SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2012; 22:365-405
Published online 15 February 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1464

Formal passive testing of timed systems: theory and tools

César Andrés* ", Mercedes G. Merayo and Manuel Nifiez

Departamento Sistemas Informdticos y Computacion, Universidad Complutense de Madrid, Madrid, Spain

SUMMARY

This paper presents a methodology to perform passive testing of timed systems. In passive testing, the tester
does not interact with the implementation under test. On the contrary, execution traces are observed without
interfering with the behaviour of the system. Invariants are used to represent the most relevant expected
properties of the implementation under test. Intuitively, an invariant expresses the fact that each time the
implementation under test performs a given sequence of actions, it must exhibit a behaviour in a lapse of
time reflected in the invariant. There are two types of invariants: consequent and observational. The paper
gives two algorithms to decide the correctness of proposed invariants with respect to a given specification
and algorithms to check the correctness of a log, recorded from the implementation under test, with respect
to an invariant. The soundness of this methodology is shown by relating it to an implementation relation.
In addition to the theoretical framework, a tool called PASTE has been developed. This tool helps in the
automation of the passive testing approach because it implements all the algorithms presented in this paper.
PASTE takes advantage of mutation testing techniques in order to evaluate the goodness of an invariant
according to its capability to detect errors in logs generated from mutants. An empirical study where PASTE
was used to analyse a non-trivial system is also reported. Copyright © 2012 John Wiley & Sons, Ltd.

Received 22 September 2009; Revised 16 November 2011; Accepted 17 November 2011

KEY WORDS: formal testing; passive testing; timed systems; conformance testing; tools for testing

1. INTRODUCTION

The complexity of current systems, the large number of people working on them and the number
of different modules that interact with each other make it difficult to evaluate their correctness.
Testing techniques [1,2] allow their users to provide a degree of confidence on the correctness of
the systems. These techniques can be combined with the use of formal methods [3—-8] in order to
semi-automatically perform some tasks involved in testing [9].

The application of formal testing techniques to check the correctness of a system requires to iden-
tify its critical aspects, that is, those characteristics that will make the difference between correct
and incorrect behaviours. Although the relevant aspects of some systems only concern what they do,
in some other systems, it is equally relevant how they do what they do. Thus, formal testing tech-
niques started to study other issues such as time and probabilistic information. This paper considers
systems where time plays a fundamental role. It is worth mentioning that there are several proposals
for formal testing of timed systems [10-20].

In testing, there is usually a distinction between two approaches: passive and active. The main
difference between them is that in active testing, a tester can interact with the implementation under
test (IUT), whereas in passive testing, the tester simply monitors the behaviour of the IUT. Even

*Correspondence to: César Andrés, Departamento Sistemas Informdticos y Computacién, Facultad de Informatica,
_Universidad Complutense de Madrid, 28040 Madrid, Spain.
"E-mail: c.andres @fdi.ucm.es

Copyright © 2012 John Wiley & Sons, Ltd.

366 C. ANDRES, M. G. MERAYO AND M. NUNEZ

though most work on formal testing considers the active approach, it is very frequent that the tester
is unable to interact with the IUT. In particular, such interaction can be difficult in the case of large
systems working 24/7 as this interaction might produce a wrong behaviour of the system.

Even though work on passive testing has been carried out for several years (it can be dated back
at least to the 1970s [21]), formal passive testing of timed systems did not receive enough attention
until very recently. An initial work [22] introduced the syntax for so-called consequent invariants
and an algorithm to check the correctness of these invariants with respect to a specification. After-
wards, algorithms to check the correctness of logs recorded from the IUT were presented [23]. This
work also proved that the process is sound in the sense that, given a specification, if a log extracted
from an IUT does not match a correct invariant, then the IUT does not conform to the specification.
In addition, a tool called PASTE was developed. The main goal of this tool is to support the theo-
retical framework. In particular, this tool implements all the algorithms presented in these papers.
The framework was extended with a novel approach that makes use of mutation testing techniques
as a way to provide a classification of invariants according to their power to find errors [24]. The
process works as follows. First, mutants are generated from a specification by applying different
mutation operators. Then, these mutants generate logs. If the user has to decide between two correct
invariants, then the one that finds more errors in the logs produced by mutants will be chosen. As
the number of correct invariants for a specification is potentially infinite, it is very important to have
a method to select among a big number of invariants those which theoretically are more capable to
detect errors in faulty IUTs. The approach is graphically depicted in Figure 1.

