINT (DEBUG USER, "Some message");

}
CPPTESK_END DEBUG INDENT

26

C++ﬁ}ﬂ C++TESK Hardware Extension: Quick Reference. Version 1.2, 04/09/2013 | © 2013 ISP RAS

Debug print levels

There is a level of debug message parameter among other debug print parameters. Level
characterizes importance of the message. Usually, debug messages of different levels are colored
differently. The following debug levels are defined (namespace cpptesk: : hw):

e DEBUG MORE — detailed debug messages produced by toolkit itself;

e DEBUG INFO — basic debug messages produced by toolkit itself;

e DEBUG USER — user’s debug messages;

e DEBUG WARN — warnings (typically, produced by toolkit itself);

e DEBUG FAIL — messages about failures (typically, produced by toolkit itself).

The most “important” level is DEBUG FATIL, then DEBUG_ WARN, etc. DEBUG USER is the only
one level for user’s messages.

Debug print setting up

To set up the volume of debug print messages is possible by selection of debug print level, and only
those messages will be printed, which has debug level being not less than selected one. It is done by
macro CPPTESK SET DEBUG LEVEL (debug level, colored). This macro has an
additional Boolean parameter colored, turning on/off coloring. Debug level DEBUG INFO is set
by default. Special level DEBUG NONE can be used to switch off debug print totally.

Each debug print level can be assigned with colors for messages of this level. It is done by macro
CPPTESK SET DEBUG STYLE (level, tag color, tag background color,

color, background color).

Example:
#include <hw/model.hpp>

using namespace cpptesk::hw;

// reference model constructor

MyModel: :MyModel () {
// print messages with failures only,
// switch on message coloring
CPPTESK_SET_DEBUG_LEVEL(DEBUG_FAIL, true);

EERSENEA) :oror message style]

CPPTESK_SET DEBUG STYLE (DEBUG_ FAIL, BLACK, RED, RED, BLACK);

27

