
C++TESK Testing ToolKit:
Getting Started

Version 1.0, 04/09/2013

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 2

© 2011-2013 Institute for System Programming of RAS (ISP RAS). 25 Alexander Solzhenitsyn st., Moscow, Russia

109004, http://www.ispras.ru.

C++TESK Hardware Extension tool is included into C++TESK Testing ToolKit which can be downloaded from the

page http://forge.ispras.ru/projects/cpptesk-toolkit.

C++TESK Testing ToolKit is distributed under Apache License 2.0 from January 2004. Complete license can be found

at the following link http://www.apache.org/licenses/.

Please let us know about your proposals and problems while using C++TESK Testing ToolKit sending them to

cpptesk-support@ispras.ru. The forum http://hw-forum.ispras.ru can be also used for such a purpose.

С++TESK Hardware Edition: Getting Started. Version 1.0, 04/09/2013.

http://www.ispras.ru/
http://forge.ispras.ru/projects/cpptesk-toolkit
http://www.apache.org/licenses/
mailto:cpptesk-support@ispras.ru
http://hw-forum.ispras.ru/

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 3

Contents
Introduction .. 4

Documentation analysis for development of test systems ... 5

Development of reference model ... 8

2.1 Message model ... 10

2.2 Reference model .. 11

Auxiliary tool VeriTool ... 14

3.1 Command line options of tool VeriTool .. 14

3.2 Running VeriTool .. 15

Development of reference model adapter .. 15

4.1 Development of adapter class .. 16

Development of test scenario ... 20

Development of functional coverage ... 25

Development of FSM-based scenarios .. 27

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 4

Introduction

Hardware verification is usually understood as the process of checking behavior of hardware on

conformity to its specification. Such a process can be done formally by means of, e.g., model

checking, automatic theorem proving, etc. Also, verification can be done by means of simulation of

separated hardware modules with the help of simulator.

Accounting the complexity of hardware models under verification, the task of automation should

have usually been solved before the actual verification. The more processes will be done

automatically and the less manual labor will be needed, the more effective check will be made.

Without touching upon the formal verification methods, in this course we will focus only on

simulation-based verification. Moreover, we will further speak only about one of the existing

verification tool, created in the Institute for system programming of RAS. The tool's capabilities

allow speaking about it as a powerful and quite modern solution. So, we will speak about using

C++TESK Testing ToolKit (or C++TESK for short).

C++TESK implements simulation based approach to verification. The main element of the tool is

its core library, implemented in programming languages C and C++. All core components are

arranged in one package and are available at http://forge.ispras.ru/projects/cpptesk-toolkit/files. The

tool is designed for creating test systems using C++ for different models of synchronous hardware

at different levels of abstraction. Test systems are created using any means, provided by C++,

basing on the approach, macros and classes defined by C++TESK.

When creating test systems for simulation based verification, three main tasks are usually solved.

The first one is test sequence construction, the second one is checking of behavior correctness, and

the third one is test completeness estimation. C++TESK allows construction test sequences of two

types: selection random stimulus set from the previously described stimuli at each simulation cycle

or selective choice of stimuli based on techniques of exploration of implicitly defined FSMs.

Checking of behavior correctness is made at each simulation cycle by means of executable

reference model, created by verification engineer at some level of abstraction. External model (e.g.,

system simulator) can also be used. Test completeness is determined either by the number of testing

cycles for randomly selected stimuli, or on the basis of the information about completeness of FSM

exploration.

Common scheme of test system is represented in figure 1.

Figure 1. Generalized structure of test system

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 5

Let us shortly describe elements represented at the common scheme.

1. Stimulus generator is a component making test sequence (stimuli sequence). It is adjusted by test

scenarios;

2. Test oracle is a component receiving data flows from stimulus generator and target component,

sending stimulus flow from generator to target component, estimating correctness of target system

behavior;

3. Target system is a hardware model, developed at one of hardware description languages (here, in

Verilog), receiving stimulus flow and responding to it by reactions which should be checked;

4. Coverage tracer is a component grabbing information about reference model functional

coverage, which in general affects stimulus generator work (e.g., by information of reached

coverage);

5. Test report generator is a component making reports (test traces) with information of traversed

transitions, reached coverage, found errors, etc.

The following tasks will be overviewed below.

 Analysis of documentation for development of C++TESK test systems;

 Development of test oracles including reference models and their adapters;

 Definition of test coverage;

 Setting up stimulus generator;

 Verification itself.

Documentation analysis for development of test systems

Under verification we mean a process of checking observed behavior against specification. In the

other words, verification is an establishing of the correspondence between target system behavior

and its specification. Therefore, we should have not only the target system, but its specification too,

being a document written at the beginning of target system development, slightly modified during

development process, and containing information of target system functionality.

In reality specification is often very poor or even absent, and target system developers might have

written only lists of input and output interface signals. In this case to conduct verification is difficult

as to speak about bug in target system is possible only having information about correct behavior.

Verification engineers have to interview target system developers, making list of requirements

which are obligatory for target system. When list of requirements (specification) is obtained,

verification can be started.

Practice shows that specification (especially, cycle accurate) is convenient to represent in the

following ways.

1. by means of block diagrams (see figure 2).

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 6

Figure 2. Example of block diagram for single operation

Block diagram allows describing reference model behavior with any proximity to cycle

accurateness. Figure 2 contains abstract representation of operation IO-WRITE (write via IO

channel), starting from one-cycle request by the 20
th

 interface. At the following cycle, device starts

to receive data, taking 17, 19, 33 or 37 cycles depending on data length and presence of mask

among sent data. This block diagram is insufficient for usage in reference model development and

is supplied with chart of cycle accurate operation description, which should be described below.

Operation finishes after receiving and saving of all data.

The following notations are used in block diagrams.

 Oval symbols mean points of operation start and stop; start point contains mnemonic

designation of operation to be executed in this control flow path;

 Rectangle symbols mean blocks taking exactly one cycle for execution at current abstraction

level. Process of reference model functioning is always described inside of such blocks.

Block is allowed to be supplied with information about real execution time, other auxiliary

information facilitating binding the scheme to reference model.

 Rhomb symbols mean branches in control flow. The symbol should contain condition of

branching inside. There should be only one ingoing path and two outgoing paths;

 Forking of control flow is represented by bold point with two or more outgoing paths;

 Merging of several control flow paths is made also in bold point, meaning synchronization

of control flow paths (waiting for the slowest one) to proceed to the outgoing path.

2. by means of charts of cycle accurate operation description (see table 1).