It is interesting to point out some differences and similarities of this passive testing approach
and runtime verification [25], the discipline of computer science that deals with the study, develop-
ment and application of verification techniques to check whether a run of a system under scrutiny
satisfies or violates a given correctness property. Both approaches have the same goal, but they
work with different techniques and formalisms. In this paper, a set of invariants formally expresses
a set of properties that have to be checked. If an error is detected when a log extracted from the
IUT is checked against an invariant, then it can be claimed that the IUT does not conform to
the specification. Therefore, before checking the correctness of the collected traces with respect
to the specification, it is necessary to ensure that invariants are correct with respect to the specifica-
tion. In contrast, a complete specification is rarely available in runtime verification techniques. On a
different line, if the tester is using an invariant expressing an interesting property of the system and
suddenly access to the system is granted, so that he can become an active fester, it is straightforward
to transform the invariant into test cases. In order to overcome this difficulty, there are approaches
to combine runtime analysis with test case generation [26]. The idea is that for each considered
input sequence, a property generator constructs a set of properties that must hold when the IUT is
executed with these inputs. Afterwards, the tester must check that all these properties are satisfied.

Monitor
the
traces

Checks
the
traces

introduced to PASTE l/

Set of invariants

_— >
provide\ /ﬁct
Tester

Figure 1. Graphical presentation of the framework.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 367

This paper represents a revised, enhanced and extended version of previous work on passive test-
ing of timed systems [22,23] and of the mutation testing techniques introduced in PASTE [24]. In
addition to putting under a common notation the previous work, this paper introduces a novel type
of invariants: observational invariants. These invariants were motivated by the experience while
working with complex case studies where the original notion, that is, consequent invariant, was inad-
equate to appropriately assess the correctness of some features of the studied systems. Consequent
invariants can be used to express properties such as

each time that a user asks for login and access is granted in less than ten time units, if after perform-
ing some operations the user asks for disconnection, then he is disconnected, and this operation is
performed in less than twenty time units.

Observational invariants allow users to express properties about actions that were performed
between two differentiated events. For example, it may be necessary to check that the logs extracted
from the IUT fulfil a property such as

a logged user that has been connected to the system at most twenty time units can only check his profile
but cannot change it.

The difference between these two types of properties is that the pattern to define consequent
invariants is ‘if something happens then something must happen’ whereas observational invariants
express properties such as ‘if something happens and after a while something else happens, then all
the actions in between must fulfill a certain property.’

In addition to presenting the syntax and examples of the new type of invariant, the paper also
provides algorithms to check the correctness of observational invariants with respect to a specifica-
tion as well as algorithms to check the correctness of the logs recorded from an IUT with respect
to observational invariants. The soundness of the methods, for both types of invariants, is shown by
relating them to an implementation relation. Finally, PASTE has been extended with the new type
of invariants and their associated algorithms.

The second main contribution of this paper is a complete case study where a non-trivial system,
called SSadmin, is studied. This system allows students to check their marks, to modify their per-
sonal profile, and, at the beginning of the academic year, to register the subjects to be taken. Testers
are not allowed to introduce their own set of tests because this could damage the database structure.
So, they cannot perform active testing. Therefore, passive testing techniques must be used to study
the logs recorded from SSadmin.

