
High-Performance Testing: Parallelizing Functional
Tests for Computer Systems Using Distributed Graph

Exploration

Alexey Demakov, Alexander Kamkin, and Alexander Sortov
Institute for System Programming of the Russian Academy of Sciences (ISPRAS)

Moscow, Russia
{demakov,kamkin,sortov}@ispras.ru

Abstract—Functional testing of complex hardware and software
systems has long been recognized as an immensely computer-
intensive task. Consisting of a huge number of interacting
components, computer systems are hard to be verified due to the
well-known fundamental problem – combinatorial state
explosion. One of the ways to overcome the complexity is to use
abstract models for generating test sequences and checking
design correctness. However, models of really complex systems
are complex themselves, which leads to enormously long test
sequences (tests are usually targeted at covering all model states
reachable from the initial one). In this paper, we suggest a
method for high-performance generation and execution of model-
based tests based on the distributed exploration of a system’s
graph model. The key feature of the method is that
parallelization is done dynamically and fully transparently for a
user.

Keywords–functional testing; simulation-based verification;
combinatorial state explosion; distributed computing; graph
exploration; UniTESK technology

I. INTRODUCTION
Many researchers are familiar with the term high-

performance computing designating a branch of knowledge
about using supercomputers and computer clusters to solve
advanced computation problems [1]. The term is mostly
associated with the computing used for scientific research or
computational science (modeling of physical processes,
materials, structures, and so on). However, when designing
complex hardware and software systems (hereinafter referred
to as computer systems or systems for short), especially when
analyzing and verifying them, one also needs to solve very
computer-intensive problems. Generally, these problems come
to exploration of a system’s state space and testing some
properties of a system.

To denote testing methods concerned with the use of
supercomputers and computer clusters, we introduce a term
high-performance testing. Within the scope of this paper, a
particular kind of testing (namely, functional testing) is
considered. Functional testing checks that a target system
(SUT, system under test) correctly implements all the functions
stated in the specification not examining the internal structure
of the system (source code) [2]. It should be noted that for
hardware designs functional testing is usually performed not
for a finished product (chip or circuit board), but for a
simulation model described in a special hardware description

language (HDL) and is known as simulation-based verification
or pre-silicon verification [3].

Many manufactures of complex hardware and software
systems (like microprocessors and operating systems) use a lot
of computational resources for functional testing of their
designs. The most usable approach to test execution is to run
independent tests on separate computers (a computer can
execute several tests, but one test cannot be executed on two or
more computers in parallel). The approach works well for
relatively small test batches, but it, obviously, fails to handle
huge tasks. The only known exception is random-based tests,
where several instances of the same test system are executed
concurrently. Trying to diversify tests sequences, different
instances of a system use different seeds of the random number
generator [4].

When testing complex systems with immense state spaces,
one needs very long test sequences to cover different states.
Theoretically, random tests can solve the problem, but it can
take significant amount of time (first, some states are highly
improbable and, second, there is duplication of actions among
different instances of a test system). The natural solution is to
use graph or automaton models1 and generate test sequences
by exploring (traversing) those models [5-7]. However,
existing graph-based testing tools do not support parallelization
and therefore are almost inapplicable to test really complex
computer systems. If a state graph is known, one can compute
a set of paths covering all the transitions and then use those
paths as goals for the test system’s instances. However, a
transition relation is often unknown and constructed during
state graph exploration [6].

In this paper, we suggest a method for parallel generation
and execution of tests based on the distributed graph
exploration. The main advantage of the method is that
parallelization is performed fully automatically and
transparently. A test system is developed in the same way as it
is done for execution on a single computer. The only parameter
has to be set when starting a distributed test system is the
number of computers to run the system onto. It should be noted
that in the suggested approach a test system’s processes are not
independent ones – they communicate with each other sharing
information on what part of the graph model has been
traversed. The method and developed tools extend the

1 Hereinafter, we do not distinguish between graph and automaton models
assuming that graphs describe transition relations (state spaces).