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 7

Table 1. Example of chart of cycle accurate operation description
Stimulus Branch 0 Microoperation 0 Microoperation 1 Branch 1 Branch 2 Microoperation 2 Microoperation 3

PRE:

1) only one operation of

the type may be

executed simultaneously

2) val_wr_data_buff_

nreg_to_IO(o)=1

BRANCH:

if val_mask=1

(in stimulus)

microoperation 0

is started, else

microoperation 1

is started.

PRE:

-

PRE:

-

BRANCH:

if wr64=0

(in stim.),

operation is

done, else

branch 2 is

started.

BRANCH:

if val_mask=1

(in stimulus),

microoperation 2

is started, else

micro operation

3 is started.

PRE:

-

PRE:

-

Set stimulus parameters:

val_wr_data_

from_IO (i)=1 (strobe)

wr_data_

from_IO[15:0](i)={0-7}

Stimulus takes one

cycle.

 wr_data_

from_IO[15:0] (i) contains

mask. It is written into

buffer(21) (with capacity

of 4 32- or 64-bytes

words).

This micro operation is

repeated once.

wr_data_

from_IO[15:0] (i)

contains 2 data bytes.

Data are written into

buffer(21).

This micro operation is

repeated 16 times.

 wr_data_

from_IO[15:0] (i)

contains mask for the

higher part of 64-byte

transmission, being

written in buffer(21).

This micro operation

is repeated once.

wr_data_

from_IO[15:0] (i)

contains 2 bytes of the

second part of 64-byte

transmission. Data are

written in buffer(21).

This micro operation is

repeated 16 times.

POST:

next cycle after val

signal wr_data_buff_

nreg_to_IO (o) (being

written item in (21))

changes to the number of

the following free item or

to 8 if buffer (21) is full

POST:

next cycle after val

signal wr_data_buff_

nreg_to_IO (o) (being

written item in (21))

changes to the number

of the following free

item or to 8 if buffer

(21) is full

 POST:

-

POST:

-

INPUT:

val_wr_data_from_IO(i) - strobe

wr_data_from_IO[15:0](i) includes

- [15:3] - reserved;

- [2] A5 – write to the high 32-bytes of 64-

byte item flag;

- [1] wr64 – 64-byte transmission flag;

- [0] val_mask – mask flag.

INPUT:

wr_data_

from_IO[15:0] - mask

INPUT:

wr_data_

from_IO[15:0] - data

 INPUT:

wr_data_

from_IO[15:0] -

mask

INPUT:

wr_data_

from_IO[15:0] - data

Such a table represents target system behavior in cycle-accurate manner. Information in the table

corresponds to block diagram and used for the following development of cycle-accurate reference

model. The table is created for each operation, performed by target system. The column with stimuli

comes first, where information about operation preconditions and set input signals should be

written. There are four types of the other columns according to block diagrams: microoperation

(one cycle of work at current level of abstraction), branching, forking, joining. The table supposes

left-to-right execution of operations: the stimulus runs first, and then the following columns run one

by one. Each microoperation contains information about its precondition, correspondent actions of

reference model, postcondition to be checked after execution, used input and output signals. Each

branch item has a condition and numbers of columns for jumps. Each fork and join items are

supplied with numbers of input and output columns.

If cycle accurate reference model is not made in particular case (for example, it is taken from

system simulator) or the model is abstract, specification in simple text form is enough. Therefore, if

they exist in such a form, any additional representation of specification is not necessary.

Let us proceed to analysis of requirements in context of usage С++TESK. To make С++TESK's

components «reference model» and «reference model adapter», input and output interfaces should

be created. Each being verified unit has both input and output signals, which can be grouped in

interfaces by their belonging to certain type of activity: writing or reading. Functionally complete

sequence of interface call, leading the unit to some stationary state where the unit can stay

infinitely, will be called an operation. Notice, that signals like CLK and RST do not usually belong

to any interface. Each operation can use several input and output interfaces. Analyzing the

documentation, one should let input interfaces contain only input signals, and output interfaces

contain only output signals.

Let's review an example of interface information extraction. Let's take a short specification for

microprocessor data hub unit Databox (DB), describing connection between DB and external unit

Memory Access Unit (MAU).

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 8

Arbiter (13), working with round priority, selects one request from 5 issues of short requests (they

may come in parallel) to send into MAU. The pace of transmission is 1 request per 2 cycles in case

of 32-byte or 1 request per 4 cycles in case of 64-byte request. The selected short request is stored

into DB and is not sent to MAU. MAU has the following interface (see the following table).

Table 2. Interface to MAU

Signal Type Semantics

val_data_reqack_to_mau_03 O Request validity flag. Request for lower part of 64-

byte cache row.

val_data_reqack_to_mau_47 O Request validity. Request for higher part of 64-byte

cache row

cop_data_reqack_to_mau[2:0] O Operation code:

«011» - reset register LDB

«100» - send coherent answer

«101» - reset register STB

«110» - send data from register STB

«111» - send data and reset register STB

source_reg_data_reqack_to_mau[4:0] O Number of register LDB/STB

According to this documentation fragment, abstract reference model requires input interfaces for all

five resources of short requests. More information about interfaces is likely to be found later. Keep

on reading: “request is sent to MAU”. MAU is an external to the being tested unit and test system

has to control data sent there. To control them, first, they have to be taken; second, restrictions for

data should be known. To have these tasks done, component “output interface” being correspondent

to implementation output interface is created in reference model. This component is overloaded in

reference model adapter (where it is bound to implementation signals) and start solving task of

getting signals going from implementation and sending them to controlling component. Let this

output interface be named as iface14. It will contain signals val_data_reqack_to_mau_03,

val_data_reqack_to_mau_47, cop_data_reqack_to_mau, source_reg_data_reqack_to_mau. Notice,

that subdivision of signals into interfaces is only logical in current version of C++TESK. Only

selected signals are allowed in correspondent interface adapters but it is not checked. After finding

of interfaces, the rest of documentation is ordered by means of block diagrams or table of cycle

accurate operation description if cycle accurate model is needed. If cycle accurate model is not

needed or it has been developed, one may proceed to the following chapter.

Development of reference model

We proceed to development of test oracle being a control component. Having received stimuli from

stimulus generator, it sends them to target system, receives its reactions and checks them (see figure

1). This checking requires reference values obtained from reference model. Test oracle can be said

to be a «wrapper» of reference model. We will return to test oracle later, speaking about reference

model now. Being used in C++TESK structure of reference model is represented in figure 3.