An additional contribution of this paper is to provide a related work section that reviews most
of the work on formal passive testing with a special emphasis on proposals based on invariants.
This section concludes by pointing out the relation between the passive testing approach pre-
sented in this paper and runtime verification. Finally, a new formal translation procedure from
timed invariants into extended finite state machines (EFSMs) is also provided. This translation
allows users of the methodology to rely on a formal semantics for invariants on the basis of a
well-established formalism.

The rest of the paper is structured as follows. Section 2 reviews the main proposals to perform
formal passive testing and some work on runtime verification. Section 3 introduces the formal
framework to specify timed systems. Section 4 describes consequent and observational invariants.
Section 5 contains the material related to the correctness of the approach: a mismatch of a log with
a correct invariant implies a faulty IUT. This section also gives algorithms to check the correct-
ness of logs with respect to invariants. Section 6 presents some features of PASTE and an empirical
study of the SSadmin system. Section 7 presents the conclusions. Finally, Appendix A provides a
translation from timed invariants into EFSMs.

2. RELATED WORK

This section briefly reviews previous work on passive testing. Therefore, this section can be con-
sidered as a small survey on the field. First, general monitoring and passive testing techniques, with

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

368 C. ANDRES, M. G. MERAYO AND M. NUNEZ

a focus on formal approaches, are enumerated and briefly described. Afterwards, the focus goes to
proposals to perform passive testing based on invariants. Finally, some relevant work in the area of
runtime verification is reviewed.

2.1. Monitoring techniques

An initial focus was on developing expert systems capable of diagnosing faults and taking correc-
tive actions on likely faulty scenarios [27]. The major difficulty here is that the experience of human
experts is generally required to develop these expert systems. Each system or subsystem must be
handled separately, in an ad hoc fashion, and in the case of new developed systems, this method
may pose problems.

A later goal was to look for unifying principles in fault detection and identification [28]. Actually,
many network problems that occur because of intrusion and security violations can be addressed
by using passive testing. This is clear from the observation that unwanted intrusions matter only if
they are successful in changing the input/output behaviour of the system under attack. The authors
develop classes of fault detection mechanisms that broadly apply across a variety of communica-
tion systems. This work focuses on a group of very simple observers, capable of detecting almost
all possible faults in the system under observation, excluding deadlock and livelock situations. An
algorithm for constructing these observers and a fast real-time fault detection mechanism used by
each observer was given. As observers run in parallel and independently, one immediate benefit of
this approach is graceful degradation: one failed observer will not cause the collapse of the fault
management system.

Other work concentrated on providing an algorithm to trace the values of variables and determine
the current state of the system [29]. The authors presented two efficient implementations of their
approach. The first implementation narrowed down the range of each variable as much as possi-
ble whenever additional information could be derived from a transition. A set of range operations
was introduced, and several examples were given to illustrate that usage. In the second implemen-
tation, the constraints derived from a transition path are recorded and the executability of the path
is verified by solving these constraints as a system of linear equations/inequalities. These algo-
rithms can deal with commonly encountered operations on variable values associated with state
transitions and also provide efficient variable value determination for the protocol data portion
fault detection.

Passive testing has been used for network fault management [30]. In this line, faults are detected
in a network protocol system by passively observing its input/output behaviours without interrupt-
ing the normal network operations. The authors introduce methods for passive fault detection in
deterministic and non-deterministic FSMs. This work takes into account that it is important for
communication networks to detect faults ‘in-process’, that is, while the network is in its normal
operation. The authors apply their techniques to the management of a signalling network operating
under Signaling System 7 and report on experimental results, which show the feasibility of applying
passive testing to practical systems. This work has been very influential, and its underlying ideas
have been applied to other FSM-based systems [31-33] and were extended to systems specified as
EFSMs [34-39] and to systems specified as communicating FSMs (CFSM) [40-42].

Another line of work is to define a general formal model for passive conformance testing, where
FSMs are used to model the protocol control portion, and design and implement fault detection
algorithms for both deterministic and non-deterministic systems [43]. The framework was applied
to detect faults at runtime for the Signaling System 7 protocol.