UniTESK technology [8,9] and allow verifying systems with
millions of model states.

The rest of the paper is organized as follows. Section 2
reviews the related work addressing parallelization of
functional tests for computer systems. Section 3 describes the
suggested method based on distributed graph exploration; it
considers a test system’s architecture and process
synchronization issues. Section 4 describes applications of the
approach to functional testing of real-life systems; this section
comprises results on parallelization efficiency with respect to
the number of computers. Section 5 concludes the paper and
outlines directions of our future research and development.

II. RELATED WORK
First of all, it should be noted that we do not know works

investigating parallelization of test generation and execution by
means of distribution graph exploration. There are lots of
papers on application of graph and automaton models to
functional testing (see [5-7] for example), which consider
algorithms and methods for generating test sequences, but do
not touch upon the issues of tests parallelization.

As we have said before, practical approaches to high-
performance testing are based on simultaneous execution of
independent or random-based tests on a number of computers.
In the latter case, an interesting problem arises. One needs to
diversify pseudorandom values being generated among all
instances of a test system. This problem is usually referred to
as parallel pseudorandom number generation and is solved by
splitting a long-period stream of random numbers into a set of
parallel substreams or by parameterization of a generator to
produce several independent full-period streams [4].

Our work is based on the UniTESK test system architecture
described in [8,9]. The architecture identifies basic components
of a test system including Traverser (Test Engine), Test
Scenario (Test Action Iterator), and Test Oracle. Traverser
encapsulates an algorithm for exploring a wide class of
directed labeled graphs (some of the algorithms are considered
in [10,11]). Test Scenario defines a graph in an implicit form. It
provides functions for calculating a current node (state) and for
iterating the outgoing arcs (transitions). Test Oracle checks
whether SUT’s behavior relating to arc traversal (test action) is
correct.

Distributed graph-based testing (and our approach in
particular) has much in common with exploration of indoor
environment by a team of mobile robots (agents) [12,13].
Whenever robots have to solve a common task, they need to
coordinate their actions to carry out the task efficiently and to
avoid interferences between robots [13]. This problem is also
relevant for distributed test systems. Multiple processes should
be synchronized to avoid duplication of arc traversals. In [13],
an effective coordination strategy is suggested to better
distribute robots over environment and to avoid redundant
work. The strategy we use is much simpler, but it allows
achieving almost linear speedup when testing a system on
multiple interconnected computers.

In papers [14] and [15], effective breadth-first-search
algorithms for exploring very large graphs on advanced multi-
core processors are proposed. In the experimental evaluation
they have proved that their algorithms running on 4-socket

Intel®’s Nehalem-EX is 2.4 times faster than a Cray XMT™
with 128 processors [15]. The tests have also shown linear
speedups when using multiple processing units [14]. As
opposed to these works, trying to produce as portable system as
possible we do not use processor-specific optimizations.

Theoretical aspects of the distributed graph exploration can
be found in [16,17] and other papers. The first article describes
algorithms to compute spanning trees in undirected networks.
In [17], a deterministic algorithm that constructs a map of the
simple undirected graph by multiple agents, elects a leader
among them, and provides a unique labeling of the nodes is
suggested.

III. SUGGESTED METHOD
According to the UniTESK technology, SUT is modeled by

a finite state machine (FSM). A test system explores a state
graph of that FSM model, applies test actions corresponding to
the graph’s arcs and analyses correctness of SUT’s behavior.
The thing is that graph models of complex systems are of a
huge size, and therefore test execution on a single computer
takes too much time.

As a way to improve test execution performance we have
chosen tests parallelization on computer clusters and have set
the task to extend the UniTESK technology by means of
distributed test execution on computer clusters. The main
requirement we have formulated is that changes in test
execution should not affect test development. It means that all
tests (including those ones that have been developed earlier)
can be executed on a single computer as well as on a number of
interconnected computers.