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 9

Figure 3. Structure of С++TESK reference model

Reference model contains the following main parts.

 Input interface models;

 Functional model of target system;

 Output interface models.

All data inside of model are carried by messages being instances of class Message. It is made for

the purpose of unification of interfaces between test system components. Input and output interface

models are instances of class Interface.

Functional model of system is a part of reference model class but can be written in a separated

class. Functional model contains of control logic, data processing, and interface commutation

models. First two parts can be implemented in separated classes, but the third part depends on

interfaces in reference model class.

The following sub chapter describes message model development. Typically, at least two types of

message are used – for input and output interfaces. After introduction of message model, we will

return to reference model development.

2.1 Message model

All necessary macros and classes are located in file <hw/message.hpp>.

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 10

Message model is a class developed by means of macro MESSAGE(class_name) {}. Let us place

empty constructor and destructor inside of macro's code block. Then let us turn on copying

constructor by adding macro SUPPORT_CLONE(class_name) after those two functions.

Each message contains one or several data fields. These fields do not necessary have the same

names as names of DUV wires, but their names are to be convenient for test system developer. In

the majority of cases, field names are equivalent to the wire names at certain abstract level, but do

not go too far: one “global” field in message for data from all wires is not convenient at all. To

include fields into message class, macro DECLARE_FIELD(name, length) is used. The length

should not exceed 64 bits. This macro defines a variable in message class and creates get and set

functions message_class_object.get_field_name and message_class_object.set_field_name for the

variable. Manual initialization of fields is allowed in message constructor as they are available via

their names. Although, values do not have to be assigned to the fields manually; this work can be

done automatically by macro RANDOMIZE_MESSAGE(pointer_to_message_class_object). Notice,

that all explicitly assigned values will be overwritten after macro being called. All fields should be

registered in message class constructor by macro ADD_FIELD(message_class::field_name).

Header for message models (fifo_msg.h) can look as follows.

#pragma once

#include <hw/message.hpp>

namespace cpptesk {

namespace fifo {

MESSAGE(InputData) {

public:

 InputData();

 virtual ~InputData();

 SUPPORT_CLONE(InputData);

 DECLARE_FIELD(data, 8);

};

MESSAGE(OutputData) {

public:

 OutputData();

 OutputData(uint8_t datum);

 virtual ~OutputData();

 SUPPORT_CLONE(OutputData);

 DECLARE_FIELD(data, 8);

};

}}

Notice, that directive #pragma once is wide distributed but not fully standard way to ask compiler

include the header file into library only once (the other way is to use #ifndef, #define, and #endif).

File with message model implementation (fifo_msg.cpp) can look as follows.

#include <fifo_msg.h>

namespace cpptesk {

namespace fifo {

InputData::InputData(void) {

 ADD_FIELD(InputData::data);

 RANDOMIZE_MESSAGE(*this);

}

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 11

InputData::~InputData(void) {}

OutputData::OutputData(void) {

 ADD_FIELD(OutputData::data);

}

OutputData::OutputData(uint8_t output_data) {

 ADD_FIELD(OutputData::data);

 data = output_data;

}

OutputData::~OutputData(void) {}

}}

2.2 Reference model

Necessary macros and classes are located in file <hw/model.hpp>.

Model class is created by macro MODEL(model_class_name) {}. Minimally necessary methods

include constructor and virtual destructor. Selected in previous parts interfaces are defined in model

class by macros DECLARE_INPUT(interface_name) for input interfaces of target system and

DECLARE_OUTPUT(interface_name) for output interfaces of target system. Each output interface

may be supplied with a method returning availability of the interface by means of standard for

interface method interface_name.isReady(). Let such methods be declared as virtual bool

isInterfaceNameReady() const. Notice that availability of interfaces depends on running operations

using them: if some operation has been started on the interface, it will be busy till operation stops its

execution.

Model also contains definition of operations being sequences of registered interface calls. Being, in

fact, operations, model methods are declared by macro DECLARE_STIMULUS(method_name) and

DECLARE_REACTION(method_name). They are not distinguished, but the first macro is typically

used for definition of operations themselves, the second macro is used for operation parts requiring

reading of data from output interfaces.

Header of reference model class (fifo_model.h) can look as follows.

#include <hw/model.hpp>

#include <fifo_msg.h>

namespace cpptesk {

namespace fifo {

MODEL(FIFO) {

public:

 FIFO();

 virtual ~FIFO();

 DECLARE_INPUT(iface1);

 DECLARE_OUTPUT(iface2);

 virtual bool isIface1Ready() const;

 DECLARE_STIMULUS(push_msg); // operation “push data”

 DECLARE_STIMULUS(pop_msg); // operation “pop data”

 DECLARE_REACTION(get_pop_msg); // reaction “read output data”

 void push_item(int data); // reference model function “push data”

 uint8_t pop_item(void); // reference model function “pop data”

protected:

 std::vector<uint8_t> fifo;

};

}}

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 12

Now let us speak a few words about implementation of reference model class. Constructor of the

class must contain calls of interface constructor with the only parameter being text description of

the correspondent interface. Sensible names are recommended as they will appear in diagnostics

messages. Input and output interfaces are registered by means of ADD_INPUT(interface_name) and

ADD_OUTPUT(interface_name) correspondingly.

Let us proceed to description of functions showing interface availability. They use standard for

interface class method isReady and simply return its value: return interface_name.isReady().

Let us now describe operations. Each operation starts from copying of input message into local

variable by means of macro CAST_MESSAGE(input_message_type). Then message may be sent to

the interface, set during operation start. If it is sent to an input interface, we are speaking about

stimulus start, or about reaction start in another case. If we want to send message to an input

interface with standard parameters (i.e., without changing of message, of interface name), this

sending can be done by macro START_STIMULUS(start_mode). Start modes are the following.

 PARALLEL creates different process for sending and processing of sending results; the

process is executed in parallel with operation commands written after START_STIMULUS;

 SEQUENTIAL stops execution of operation till stimulus execution is finished.

Being sent message will be serialized or turned into sequence of actions to DUV applied via its

input wires. This work is done by serializers in reference model adapter (see next step).

Notice: if sending message or used interface are different from those being input parameters of

function (what are “those being input parameters” will be clarified later), one should use macro

RECV_STIMULUS(start_mode, interface_name, message_object_name). In this case operation has

to be started from START_PROCESS(), not from START_STIMULUS(start_mode), and to be

finished by STOP_PROCESS() instead of STOP_STIMULUS() (see later).

