
C++TESK Testing ToolKit:
Test Engines

Version 1.0, 04/09/2013

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

2

© 2011-2013 Institute for System Programming of RAS (ISP RAS). 25 Alexander Solzhenitsyn st., Moscow, Russia

109004, http://www.ispras.ru.

C++TESK Testing ToolKit can be downloaded from the page http://forge.ispras.ru/projects/cpptesk-toolkit.

C++TESK Testing ToolKit is distributed under Apache License 2.0 from January 2004. Complete license can be found

at the following link http://www.apache.org/licenses/.

Please let us know about your proposals and problems while using C++TESK Testing ToolKit sending them to cpptesk-

support@ispras.ru. The forum http://hw-forum.ispras.ru can be also used for such a purpose.

С++TESK Testing ToolKit: Test Engines. Version 1.0, 04/09/2013.

http://www.ispras.ru/
http://forge.ispras.ru/projects/cpptesk-toolkit
http://www.apache.org/licenses/
mailto:cpptesk-support@ispras.ru
mailto:cpptesk-support@ispras.ru
http://hw-forum.ispras.ru/

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

3

Content

Introduction .. 4

Test scenario structure ... 4

Stimulus iterator ... 4

State calculation function ... 5

Test engines.. 5

Common command line parameters .. 5

Parameter cpu ... 5

Parameter length .. 5

Option print-progress .. 5

Default values .. 6

Test engine fsm ... 6

Brief algorithm description .. 6

Command line parameters ... 6

Option randomize .. 6

Option nondeterministic ... 6

Option dump-fsm .. 7

Option full-graph.. 7

Option forward-tree ... 7

Default values .. 7

Test engine rnd ... 7

Brief algorithm description .. 7

Command line parameters ... 7

Option sequential.. 8

Option parallel .. 8

Option min-load .. 8

Option max-load .. 8

Parameter fix-load ... 8

Option var-load .. 9

Default values .. 9

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

4

Introduction

This document describes test engines included into library of C++TESK Testing ToolKit (hereafter

С++TESK). Test engine is a core of stimulus generator, which is a component of test system being

responsible for construction of stimulus sequence (test actions) for target system. Stimuli can be

represented as parameterized target system operation calls. Sequence of stimuli is called test

sequence. Test scenario, being input information for test engine, is a high-level specification of test

defining available for test stimuli. Test sequence is constructed as a result of interpretation of given

scenario by test engine. It should be noticed that all test engines have the same interface which let

different test engines be used for execution of given test scenario.

Library of C++TESK includes two test engines: fsm (Finite State Machine) and rnd (Random),

located in namespace cpptesk::ts::engine. The former (fsm) makes traversing of finite

state machine state graph described in implicit form in test scenario. The criterion of test

completeness in this case is visiting of all states reachable from initial state (it means also traversing

of all arcs outgoing from reachable states). Test engine rnd constructs test sequence randomly

selecting random either stimulus or set of available stimuli at each work step. Test is finished when

given work steps are passed. More detailed information about test engines can be found in

correspondent chapters of this document.

Before reading the rest part of this document, it is recommended to read about development of test

scenario by means of C++TESK. This information is contained, e.g., by document «С++TESK

Hardware Edition: Quick Reference» (chapter «Development of test scenario»).

Test scenario structure

From test engine point of view, test scenario consists of two main parts: (1) stimulus iterator and

(2) state calculation function.

Stimulus iterator

Stimulus iterator is set by scenario methods of scenario class. Each scenario method iterates

parameters of some stimulus using typical loop-constructions being available in C++ (for, while

etc.). Iterations are performed by means of iteration variables which are the fields of iteration

context being a parameter of scenario method. Iteration variables can be accessed by means of

macro CPPTESK_ITERATION_VARIABLE(name). Macro CPPTESK_ITERATION_BEGIN

precedes iterations and macro CPPTESK_ITERATION_END finishes them. Implementation of

stimulus application to target system is located inside of set of loops in block

CPPTESK_ITERATION_ACTION{...}. Stimulus application finishes by calling macro

CPPTESK_ITERATION_YIELD(verdict).