A systematic study of passive testing of the data portion of protocols was also carried out [35].
Variables contain important information concerning the behaviour of protocol systems, in particular,
they determine the system states and their external behaviours. The authors presented two algo-
rithms by using an event-driven EFSM. First, an effective passive testing algorithm for EFSMs was
proposed. Second, an algorithm based on variable determination with the constraints on variables
was presented. This algorithm allows users to trace the values of variables as well as the system
state. However, not all transfer errors can be detected. To overcome this limitation, a new approach
based on backward tracing was proposed [36]. This algorithm is strongly inspired by previous work

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 369

[35], but the trace is processed backwards in order to further narrow down the possible configu-
rations for the beginning of the trace and to continue the exploration in the past of the trace with
the help of the specification. This new algorithm was applied to the Simple Connection Protocol
(SCP) that allows to connect two entities after a negotiation of the quality of service required for
the connection.

An algorithm, inspired on previous work in active testing [44,45], where heuristics are used to
achieve high coverage of transitions in CFSMs, was also developed [46]. Mutation testing tech-
niques were considered as they have a good performance for a range of particular types of errors.
This approach defines mutation functions with special properties such that only mutants with single
faults need to be considered for test generation. As a case study, the authors modeled the predi-
cate absence fault type and presented and analysed the test generation algorithm. The well-known
Needham—Schroeder on mutual authentication protocol [47,48] was used to illustrate their formal
model and testing algorithms.

A passive testing algorithm has been used to analyse the TCP protocol [49]. Experimental results
show that the protocol had a high transition coverage compared with other testing experiments.
Detailed analysis of the experiments is presented and shows a possible way of combining passive
testing and active testing.

2.2. Passive testing based on invariants

This section reviews previous approaches to perform passive testing based on the concept of
invariant, that is, properties that must be fulfilled by any log observed in the IUT. The approach for
passive testing of timed systems presented in this paper builds on top of the approaches presented
in this section, more specifically, on previous work also considering invariants [50,51].

The classical approach to perform passive testing consists in recording the trace produced by the
IUT and trying to find a fault by comparing this trace with the specification. A novel approach [52]
was supported by the following idea: a set of invariants represents the most relevant expected prop-
erties of the IUT. Intuitively, an invariant expresses the fact that each time the IUT performs a given
sequence of actions, it must exhibit a behaviour reflected in the invariant. The authors use the SCP
to assess their theoretical framework. This first approach was able to partially evaluate the data flow,
but not in a very satisfactory way. At least two drawbacks can be identified. First, invariants were
automatically extracted from the specification. Even though this fact allows users of the method-
ology to partially automatize the testing process, the number of derived invariants is so big that in
order to put the approach into practice a manual processing to select relevant invariants is needed.
Second, the grammar used to express invariants was very limited, so that important properties could
not be specified as invariants.

A later work presented a step forward in the use of invariants for passive testing [50]. The authors
proposed that invariants can be, initially, supplied by the expert/tester. Therefore, the first step con-
sists in checking that invariants are in fact correct with respect to the specification. An algorithm to
check this correctness was provided. The complexity, in the worst case, of the algorithm was linear
with respect to the number of transitions of the specification. Once a set of (correct) invariants was
available, the second step consisted in checking whether the trace produced by the IUT matched the
invariants. In order to do so, a simple adaptation of the classical algorithms for pattern matching on
strings [53, 54] was implemented. This work was extended [51] to study a new type of invariants
(obligation), to present a tool that implements the approach and to give a complete case study on
the Wireless Application Protocol. It is worth pointing out that this protocol represents a typical
example where active testing cannot be applied because, in general, there is no direct access to the
interfaces between the different layers. Thus, testers cannot control how internal communications
were established.