Operation description may contain macro CYCLE(), telling to the test system that execution of this

operation requires one cycle of delay. Operation is finished by macro STOP_STIMULUS().

Parts of operations reading data from output interfaces are subject to separation into specific

methods for definition as “reactions” (DEFINE_REACTION). In a reaction method reference model

says to the test system that it has certain message to be obtained on a given output interface of DUV

by means of macro SEND_REACTION(start_mode, interface_name, message_object_name).

Notice: SEND_REACTION works with only output interfaces!

Standard interface and message object may be obtained by means of macros GET_IFACE() and

GET_MESSAGE() (under standard we means those, which are input parameters). Reaction methods

(if they are developed) should be called from stimulus method. Best way to call reaction method is

to call reaction_method_name(process, interface_name, message_object_name), where process is

an implicitly defined operation execution context. To send the context is necessary for joining all

operation parts together.

Development of DUV functional model (more precisely, control logic part) is not a specific task in

test system development by means of C++TESK. This task is done by means of C++ standard

library and that is why detailed comments about it will be omitted.

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 13

After all the steps, the following file with model implementation may be obtained (fifo_model.cpp).

#include <fifo_model.h>

namespace cpptesk {

namespace fifo {

FIFO::FIFO() {

 ADD_INPUT(iface1);

 ADD_OUTPUT(iface2);

}

FIFO::~FIFO() {}

bool FIFO::isIface1Ready() const { return iface1.isReady(); }

DEFINE_STIMULUS(FIFO::push_msg) {

 InputData data = CAST_MESSAGE(InputData);

 push_item(data.get_data());

 START_STIMULUS(PARALLEL);

 CYCLE();

 STOP_STIMULUS();

}

DEFINE_STIMULUS(FIFO::pop_msg) {

 InputData data = CAST_MESSAGE(InputData);

 START_STIMULUS(PARALLEL);

 OutputData outdata = OutputData(pop_item());

 get_pop_msg(process, iface2, outdata);

 STOP_STIMULUS();

}

DEFINE_REACTION(FIFO::get_pop_msg) {

 START_PROCESS();

 SEND_REACTION(SEQUENTIAL, GET_IFACE(), GET_MESSAGE());

 STOP_PROCESS();

}

void FIFO::push_item(uint8_t data) {

 assert(fifo.size() < 16);

 fifo.push_back(data);

}

uint8_t FIFO::pop_item(void) {

 assert(fifo.size() > 0);

 uint8_t data = fifo[0];

 fifo.erase(fifo.begin());

 return data;

}

}}

Auxiliary tool VeriTool

Digital devices are developed in hardware description languages (HDLs) like Verilog and VHDL.

In this paper we use only Verilog language (http://en.wikipedia.org/wiki/Verilog) as one of the most

distributed. To connect design under verification (DUV) with test systems developed in different

languages (not Verilog), Verilog standard describes special Verilog procedural interface (VPI).

To make files of VPI-environment (environment is understood to be a set of functions connecting

Verilog-simulator running DUV and test system developed in C/C++ in standard to Verilog way),

we will use licensed under GPL tool VeriTool (http://forge.ispras.ru/projects/veritool/files).

VeriTool uses Verilog syntax analyzer built in open source Verilog simulator Icarus Verilog

http://en.wikipedia.org/wiki/Verilog
http://forge.ispras.ru/projects/veritool/files

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 14

(http://sourceforge.net/projects/iverilog/). Installation of both tools can be done both manually and

automatically by means of script from C++TESK package.

3.1 Command line options of tool VeriTool

Syntax of VeriTool command line looks as follows.

$ veritool [options] input_files

Supported command line options are represented below.

1) --module=module sets name of being tested Verilog-module to generate test system

components. If this option is absent, the first found module will be processed.

2) --clk=signal sets name of clock signal (default value is clk). This option is used only if

options --all or --testbench are used.

3) --rst=signal sets name of reset signal (default value is rst). This option is used only if options -

-all or --testbench are used.

4) --rstpos sets high active level of reset signal (active level is supposed to be low by default).

5) --all turns on generation of all test system components including DUV wrapper in Verilog,

VPI-adapter, VPI-functions and C-structures with DUV-interface. Usage of this option is equivalent

to simultaneous usage of --testbench, --vpi-media, --vpi-systf, and --interface (with default values).

6) --testbench[=file] enables generation of DUV wrapper in Verilog and can set the resulting file

name (default value is testbench.v).

7) --vpi-media[=file] enables generation of VPI-adapter and can set the resulting file name

(default value is vpi_media.c).

8) --vpi-media-header=file sets the name of header file for VPI-adapter (default value is the

name set by --vpi-media, but with extension .h). This option works only if option --vpi-media is set.

9) --vpi-systf[=file] enables generation of VPI-functions and can set the resulting file name

(default value is vpi_systf.c).

10) --vpi-systf-header=file sets the name of header file for VPI-functions (default value is the

name set by --vpi-systf, but with extension .h). This option works only if option --vpi-systf is set.

11) --interface[=file] enables generation of C-structures with DUV-interface definition and can set

the resulting file name (default value is interface.c).

12) --interface-header=file sets the name of header file for C-structures with DUV-interface

(default value is the name set by --interface, but with extension .h). This option works only if option

--interface is set.

13) --destination=dir sets an output directory (default value is current directory).

14) --version | -v shows tool version.

http://sourceforge.net/projects/iverilog/

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 15

15) --help | -h shows information about available options.

3.2 Running VeriTool

To run VeriTool is possible as follows.

$(PATH_TO_VERITOOL)/bin/veritool --clk=clock --rst=reset --rstpos target/src/myfifo.v --vpi-

systf=vpi_systf.cpp --vpi-media=vpi_media.cpp --interface=interface.cpp

Notice: names of clk and rst signals should be the exactly same as DUV has. The tool supports only

one signals of each semantic in one DUV. Possible names of signals are clock, CLOCK, clk, CLK,

reset, RESET, rst, RST etc.

Development of reference model adapter

We keep on developing of test oracle. Now we are to make reference model adapter (mediator and

adapter are synonyms). Adapter is an heir of reference model, providing following means.

 binding with DUV for applying stimuli and receiving reactions;

 listening of DUV output interfaces for «unexpected» reactions;

 matching of DUV and reference model reactions with detailed diagnostics information.

Reference model adapter structure is represented in figure 4.