Typical scenario method has the following structure.

bool MyScenario::ScenarioMethod(AbcCtx &ctx) {

 int &a = CPPTESK_ITERATION_VARIABLE(a);

 ...

 int &z = CPPTESK_ITERATION_VARIABLE(z);

 CPPTESK_ITERATION_BEGIN

 for(a = 0; a < Na; a++)

 ...

 for(z = 0; z < Nz; z++) {

 CPPTESK_ITERATION_ACTION {

 ...

 CPPTESK_ITERATION_YIELD(...);

 }

 }

 CPPTESK_ITERATION_END

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

5

}

Scenario method ScenarioMethod for given reference model state (specification state) ModelState

produces stimulus set, where each stimulus is identified by integer numbers from range

[0, Nmax(ScenarioMethod, ModelState)-1], where Nmax(ScenarioMethod, ModelState) is the number

of executions of block CPPTESK_ITERATION_ACTION for scenario methods of given reference

model state.

Aggregated stimulus iterator is obtained by “aggregation” of iterators defined in scenario methods.

Test scenario stimulus iterator describes a set of all possible stimuli and introduces current test

scenario-wide system of stimulus identification. If reference model state ModelState is fixed,

stimuli are identified by integer numbers from range [0, Nmax(ModelState)-1], where

Nmax(ModelState)=i=0,n-1 {Nmax(ScenarioMethodi, ModelState)}. Numeration of stimuli accounts

order of scenario method registration.

State calculation function

State calculation function is defined in state calculation method of scenario class. Type of return

value can be scalar (int, float и т.п.) or of string type (std::string). Return value is

interpreted as reference model state at some level of abstraction.

State calculation function is unnecessary test scenario component and used only by test engine fsm.

Test engines

Test engines are controlled by command line parameters; some of them are common for all engines.

 --cpu — running test host device identifier
1
;

 --length — length of test sequence
2
;

 --print-progress — print of test progress.

Common command line parameters

Parameter cpu

Parameter --cpu целое_число sets identifier of host device (computer, microprocessor or

core) which runs current test. This parameter is used only in case of distributed among several host

devices testing. The main purpose of this parameter is varying of test executions at different host

devices. E.g., this parameter is used for random seed setting and in choosing of the following

stimulus (graph arc) by test engine fsm.

Parameter length

Parameter --length integer restricts the length of test sequence generated by test engine.

When the length is equal to the given number, test is finished.

Option print-progress

Option --print-progress turns on print of test execution progress (state graph exploration).

1
 This parameter is sensible only in distributed testing.

2
 In current version of C++TESK Testing ToolKit test engine fsm ignores parameter --length.

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

6

Default values

Option --print-progress is turned off by default, parameters --cpu and --length have

the following values.

--cpu 0 --length 1000

Test engine fsm

Test engine fsm generates test sequence by finite state machine state graph exploration. The graph

is represented implicitly in test scenario. The criterion of test completeness is visiting of all states

being reachable from the initial state and traversing all arcs issuing from them.

Brief algorithm description

Test engine fsm works in the following way. At each step it has current state computed. There are

two ways: (1) this state has non traversed arcs
3
 and (2) all arcs issuing from this state have been

traversed. It the first case test engine selects one of the non traversed arcs, applies correspondent

stimulus to the target system and test keeps on going. The second case has two alternatives: (2.1)

there are other states (from having been visited) with non traversed arcs, and (2.2) all known arcs

have been traversed. In the first case test engine finds the way to the state with non traversed arcs.

Eventually situation (2.1) becomes situation (1). In the second case test is finished.

Command line parameters

Test engine fsm supports the following command line options.

 --randomize — randomization of arc selection;

 --nondeterministic — support of nondeterministic arcs;

 --dump-fsm — saving of state graph in file after test finalizing:

o --full-graph — saving of the whole graph;

o --forward-tree — saving of spanning tree.

Option randomize

Option --randomize turns on randomized selection of the following arc. It means that if test

engine has a choice which arc should be selected, test engine choose arc randomly. If this option is

not set, arcs are selected in the order prescribed by their order in test scenario.

Option nondeterministic

Option --nondeterministic turns on support of nondeterministic graphs, i.e. graphs where

several arcs labeled by the same stimulus can issue from the same state. The main difficulty in

traversing of nondeterministic graphs is absence of possibility of determination which arc has been

traversed by applying some or other stimulus. It makes finding of paths with non traversed arcs

more difficult.

Setting of option --nondeterministic allows usage of nondeterministic arc during path

finding (increasing class of supported graphs). If this option is not set, paths are constructed via

deterministic arcs.