Figure 1. Test system architecture for execution on a single computer

Test system architecture for execution on a single computer
is shown on Fig. 1. A library subsystem Model Graph Storage
manages information about a known part of a model graph.
Another library subsystem, Traverser, fills up the storage when
exploring a model graph. Main Test Loop is an active part of
the test system. It takes Test Scenario (which is an implicit
description of a model graph) as an input and uses Traverser to
explore the graph by finding paths to uncovered arcs. When
traversing the model graph, Main Test Loop applies test actions
and analyses SUT’s reactions.

The key idea used for parallel test execution is that
Traverser’s algorithm remains almost the same if there are
additional sources for filling up the model graph storage. It is
enough to start test system processes (each containing a test
system’s instance and SUT) on computer cluster’s nodes and
provide exchange of information about traversed arcs of the

model graph between all of the processes. We have developed
a new library subsystem, called Synchronizer, that is
responsible for information exchange. Modified test system
architecture is shown on Fig. 2.

Figure 2. Test system architecture for execution on a computer cluster’s node

A model graph’s arc traversed by one test system process
will be known to all other processes and they will not traverse
it by themselves wasting no time to duplicate work that has
been already done. Performance improvement is possible only
under the following conditions:

• It should be more profitable for a process to receive
information about traversed arcs from other processes
than traversing them by process itself. In other words,
exchange of information about traversed arcs should be
significantly faster than local traversing.

• Among information about traversed arcs received from
other processes should not be many arcs already known
by a process.

Small change in traversal algorithm has been made to
satisfy the second condition. In case of single execution, a
Traverser’s choice of the next untraversed arc was
deterministic. For parallel execution it means that starting from
the initial node all Traversers will go through the same arc, and
further they will also make the same decisions sending each
other a lot of useless information and thus violating the second
condition. Therefore, the choice of the next untraversed arc has
been made dependent on index of a process (all processes are
numerated) producing different variations of the traversal
order.

A synchronization protocol for exchanging graph
information should provide delivery of each new message
about a traversed arc to each process and preferably only once
(to reduce network traffic). Such protocol has been developed.
Synchronizers of different instances of a test system establish
one-way point-to-point connections to each other. A topology
can be arbitrary while the oriented graph of the test system
channels (communication graph) is strongly connected (to
ensure delivery of messages from any process to any other in
the same order and without losses).

Each test system process does synchronization regularly. It
is initiated by incoming messages, by new arcs traversed
locally or on timeout. The synchronization algorithm is as
follows:

1. Synchronizer receives all incoming network messages
and asks Traverser for local update – a set of new arcs
traversed by the process since the time of the latest
synchronization. Let R (received) be a set of arcs in the

received messages, S (sent) be a set of arcs that have
been already sent via the outgoing connections of the
process and N (new) be a local update.

2. A set of new arcs received from other processes
R\(S∪N) is added to Model Graph Storage.

3. A message containing a set of arcs (R∪N)\S is sent via
all outgoing connections.

4. A set of sent arcs is updated: S := S∪R∪N.
It is obvious that this synchronization protocol guarantees

that a message about any traversed arc will be transferred
through each connection only once. Therefore, if messages
about some traversed arc have been received from every
ingoing connection, that arc may be removed from the set S,
because all other processes already know about it.

Maximal time required for all processes to receive a
message about an arc traversed by some process is proportional
to a diameter of the communication graph. The polar variations
are “all-to-all” and “ring” topologies. Choosing optimal
topology of communication graphs is beyond the scope of this
paper. However, we have experimented with some topologies;
our results are described in the next section.

Parallelization considerably speedups test execution, but
there are huge tests taking much time even in case of parallel
execution. A capability to temporarily interrupt test execution
makes testing more convenient. This facility is implemented by
logging all outcoming network messages by one or more
processes of a test system. When execution continues after
interruption, all processes start from the initial state as usual.
At the same time, those processes that have logs resend the
logged messages to the other processes. It is obviously much
faster than test reexecution. Moreover, it increases reliability of
the system.