Figure 4. Generalized structure of reference model adapter

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 16

General components of adapter are the following.

 inherited reference model;

 input interface adapters (or serializers) which transform model stimuli into DUV stimuli by

converting abstract messages into sequence of DUV input wire assignments;

 output interface adapters (or deserializers) which transform DUV reactions into being

checked reactions by converting DUV output wire values into abstract messages;

 reaction detectors which are necessary for tracking of DUV output activity; they are created

for each output interface and check DUV reactions by means of model reactions;

 additional reactions matchers (secondary arbiters) which make final decision of

correspondence between DUV and model reactions (if relation 1:1 is not satisfied)

4.1 Development of adapter class

All necessary classes and macros for development of adapter are located in <hw/media.hpp>.

Typically, mediator development requires additional structures describing VPI-interface of DUV.

Such structures have been already created by means of VeriTool (file interface.h).

Adapter is a heir of reference model class and defined by macro ADAPTER(adapter_class_name,

model_class_name). MEDIA is an alias of ADAPTER. This class at least contains default

constructor, virtual destructor and also maximum timeout of waiting for sent reaction (let us call it

REACTION_TIMEOUT being a simple int constant). Also, adapter class contains overloaded

functions showing availability of interfaces.

Macro DECLARE_PROCESS(serializer_name) allows definition of a method processing reference

model messages sent to a given model interface into sequence of DUV input wire assignments (the

method is called serializer). Serializers are created for each input interface. Macro

DECLARE_PROCESS(deserializer_name) allows definition of a method processing DUV

messages into message understood by test system. Deserializers send wrapper DUV messages to

check against reference model messages. Deserializers are created for each output interface.

In some cases, reference model may send several messages to the same output interface in short

time. It may happen that adapter will not be able to match those model messages and received DUV

message. In this case, component ordering model reactions (so called arbiter) defined by macro

DECLARE_ARBITER(ordering_mode, ordering_component_name) is used. There are following

ordering modes.

- FIFO where model messages are ordered according to the time of their sending,

- Priority which orders model messages according to their priority,

- Adaptive which match reference model and DUV reactions by their data.

Output interfaces also support finding unexpected reactions. Reaction is called unexpected if

interface adapter couldn't match this reaction with correspondent reference model reaction. It might

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 17

happen if model reaction has not been sent or matching method did not recognize correspondence.

Finding of unexpected messages is done by means of standard listeners defined by macro

DEFINE_BASIC_OUTPUT_LISTENER(listener_name, output_interface_object_name, condition),

where condition is a predicate for message detection.

Also, adapter should contain the following auxiliary functions and variables for testing HDL DUV.

 virtual void initialize() prepares test system and DUV for verification;

 virtual void finalize() stops DUV and might contain finalizing commands for test system;

 inputs_t inputs is a structure with the same fields as DUV input signals (generated);

 virtual void setInputs() sets DUV inputs signals to values of fields from inputs;

 outputs_t outputs is a structure with the same fields as DUV output signals (generated);

 virtual void getOutputs() sets fields from outputs to DUV output signal values at this cycle;

 virtual void simulate() gives control flow to simulator for modeling one cycle of DUV.

Macro VERITOOL_ADAPTER used instead of ADAPTER creates all these functions and variables

automatically.

Result of these actions may look as follows (fifo_media.h).

#pragma once

#include <hw/veritool/media.hpp>

#include <model.h>

#include <interface.h>

#include <string>

namespace cpptesk {

namespace fifo {

VERITOOL_ADAPTER(FIFOMediator, FIFO)

{

public:

 FIFOMediator();

 virtual ~FIFOMediator();

 const static int REACTION_TIMEOUT = 100;

 virtual bool isIface1Ready() const;

 DECLARE_PROCESS(serialize_iface1);

 DECLARE_PROCESS(deserialize_iface2);

 DEFINE_BASIC_OUTPUT_LISTENER(listen_iface2, iface2, outputs.DO_STROBE);

 DECLARE_ARBITER(Priority, matcher_iface2);

};

}}

Let us proceed to implementation of reference model adapter. We are to bind input and output

model interfaces to their adapters (serializers and deserializers correspondingly) by means of

macros SET_INPUT_ADAPTER(interface_object_name, full_adapter_method_name) for input

interfaces and SET_OUTPUT_ADAPTER(interface_object_name, full_adapter_method_name) for

output interfaces.

Function setReactionTimeout(timeout) sets maximum time in cycles which model reaction may wait

for correspondent DUV reaction. Here we recommend to use REACTION_TIMEOUT defined

earlier. If the DUV reaction does not appear in timeout, “missing reaction” error is shown.

Structures inputs and outputs must be initialized in adapter before their usage by means of functions

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 18

clear_inputs(&inputs) and clear_outputs(&outputs) generated by VeriTool.

Macro SET_ARBITER(output_interface_object_name, ordering_component_name) should be used

for binding output interface and having been defined message ordering component. Macro

CALL_OUTPUT_LISTENER (full_listener_name, output_interface_name) starts listener of

unexpected reaction on the current interface.

To turn on debug information printing to the console, standard reference model class function

debug(debug_level) should be called. We will use debug level DEBUG_ERROR.

Functions showing whether output interface is free are usually overloaded in reference model

adapter but they use functions of super class (of reference model). Implementation of these

functions in adapter class may be extended by usage of output signals of DUV if necessary.

Definition of serializers starts from macro DEFINE_PROCESS(full_serializer_name). In the

beginning of serializer implementation, reference message can be copied into local variable. To

access reference model is possible by means of macro CAST_MESSAGE(message_class). After it,

the serializer itself begins by macro START(). Function iface.capture() “captures” this particular

input interface. This capturing is only logical and needed for prevent two or more operations from

simultaneous capturing of the same input interface. If necessary, interface state can be checked by

means of function isReady* before stimulus sending. Then appropriate structure fields used for

setting of DUV input signals is assigned with values carried by reference message’s fields. When all

the actions have been already applied, the interface should be released by calling iface.release().

This calling should be done in advice of one cycle before necessary release of the interface. To

make serializer wait for one cycle before following setting DUV input signals is possible by means

of macro CYCLE(). Command iface.release() is usually followed by macro STOP() meaning finish

of stimulus processing. At least one CYCLE() is required to be between iface.capture() and STOP().