The work reported on this paper builds on top of previous work on passive testing of timed
systems. First, the notion of consequent timed invariant and the algorithm for checking the cor-
rectness of this kind of invariants with respect to the specification was introduced [22]. The cor-
rectness of this methodology was formally proved [23] by showing that if an invariant detects
a fault in a log, then the IUT that has produced this log does not conform to the underlying

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

370 C. ANDRES, M. G. MERAYO AND M. NUNEZ

specification. A novel methodology to classify invariants by using mutation techniques with respect
to the number of detected faults was later defined [24]. This framework was extended to consider
systems where time information is given in terms of probability distribution functions [55]. The
PASTE tool implements all these algorithms and methodologies. This tool can be downloaded
from https://simba.fdi.ucm.es/paste. Formerly, PASTE was developed in Java, but the code has
been recently translated into a C++ library in order to improve its performance. This tool has
been used in different scenarios, not only in academic studies. In particular, it has been included
as a module to perform formal passive testing in Osmius, an Open Source monitoring tool (see
http://www.osmius.com/en/product). More details about the PASTE tool are given in Section 6.

2.3. Runtime verification

This section explains the relation between the passive testing approach presented in this paper and
runtime verification [25]. The main difference between runtime verification and (formal) passive
testing is given by the theoretical tools underlying the application of the techniques. Runtime verifi-
cation techniques usually require an IUT, an observer of the program, which collects the executions
of the target system, and a set of requirements, that is, causal relations among actions and temporal
constraints on their performance, which are often written in some linear temporal logic (LTL) [56].
Runtime verification techniques can be used for checking online and offline stored traces or for
solving some problems involved in concurrency, such us data races [57,58] and deadlock detection
[59]. In particular, the use of temporal logic for runtime verification has been investigated during
the last years for reactive systems [26,60—64].

Temporal logics have served as a model for tools such as MaC [62, 65, 66] and PathExplorer
[61], where a three-valued logic is used, the commercial tool Temporal Rover [67, 68] that sup-
ports a fixed future and past line LTL, and EAGLE [69], which is based on recursive parameterized
rule definitions over three primitive temporal operators. There are some approaches that do not use
temporal logics to represent requirements. Some of them use mathematical predicates to specify
properties [70], or implement algorithms addressing specific problems such as the Eraser tool [57]
that dynamically detects data races.

Dealing with timed systems, some studies focus on introducing logics to represent time, such as
the metric temporal logic [71] and LTL extended with real-time constructs embodied by a freeze
quantifier together with atomic clock constraints LTL; [72].

Note that all these languages are, in general, more expressive than the invariants considered in
this paper. The main problem with such expressive languages is that it is far from easy for a (pas-
sive or active) tester used to define relations between applied inputs and observed outputs to write
properties to be checked against the IUT as a temporal logic formula. On the contrary, the syntax
of invariants is very similar to the usual sequences of inputs and outputs used in model-based test-
ing. In conclusion, runtime verification techniques can achieve what this passive testing approach
based on invariants can achieve, but the theoretical framework would be unnecessarily involved and
it would be more difficult for classical active testers to become passive testers.

3. PRELIMINARIES

This section introduces the formalism to specify timed systems. First, the paper gives notation
regarding the definition of time intervals: intervals are used to represent time information and
therefore contain real values greater than or equal to zero.

Definition 1
Any value ¢ € Ry is a constant time value. For all t € Ry, botht < 0o, t +00 = 00, and co—f = o0.
The real interval p = [py, p2] is a time interval if p1 € Ry, p> € Ry U {oo}, and p; < p,. The set
of all time intervals is denoted by 7R _ .

Let p = [p1, p2] and § = [¢1, g2] be two time intervals and 7 be a constant time value. The follow-
ing functions can be defined: the addition of time intervals is [p1, p2]+[q1.92] = [p1+4q1. P2 +q2].