Further specialization of test system processes is possible.
Some processes may be targeted at resource-intensive tasks, for
example, they may be intended for searching a path in a graph
from a given node to a node that has untraversed outgoing arcs.
It lowers CPU and memory requirements for other processes –
they may store not a whole graph but only neighborhoods of
their current nodes. A light-weight process works
independently from the bigger ones when there are untraversed
arcs in the current state, but if it fails to find a path by itself, it
delegates the task to one of the dedicated processes.

Another promising optimization is using different graph
exploration strategies with central coordination. For example, if
there are two arcs going out from the initial node – the first one
leads to a big loop with only one arc from each node, while the
second one leads to the root of a tree with many arcs from each
node. With our current strategy about half of processes will go
via the first arc through the big loop without any profit. With
central coordination it is possible to pause all processes except
two and decide where to direct them after the first two explore
the neighbor nodes. Such optimizations have much sense if it is
known that a model graph has a specific structure.

IV. EXPERIMENTAL RESULTS
The approach described above has been applied to parallel

functional testing of various hardware designs. Depending on
the design complexity and testing purposes, model graphs

include from thousands to millions of nodes and up to several
millions of arcs. Test execution has been performed on 1-150
computers (Intel® Core™2 Quad Q9400, 2.66GHz; 4GB
RAM) running the Linux operating system and networked via
Ethernet. Table I shows the tests classification depending on
the number of arcs in a model graph and indicates the amount
of resources required for test execution (number of computers
and time).

TABLE I. COMPLEXITY-BASED TESTS CLASSIFICATION

Test complexity Number of arcs in
a model graph

Number of
computers

Execution
time, min.

Simple tests < 10000 1 < 30
Medium tests 10000 - 100000 1-10 < 30
Complex tests 100000 - 1000000 10-100 < 30
Huge tests > 1000000 > 50 > 60

The analytical estimation of the method effectiveness is
difficult, because many factors should be taken into account
(message passing time, communication topology, and others).
We have conducted a number of experiments and have
measured the parallelization efficiency K(n)=T(1)/(n·T(n)),
where T(n) is time of test execution on n computers.

The experiments show that if a communication topology is
chosen correctly, the parallelization efficiency exceeds 0.8.
There should be however a few comments. First, experiments
have been performed on multi-core microprocessors enabling
Synchronizer not to take computational resources from
Traverser. Second, we have tried two topologies for different
numbers of computers. (“ring” for 8 or less computers and
“two-dimensional torus” for 9 or more computers). These two
options are enough for 100-150 computers, but for effective
parallelization on a larger number of machines it might require
other topologies (“three-dimensional torus”, “hypercube”, etc.).

TABLE II. PARALLELIZATION OF A MEDIUM TEST

Number of
computers Topology Execution

time, min.
Parallelization

efficiency
1 — 95.2 1
9 Ring 11.8 0.9
9 Torus 3×3 10.9 0.97
16 Ring 6.7 0.89
16 Torus 4×4 6.2 0.96
25 Ring 4.4 0.87
25 Torus 5×5 4.0 0.95

Tables II and III show the results of tests execution. The
first table shows execution time and parallelization efficiency
for a test of medium complexity (18 227 nodes and 109 362
arcs). The second table corresponds to a complex test (84 561
nodes and 338 244 arcs).