3
 It is more correct to speak about stimuli not arcs as in case of nondeterministic graph one stimulus can correspond to

several arcs issuing from the same state.

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

7

Option dump-fsm

Option --dump-fsm is used for saving of state graph in file after test finalizing. File has fixed

name fsm.gv; in this file data are represented in Graphviz format, which is an open source graph

visualization package (http://www.graphviz.org).

Option full-graph

Option --full-graph (set together with --dump-fsm) saves state graph as a whole.

Notice: options --full-graph and --forward-tree are incompatible.

Option forward-tree

Option --forward-tree (set together with--dump-fsm) saves only state graph spanning tree.

Notice: options --forward-tree and --full-graph are incompatible.

Default values

Options –-randomize, --nondeterministic, and --dump-fsm are not set by default.

If option --dump-fsm, is set, state graph is saved as a whole by default.

Test engine rnd

Test engine rnd constructs test sequence randomly selecting random stimulus or random stimulus

set from the list of allowed in test scenario stimuli at each work step. Test is finished when given

number of stimulus is called.

Brief algorithm description

There are two modes of test engine rnd work. The first one is sequential (see chapter «Option

sequential») and parallel (see chapter «Option parallel»).

In sequential mode all the stimuli, set up by test action iterator, are equitable. At each work step,

identifier of stimulus is randomly selected from range [0, Nmax(ModelState)-1], and correspondent

stimulus is applied.

In parallel mode stimulus with identifier 0 has a special meaning playing role of delay stimulus. All

the other stimuli are not allowed to shift simulation time (they are “immediate” actions without

waiting of reactions for them.). In this mode at each work step random stimulus sequence (multi

stimulus) is created. This sequence is finished by stimulus with identifier 0. In the other words,

several stimuli are applied in parallel, and then some delay happens.

Size of multi stimulus depends on load mode. Test engine rnd supports four load modes.

 minimum load mode (see chapter «Option min-load»);

 maximum load mode (see chapter «Option max-load»);

 fixed load mode (see chapter «Parameter fix-load»);

 variable load mode (see chapter «Option var-load»).

The criterion of test completeness is passing of certain number of test steps (see chapter «Parameter

length»).

Command line parameters

Test engine rnd supports the following command line parameters.

http://www.graphviz.org/

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

8

 --sequential — sequential mode;

 --parallel — parallel mode:

o --min-load — minimum load mode;

o --max-load — maximum load mode;

o --fix-load — fixed load mode;

o --var-load — variable load mode.

Option sequential

Option --sequential turns on sequential mode of test engine work. In this mode, test engine at

each step selects random stimulus from the list of available in test scenario stimuli. Sequential mode

is aimed for systems which does not support application of stimuli in parallel mode.

Notice: options --sequential and --parallel are incompatible.

Option parallel

Option --parallel turns on parallel mode of test engine work. In this mode, test engine at each

step generates random stimulus sequence finished with stimulus with identifier 0 — delay

stimulus
4
. All the stimuli except stimulus 0 are supposed to run immediately. Despite their attempt

to run some or other operation, their real start is performed only after calling stimulus 0 when time

is shifted. Test step in parallel mode is schematically showed in figure 1.

.0)(,...)(0

)(

...

)(

)(

...

)(

2

1





























 tiзадержкастимул

tiстимул

tiстимул

tiстимул

k

tn

Figure 1. Test step in parallel mode

Notice: options --parallel and --sequential are incompatible.

Option min-load

Option --min-load turns on minimal load mode allowing not more than one stimulus at each

work step. This mode is typically used during debug of test system.

Option max-load

Option --max-load turns on maximum load mode to apply all possible stimuli described in test

scenario at each work step.

Parameter fix-load

Parameter --fix-load load_percentage sets fixed load mode to apply certain part of

stimuli at each work step. E.g., if --fix-load 50 is written, half of the whole stimulus set will

be applied in parallel at each step.

4
 Typically this is a scenario method without iterations called nop() or delay().

С++TESK Testing ToolKit: Test Engines. Version 1.0, 21/11/2011 | © 2011-2013 ISPRAS

9

Option var-load

Option --var-load turns on variable load mode to let test system load be smoothly increased

from minimum to maximum.

Default values

Option --sequential is used by default.

If option --parallel is used, variable load mode --var-load is used by default.