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 371

the subset relationship of time intervals is [p1, p2] C [¢1.92] = (@1 < p1 A g2 = p2), and the
Update function is:

[p1. p2] if [¢1,42] = [0,0]

Update s 191, =

paate (lp1 P2 042D =1 i g, max(po)] ilanga] # 00,0

Time intervals will be used to express time constraints, associated with the performance of
actions, in the definition of invariants. The idea is that if a time interval [p1, p2] € Zr, is asso-
ciated with a task, then it is expected that this task takes at least p; time units and at most p, time
units to be performed. Intervals such as [0, ps], [p1, 0], or [0, co] denote the absence of a tempo-
ral lower/upper bound and the absence of any bound, respectively. Note that there is an abuse of
notation in [py, oo] and [0, co] as these intervals represent, in fact, the intervals [p;, 00) and [0, 00).

The formalism used to represent specifications of systems is given in the next definition. The
framework is based on an adaptation of the well-known finite state machine formalism where con-
stant time is added to transitions. The time value associated with each transition represents the
amount of time that this transition needs to be performed.

Definition 2
A timed finite state machine, in the following TFSM, is a tuple M = (S,Z, 0, T, s¢), where S is a
finite set of states, Z is the set of input actions, O is the set of output actions, 7 € SXxZxO xR xS
is the set of transitions, and so € &S is the initial state. The set of all TFSMs will be denoted
by SETTFSM.

A machine M is observable if there do not exist two different transitions (s,i,0,11,s51) and
(s,i,0,12,52) belonging to 7.

Given a transition (s,7,0,7,s’) belonging to 7, s and s’ are the initial and final states of the tran-
sition, i and o are the input and output actions, and ¢ is the time that the transition needs to be

completed. Along this paper, sﬁn s’ will be a shorthand for (s,7,0,7,5") € T.
All the machines considered in this paper are observable. Note that the notion of observability
makes possible to have some degree of nondeterminism. For example, a machine can have two

" i/oy i/o
transitions s—>, §1 and s—>, 52, as far as 0; # 0».

Example 1

Figure 2 presents a running example of TFSM. Its initial state is s;. Each transition is labeled with
the input that the machine receives, the output that it produces, and the amount of time that the
system needs to produce the output since the reception of the input.

.. iz/o
For example, the transition s 2—>13 s> means that if the machine is at state s; and it receives the
input i,, then in 3 time units it will produce the output 0; and will move to state s,.

The next definition introduces the concepts of trace and log. A trace represents a finite sequence
of actions that the system may perform from any of its states. This notion differs from the usual

Machine M
i1/01/6 . ‘
i2/02/5 i1/01/5
i1/02/4
53 i2/01/7
. ’L'2/01/3 i1/01/7
21 /05/6
Figure 2. Example of a TFSM.
Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405

DOI: 10.1002/stvr

372 C. ANDRES, M. G. MERAYO AND M. NUNEZ

one where the sequence is always performed from the initial state. A log represents the historical
evolution of a system.

Definition 3

Let M = (S5,Z,0,7T,s9) be a TFSM, iy,...,i € Z, 01,...,0r € O, and t1,...,t, € Ry. A

sequence e = (iy/01/t1,...,ir, /0y /1) is a trace of M if there exist a sequence of transitions
i1/o ir/o ir/or .

S1 1—>1,1 82,82 2—>2t2 S3,..., S8y r—;t, Sr+1 1in 7. Traces(M) denotes the set of all traces of M. A

log from M is a sequence belonging to Traces(M).
The function Lenz/o : (Z x O x Ry)* —> Nis such that forall e = (i1 /o1 /t1,...,ir, /07 /1;),
Lengz/p(e) = r. Note that Lenz;o(()) = 0.

The function TTps : Traces(M) —> Ry is such that for all e = (i;/01/t1,...,ir,/0r /1),
TTp(e) = Z;‘=1 tj.

Note that traces and logs are indeed simply traces. Nevertheless, two different names are used to
denote the same concept in order to distinguish between objects that, even though they look similar,
have different nature. In this paper, the name trace refers to the finite sequences that the specifica-
tion of a system can perform whereas the term log refers to finite sequences observed from the [UT.
Usually, ey, ez, . .. will denote traces whereas /1, /5, . .. will denote logs.