Definition of deserializers starts from macro DEFINE_PROCESS(full_deserializer_name). In the

beginning of deserializer implementation, a reference to given by reference model message can be

created. This message will contain implementation reaction. Macro START() shows beginning of

deserialization process. This macro is followed by condition statement allowing to match received

implementation reaction and reference model one. This condition is written inside of macro

WAIT_REACTION(match_condition). Valid signals are used very often here, but some reference

message fields such as address may be used here. Notice that if several implementation reactions

satisfy the match_condition, test system will stop with assertion. Therefore match_condition should

be enough detailed to differentiate which one really matches to the given reference message. When

correspondent reaction is found, some field values of output structure are written into local

message. If necessary, macro CYCLE() can make deserializer wait for one cycle before reading the

following data. After all data having been read, macro NEXT_REACTION() is used, asking test

system to proceed to the next registered model reaction at this particular interface (if this reaction

exists). At last, macro STOP() shows finish of deserialization process.

Reference model adapter file may look as follows (fifo_media.cpp).

#include <fifo_media.h>

#include <sync.h>

#include <interface.h>

#include <vpi_media.h>

#include <iostream>

namespace cpptesk {

namespace fifo {

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 19

FIFOMediator::FIFOMediator() {

 SET_DEBUG_LEVEL(DEBUG_INFO, true);

 SET_INPUT_ADAPTER(iface1, FIFOMediator::serialize_iface1);

 SET_OUTPUT_ADAPTER(iface2, FIFOMediator::deserialize_iface2);

 SET_REACTION_TIMEOUT(FIFOMediator::REACTION_TIMEOUT);

 SET_ARBITER(iface2, matcher_iface2);

 CALL_OUTPUT_LISTENER(FIFOMediator::listen_iface2, iface2);

}

FIFOMediator::~FIFOMediator() {}

bool FIFOMediator::isIface1Ready() const {

 return FIFO::isIface1Ready();

}

DEFINE_PROCESS(FIFOMediator::serialize_iface1) {

 InputData msg = CAST_MESSAGE(InputData);

 START_PROCESS();

 CAPTURE_IFACE();

 inputs.WR_STROBE = 1;

 inputs.DI = msg.get_data();

 RELEASE_IFACE();

 CYCLE();

 STOP_PROCESS();

}

DEFINE_PROCESS(FIFOMediator::deserialize_iface2)

{

 OutputData &msg = CAST_MESSAGE(OutputData);

 START_PROCESS();

 WAIT_REACTION(outputs.DO_STROBE);

 msg.set_data(outputs.DO);

 NEXT_REACTION();

 STOP_PROCESS();

}

}}

Development of test scenario

Test scenarios are test system integral part. Their main aim is to describe stimuli and select method

of their usage. Test scenarios are used to configure stimulus generation class objects from library of

C++TESK. Stimulus generator configured by test scenario is shown in general test system scheme

in figure 1 as “stimulus generator”.

С++TESK supports two common ways of stimulus generation. The first one is based on finite state

machine traversing (this way will be considered in one of the following chapters) and random

stimulus selection from the list of registered stimuli. Both ways have both advantages and

disadvantages. The first one provide better test coverage, being aimed to covering of all states in

FSM. The second way requires less labor costs and applies more variable stimuli from the

beginning. The first way as a rule is more difficult in development and test running. Following the

second way, it is difficult to catch errors appearing after specific sequence of operations applied.

Remember that the at previous steps of test system creation reference model, reference model

adapter, test coverage collector have been developed. According to figure 1, we are to develop not

only stimulus generator but test oracle as well. The latter is an adapter extended by checking

components (see figure 5), under which we understand stimulus precondition and reaction

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 20

comparators. Stimulus preconditions are predicates which are satisfied if current reference model

state allows to start the particular stimulus. If the precondition is satisfied, stimulus will be started at

this cycle, in the other case it will be ignored. Then, according to the test scenario, either new

stimulus will be checked, or the time is shifted. Preconditions may be placed inside of test scenario

or of reference model used by the scenario. Reaction comparators are automatically created when

reference model adapter is created.

Figure. 5. Test oracle

So, we have all the means to proceed to test scenario development. Scenarios should contain:

 object of reference model adapter class;

 scenario functions;

 (optionally) current state function.

Scenario functions create reference model stimuli and apply them to reference model if

precondition is satisfied (the latter may be checked inside of reference model). Current state

function is necessary if FSM-based stimulus generator is used.

As having said above, C++TESK supports two types of test sequence generation: FSM-based and

random one. The first way will be reviewed later. To generate stimuli randomly, only scenario

functions are necessary, current state is not calculated. In this case, registration of scenario

functions should be done according to the following convention. The first stimulus in the list should

be the one shifting time (cycle of stimulation), the other ones should not do it. To set up random

stimulus generation is possible by means of the following parameters.

 maximum cycle number

 strategy of stimulus application (max load, min load, dynamic load and their parameters)

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 21

Usage of random scenario parameters will be considered in detail later. Let us proceed to scenario

development.

All necessary classes and macros are defined in <ts/scenario.hpp>. Used namespaces are

cpptesk::ts, cpptesk::hw, cpptesk::tracer. Scenario class is defined by means of macro

SCENARIO(scenario_class_name) {}. The following functions are standard for scenario definition.

 constructor and virtual destructor;

 virtual bool init(int argc, char ** argv) initializes test scenario;

 virtual void finish() finishes test scenario;

 std::string get_state() (not used now) returns current state;

 bool scenario_function_name(IntAbcCtx& ctx) make reference model stimuli and start them;

 object of reference model adapter class.

Having obtained class is a base class for test scenario classes. It can be inherited to obtain new child

scenarios. These scenarios use selectively registered scenario functions defined in base class, use

appropriate current state function also defined in base class. Child scenarios usually do not require

any methods besides constructor and destructor.

Declaration of test scenario class might look as follows.

#pragma once

#include <fifo_media.h>

#include <ts/scenario.hpp>

using namespace cpptesk::ts;

using namespace cpptesk::hw;

using namespace cpptesk::tracer;

namespace cpptesk {

namespace examples {

SCENARIO(ParentScenario) {

public:

 virtual bool init(int argc, char ** argv);

 virtual void finish();

 bool scen_nop(IntAbcCtx& ctx);

 bool scen_push(IntAbcCtx& ctx);

 bool scen_pop(IntAbcCtx& ctx);

 std::string get_current_state();

 ParentScenario(void);

 virtual ~ParentScenario(void);

protected:

 DUTMediator dut;

};

class ChildScenario : public ParentScenario {

public:

 ParentScenario();

 virtual ~ParentScenario();

};

}}

After declaration of test scenario class, its methods are to be implemented. Parent class constructor

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 22

(if it is not used as a scenario itself) should call only constructor of its super class ScenarioBase().