TABLE III. PARALLELIZATION OF A COMPLEX TEST

Number of
computers Topology Execution

time, min.
Parallelization

efficiency
1 — 803.3 1

81 Ring 12.2 0.81
81 Torus 9×9 11.4 0.87
100 Ring 10.2 0.79
100 Torus 10×10 9.5 0.85

V. CONCLUSION
In the paper, the extension of the UniTESK technology by

means of parallel test execution on computer clusters is
described. An important feature of the suggested method is that
parallelization is done dynamically without using static
information on a SUT’s transition relation (structure of a model
graph). From an engineer’s point of view, it is not more
difficult to work with a distributed test system than to use a
single-computer one (additional input data are number of
computers to run the system onto and, optionally, a network
topology). The approach significantly speeds up test execution
shrinking bug detection time and accelerating the design
process in whole. In the future we are planning to make the
tools even more flexible. For instance, we are going to support
dynamic reconfiguration of a test system’s topology (e.g. run-
time changing of a number of computers executing the test
system) and to support computer systems with shared memory
(in this case, more efficient implementation of the
synchronizers is possible as well as graph storage sharing).

REFERENCES
[1] http://en.wikipedia.org/wiki/High-performance_computing.
[2] B. Beizer. Black-Box Testing: Techniques for Functional Testing of

Software and Systems. John Wiley & Sons, 1995.
[3] W. Lam. Hardware Design Verification: Simulation and Formal

Method-Based Approaches. Prentice Hall, 2005.
[4] M. Mascagni. Parallel Pseudorandom Number Generation, SIAM News,

32(5), 1999, pp. 1-6.
[5] C. Turner, D. Robson. The State-Based Testing of Object-Oriented

Programs. Conference on Software Maintenance, 1993, pp. 302-310.
[6] I. Bourdonov, A. Kossatchev, V. Kuliamin. Application of Finite

Automatons for Program Testing. Programming and Computer
Software, 26(2), 2000, pp. 61-73.

[7] G. Friedman, A. Hartman, K. Nagin, T. Shiran. Projected State Machine
Coverage for Software Testing. International Symposium on Software
Testing and Analysis, 2002, pp. 134-143.

[8] I. Bourdonov, A. Kossatchev, V. Kuliamin, A. Petrenko. UniTesK Test
Suite Architecture. International Symposium of Formal Methods
Europe, 2002, pp. 77-88.

[9] V. Kuliamin, A. Petrenko, A. Kossatchev, I. Bourdonov. The UniTesK
Approach to Designing Test Suites. Programming and Computing
Software, 29(6), 2003, pp. 310-322.

[10] I. Bourdonov, A. Kossatchev, V. Kuliamin. Irredundant Algorithms for
Traversing Directed Graphs: The Deterministic Case. Programming and
Computer Software, 29(5), 2003, pp. 245-258.

[11] I. Bourdonov, A. Kossatchev, V. Kuliamin. Irredundant Algorithms for
Traversing Directed Graphs: The Nondeterministic Case, Programming
and Computing Software, 30(1), 2004, pp. 2-17.

[12] M. Gossage, A. Peng New, C.K. Cheng. Frontier-Graph Exploration for
Multi-robot Systems in an Unknown Indoor Environment. Distributed
Autonomous Robotic Systems 7, 2006, pp. 51-60.

[13] C. Stachniss, O.M. Mozos, W. Burgard. Efficient Exploration of
Unknown Indoor Environments Annals of Mathematics and Artificial
Intelligence, 52(2-4), 2008, pp. 205-227.

[14] O. Villa, D.P. Scarpazza, F. Petrini, J.F. Peinador. Challenges in
Mapping Graph Exploration Algorithms on Advanced Multi-core
Processors. International Parallel and Distributed Processing
Symposium, 2007, pp. 1-10.

[15] V. Agarwal, F. Petrini, D. Pasetto, D. Bader. Scalable Graph Exploration
on Multi-Core Processors. International Conference for High
Performance Computing, Networking, Storage and Analysis, 2010,
pp. 1-11.

[16] G. Tel. Distributed Graph Exploration. 1997.
[17] S. Das, P. Flocchini, A. Nayak, N. Santoro. Distributed Exploration of

an Unknown Graph. Structural Information and Communication
Complexity, 2005, pp. 99-114.