Example 2
Consider the TFSM M presented in Figure 2. For instance, both e; = (i1/01/6,i2/01/3), start-
ing at state sq, and e, = (i1/01/5,i2/02/5), starting at state s3, are traces of M. In addition,

TTu(e1) =9, TTy(e2) = 10, Leng p(e1) = 2, and Leng p(e2) = 2.
4. TIMED INVARIANTS

This section introduces the notion of timed invariant. Timed invariants are used to represent the
properties that must be checked against the logs extracted from the IUT. First, after receiving a
set of timed invariants and before checking them against the logs, they must be checked against
the specification; otherwise, the tester might be using an invariant that violates the requirements
expressed by the specification. Another possibility would be to consider that invariants are correct
by definition. In this case, the specification could be completely ignored.

This paper uses two different types of timed invariants: timed consequent invariants and timed
observational invariants. The first type is used to check that an event is performed within certain
time bounds after a given trace of events has been observed. The second type is used to check that a
given sequence of events is always performed between two given events within certain time bounds.

4.1. Timed consequent invariant

Timed consequent invariants [22] are a natural extension with time of a previous notion [50,51].

Definition 4
Let Z, O be two sets of input and output actions, respectively. A sequence ¢ is a consequent invariant
if ¢ is defined according to the following EBNF:

pu=a/z/p.¢| */p.¢'|i>0/pr>q

¢ ==i/z/p.¢li>0/p>]
In the previous expression, p,§ € Ir_ ,i € I,a € TU{?}, z € OU{?}, and O C O. The set of
timed consequent invariants for the sets Z and O is denoted by ®7,¢. During the rest of the paper,

a generic timed consequent invariant will be represented by «1,...,an, iy = O/psq s, Where
A1,y €(ZU X OU) U x IR, ,if €Z,0C0O,and pyand Gy € I, .

Intuitively, the previous EBNF expresses that a timed consequent invariant is a sequence of
symbols. Each component, but the last one, is either an expression a/z/ p, with a being an input or

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 373

the ? wildcard character, z being an output or the ? wildcard character, and p being a timed inter-
val, or an expression x/p. The special symbol ? represents any input or output. Therefore, for all
a € ZU O, a =?holds. In addition, the special symbol %, whose occurrences are always followed
by an input 7, represents any sequence in (Z \ {i} x O x Ry)*.

This EBNF imposes two restrictions. First, an invariant cannot contain two consecutive compo-
nents */p; and */ p,. The second restriction is that an invariant cannot present a component of
the form %/ p followed by a wildcard character ?; that is, the input of the next component must
be an input action i € Z. The last component of the invariant, corresponding to the expression
i — O/p > g, is an input action followed by a set of output actions and two time restrictions. The
first time interval, that is, p, is associated with the last input/output pair of the sequence. The second
time interval, that is, ¢, concerns the sum of the time values associated with all the input/output pairs
appearing in the sequence.

Note that time conditions established in invariants are given by intervals. However, machines
present time information expressed as constant amounts of time. The use of intervals allows testers
to consider that different executions of the same task can take different amounts of time to be com-
pleted. Another reason for the tester to use intervals, even if the system always takes the same time
to perform a certain task, is to consider that the artifacts measuring time are not as precise as desired.
In this case, an apparently wrong behaviour due to bad timing can be in fact correct because it may
happen that the clocks are not working properly. A longer explanation on the use of time intervals
to deal with imprecisions can be found in [73].

The next examples show the intended meaning of consequent timed invariants. In Appendix A, a
formal semantics of consequent invariants, by translating them into EFSMs, is given.