Each child scenario calls its parent constructor and also uses the following function.

setup(string_with_scenario_name, &full_init_function_name, &full_finalizing_function_name,

&full_current_state_function_name).

Usage of setup function is limited by the requirement of locating all registered functions inside of

one class. After calling setup function, scenario methods can be registered by means of macro

ADD_SCENARIO_METHOD(full_scenario_function_name).

Scenario functions are methods of parent scenario class. In the beginning of the function, typical

local variable should be declared if they are necessary. Then, macro IBEGIN starts substantial part

of scenario function. IBEGIN is followed by macro IACTION{}, having inside all the actions of

creating reference message and its sending to reference model. The simplest sending looks as

follows. First, stimulus precondition is checked and if it is satisfied, application is made by function

reference_model_object.start(&full_reference_model_stimulus_name, interface_name, message,

reference_model_class_name::START_REQUEST_IFACE). In case of scenario function shifting

time, function cycle should be used instead of stimulus call: reference_model_object.cycle().

Whatever precondition shows, IACTION block should be finished by macro

YIELD(reference_model_object.verdict()), getting results of test oracle work at current cycle.

Returning to test scenario methods, in the simplest case, method init is usually empty and returns

true, method finish asks HDL-simulator to stop by calling reference_model_object.finalize().

Current state function get_state takes some values returning by reference model functions, makes a

string basing on them and return it. Typically, developing of such a function is not a trivial task.

Implementation of test scenario methods may look as follows.

#include <fifo_scen.h>

#include <tracer/tracer.hpp>

namespace cpptesk {

namespace examples {

bool ParentScenario::init(int argc, char ** argv) {

 return true;

}

void ParentScenario::finish() {

 dut.finalize();

}

bool ParentScenario::scen_nop(IntAbcCtx& ctx) {

 IBEGIN

 IACTION {

 dut.cycle();

 YIELD(dut.verdict());

 }

 IEND

}

bool ParentScenario::scen_push(IntAbcCtx& ctx) {

 IBEGIN

 IACTION {

 if(dut.isIface1Ready() && !dut.is_full()) {

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 23

 InputData msg = InputData();

 dut.start(&DUT::push_msg, dut.iface1, msg, DUT::START_REQUEST_IFACE);

 }

 YIELD(dut.verdict());

 }

 IEND

}

bool ParentScenario::scen_pop(cpptesk::ts::IntAbcCtx& ctx) {

 IBEGIN

 IACTION {

 if(dut.isIface2Ready() && !dut.is_empty()) {

 InputData msg = InputData();

 dut.start(&FIFO::pop_msg, dut.iface2, msg, FIFO::START_REQUEST_IFACE);

 }

 YIELD(dut.verdict());

 }

 IEND

}

std::string ParentScenario::get_state_fifo() {

 std::string state;

 std::stringstream out;

 out << "";

 state = out.str();

 return state;

}

ParentScenario::ParentScenario(void) : ScenarioBase() {}

ParentScenario::~ParentScenario(void) {}

ChildScenario::ChildScenario(void) : ParentScenario() {

 setup("Example scenario", &ParentScenario::init, &ParentScenario::finish,

 &ParentScenario::get_state_fifo);

 ADD_SCENARIO_METHOD(ParentScenario::scen_nop);

 ADD_SCENARIO_METHOD(ParentScenario::scen_push);

 ADD_SCENARIO_METHOD(ParentScenario::scen_pop);

}

ChildScenario::~ChildScenario(void) { };

}}

Having been developed test scenario should be bound to stimulus generator. It is done by means of

test repository. Repository contains of test scenario class objects together with information of

selected test engine and its parameters. Each row of test repository should contain different objects

of test scenario classes while object names are used for identification of running test scenario. To

start test with given name, it should be sent to HDL-simulator as a parameter +scen=scenario_name

(see file testbench.v generated by VeriTool).

Necessary macros for test repository are defined in file <utils/testreg.h>. Repository starts from

macro TEST_REGISTRY_BEGIN, and finishes by macro TEST_REGISTRY_END. Each test

scenario is associated with test engine by macro REGISTER_TEST(test_scenario_object,

test_engine_type, default_parameters). Parameter test_engine_type must be either engine::fsm or

engine::rnd. The first one means FSM-based generation, the second one means random selection of

stimuli. Default_parameters allow to set up stimulus generator. The parameter list might include

but not restricted by the following ones.

 -uerr=N, N>0 orders to test until error counter being equal to N;

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 24

 -nt turns off tracing in format UTT;

 -nt2 turns off tracing in format UTT2;

 --length N, N>0 orders to execute random test scenario exactly N cycles;

 --parallel turns on parallel stimuli in random test scenario;

 --maxload turns on max stimulus load in random test scenario.

Written in test repository parameters have less priority then those being sent via ARGV (see file

testbench.v generated by VeriTool).

Developed test repository (fifo_tests.cpp) might look as follows.

#include <utils/testreg.h>

#include <fifo_scen.h>

using namespace cpptesk::examples::fifo;

ChildScenario scen_rnd;

TEST_REGISTRY_BEGIN

REGISTER_TEST(scen_rnd, engine::rnd, "-uerr=1 --length 10000 --parallel")

TEST_REGISTRY_END

Development of functional coverage

Additional possibility helping to improve test process is function coverage. Under coverage usually

some value measured in absolute or relative numbers is meant. Test coverage is gathered for

evaluation of test completeness: the more numbers are, the better DUV is checked.

There are several approaches to gather the coverage. In the introduction to С++TESK we will speak

only about functional coverage showing number of checked functional properties selected by an

engineer.

At the moment С++TESK supports only manually selected functional coverage structures. Tracing

of their covering is made automatically. Resulted coverage is printed as a report.

Verification engineer should analyze documentation to the DUV to find situations appearing in

functional model which must happen during test process. It is useful to ask DUV developers about

their vision of test cases. Then engineer creates functional coverage structure for selected situations.

This work is rather creative and its results depend on the qualification of engineer.

It should be noticed, that C++TESK does not still allow to describe dynamic situations where some

action happens after another, in n cycles, etc. Such possibilities will be implemented later.

All necessary macro and classes are declared in <ts/coverage.hpp> and <tracer/tracer.hpp>.

Coverage class might be a part of reference model class or it may be a different class. In the second

case it has to contain a reference to reference model object, constructor and virtual destructor. In

both cases object of class CoverageTracker should be declared. This object will keep registered test

coverage structures, print reached test coverage in trace of UTT2 format.

Coverage can be set by macro DEFINE_ENUMERATED_COVERAGE(coverage_id, string_form,

((coverage_element_id, coverage_element_string_form), (…,…), …)). It declares an object of class

Coverage with coverage_id name. Coverage_element_id is used for identification of all

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 25

subcomponents of being defined coverage structure. All string representations are used in report

generation. The tool also allows to copy coverage structures, product coverage structures with or

without excluded tuples. Macros DEFINE_ALIAS_COVERAGE(coverage_id, string_form,

initial_coverage_id), DEFINE_COMPOSED_COVERAGE(coverage_id, string_form,

initial_coverage_A_id,initial_coverage_B_id),DEFINE_COMPOSED_COVERAGE_EXCLUDING

(coverage_id, string_form, initial_coverage_А_id, initial_coverage_B_id,

{excluded_element_from_A_id, excluded_element_ from_B_id}, ...) are used for these purposes.

To let coverage information be collected, current state of reference model should be read and used

for increasing of an appropriate coverage structure item. The increased values are to be sent into

object of CoverageTracker class by means of operator <<. It is easy to do by means of two

functions. The first one returns object of Coverage class, selected according to the used reference

model parameter. The second function receives value returned by the first function and sends it to

the object of CoverageTracker type by means of operator <<.

Header file for coverage class (fifo_coverage.h) may look as follows.

#pragma once

#include <hw/model.hpp>

#include <ts/coverage.hpp>

#include <tracer/tracer.hpp>

#include <fifo_model.h>

using namespace cpptesk::ts;

using namespace cpptesk::hw;

using namespace cpptesk::tracer;

using namespace cpptesk::tracer::coverage;

namespace cpptesk {

namespace fifo {

class DUT;

class DUTCoverage {

public:

 DUTCoverage(DUT &dut): dut(dut) {}

 virtual ~DUTCoverage() {};

 CoverageTracker coverageTracker;

 DEFINE_ENUMERATED_COVERAGE(DUT_FULLNESS, "DUT fullness",

 ((I0, "0 (free)"), (I1, "1"),

(I2, "2"), (I3, "3"), (I4, "4 (full)")));

 DUT_FULLNESS select_coverage_element_DUT_FULLNESS(void) const;

 void update_coverageTracker_DUT_FULLNESS(void);

protected:

 FIFO &fifo;

};

}}

Implementation of this class (fifo_coverage.cpp) may look as follows.

#include <fifo_coverage.h>

namespace cpptesk {

namespace fifo {

DUTCoverage::DUT_FULLNESS

DUTCoverage::select_coverage_element_DUT_FULLNESS(void) const {

 switch(dut.dut_fullness()) {

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 26

 case 0: return DUTCoverage::DUT_FULLNESS::I0;

 case 1: return DUTCoverage::DUT_FULLNESS::I1;

 case 2: return DUTCoverage::DUT_FULLNESS::I2;

 case 3: return DUTCoverage::DUT_FULLNESS::I3;

 case 4: return DUTCoverage::DUT_FULLNESS::I4;

 default: assert(false);

 }

}

void DUTCoverage::update_coverageTracker_DUT_FULLNESS(void) {

 coverageTracker << DUTCoverage::select_coverage_element_DUT_FULLNESS();

}

}}

If coverage means are created in a separated class, object of the class should be added to reference

model class to let binding the reference to the reference model inside of coverage class. To update

coverage information kept in coverage class, the second function of the two above is called from

time to time. Such “times” might be cycle shifts, certain operation starts, i.e. all events changing

reference model state where functional coverage might change and should be evaluated.

Reached coverage is traced into UTT2 format. To analyze trace, special report generator is used

which can be started by command $CPPTESK_HOME/bin/reportgen.sh trace_name.utt2 from the

directory with trace (trace name should not contain spaces). The report generator creates directory

Reports with reports about testing to be read by usual Internet browser.

Development of FSM-based scenarios

Addition to chapter 5.

To generate test actions, FSM-based test engine can also be used. It implies dynamic creation of

tight connected finite state machine and its exploration by certain non-extra state algorithm. The

FSM is defined by current state function and list of stimuli (scenario functions in this context) with

their preconditions. Test is supposed to be finished, when all the stimuli are applied in each state,

and no error has been found.

Each scenario function is supplied by iteration context (see signature of scenario functions:

IntAbcCtx& ctx is the context), keeping iterator values. Iterators are constructions for iterative

assignment of input parameters of started operations. They let consider stimuli started from the

same scenario function but with different iteration variable values to be different stimuli. It is

necessary for applying of all input parameter combinations of all stimuli.

Iteration variables are declared in the beginning of scenario functions: int& variable_name =

IVAR(a). Macro IVAR() should have inside one letter of Latin alphabet (from a till z). Values of

these variables will be kept into mentioned above iteration context.

Let us remind that after initialization of all local variables the pair of macros IBEGIN-IEND is

written. Inside of the pair IBEGIN-IEND nested into each other cycles by iteration variables may be

written, and the last one should have macro IACTION{} inside. Cycle by iteration variable is a

usual cycle “for”: for(variable_name = 0; variable_name < 2; variable_name++). Usage of iteration

variable allows to define a set of stimuli being different in this parameter, variable_name. Notice,

that iterators are not always needed. In the simplest examples like FIFO, iterators are not necessary

but can be added artificially to increase number of FSM states. Let us use iteration variable into

С++TESK Hardware Extension: Getting Started. Version 1.0, 04/09/2013 | © 2013 ISP RAS

 27

scenario function nop to increase the number of arcs issuing from states.

bool ParentScenario::scen_nop(IntAbcCtx& ctx) {

 int &pseudo_iteration = IVAR(a);

 IBEGIN

 for(i = 0; i < 10; i++)

 IACTION {

 dut.cycle();

 YIELD(dut.verdict());

 }

 IEND

}

Current state function may be the following one.

std::string ParentScenario::get_state_fifo() {

 std::string state;

 std::stringstream out;

 out << dut.fullness() << ","<< dut.isIface1Ready() << dut.isIface2Ready();

 state = out.str();

 return state;

}

To start FSM-based stimulus generation, test engine engine::fsm should be used:

#include <utils/testreg.h>

#include <fifo_scen.h>

using namespace cpptesk::examples::fifo;

ChildScenario scen_fsm;

TEST_REGISTRY_BEGIN

REGISTER_TEST(scen_fsm, engine::fsm, "-uerr=1 -nt -nt2")

TEST_REGISTRY_END