Example 3
The following invariant expresses that ‘after performing i1, either o, or 0, will be observed within
a time belonging to [2, 8]’:

¢1 =11+ {01,02}[2,8] > [2,8]

More complex properties can be specified. The following invariant means that ‘each time that the
input #; is followed by the output 0; in a time belonging to [6, 7] and a sequence of inputs /outputs
that does not contain the input i, ¥ is performed in a time belonging to [6, 12], then when the input
i, is observed, it must be followed by the output 0y, in a time belonging to [1, 7]. Additionally, the
sum of all time values, from i; to 01, must belong to [5, 30]’:

$2 = i1/01/[6,7],%/[6,12],i2 = {o1}[1,7] > [5, 30]

As invariants can be defined by a tester, it must be ensured that they are correct with respect to
the specification. Next, the most relevant aspects of the algorithm (shown in Figure 3) to decide
whether an invariant is correct with respect to a specification are presented. The algorithm has two
parts. The first one, corresponding to the first loop of the algorithm, determines the set of states that
can be reached in the specification after matching the first n elements, that is o, . .., ®,. The sec-
ond part, after the first loop, is used to check the restrictions included in the invariant. The algorithm
verifies that for all the states computed in the previous step, if the last input of the invariant can
be performed, then the possible outputs belong to the set of outputs appearing in the set of outputs
0. In addition, the algorithm also checks if the transitions that traversed in the specification have
associated a time value that belongs to the corresponding time interval of the invariant and that the
sum of all the time values verifies the last time constraint.

Before starting with the explanation of the algorithm, the following definition introduces some
auxiliary functions to deal with timed consequent invariants. The Lenz,o(¢) function computes
the length of a timed consequent invariant. The Tailz/O(¢) function returns a timed consequent

#Note that * matches any sequence of actions not containing the next input symbol appearing in the invariant, that is, i,
in this case.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

374 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Algorithm Correctness_Consequent_Specification
Data: M = (S,Z,0,T,s0) : SETTFSM, ¢ = a1, ..., an,ip = O/Py B> Gy = P1/0
Result: Bool

Initialization of variables

Zrarray of I, ;7 < [[; Sc = S5 + 15
(* Z is an array of size |S| and [0, 0] is the initial value of all positions and S, is the set of
current states to be evaluated *)

Main loop

while j < Lenz;n(¢) AS. # 0, do
Sauz — 0
g [
(* Squa computes the next set of states and y is an array with |S| components, used to
update time information. [0, 0] is the initial value stored in all the positions of the array *)
if o; = */p; then
while S, # () do
Choose s € Se; Se = Se \ {su}s
(2, Sindex) < AfterInT(M, sq, NInpz o (ay, ..., iy O/ps > G¢):P;);
while S, # 0 do
Choose 5y, € Sindex’ Sindex < Sindex \ {50 }3
y[b] < Update(Z[b], §[b]); Sauz < Sauz U {sp};
end
end
else
(*a; = a;/z/p;*)
Taus < AfterCond (S, {a;}, {7}, p;);
while 7., # () do
Choose (Sq,%,0,t, 8p) € Tauzs Tauz & Tauz \ {(Sast,0,t,5p)};
y[b] < Update(Z[a] + [t,t],¥[b]); Sauz Sauz U {sp};
end
end
Ty Se+ Sauai J 7+ 1L
end
Tauz < AfterCond/(Se, {if}, O, [0, 0]);
error < (Touz = 0);
(* Taua contains the set of transitions that can produce errors *)
while T,y # 0 A —error do
Choose (Sq,i5,0,t,8) € Touzs Tauz < Tauz \ {(Sasif,0,t,9)};
error < (0 € O) V (t & py) V (z[a] + [t, t] € Gy);
end

return(—error);

Figure 3. Correctness of a timed consequent invariant with respect to a specification.

invariant removing the first element of ¢. The Nstarsz;(¢) function returns the number of occur-
rences of the wildcard in ¢. Finally, the NInpz,»(¢) function returns the next input of the timed
consequent invariant ¢.

Definition 5

Let Z, O be two sets of input and output actions, respectively. The function Lenz/o : ®7/0 — N
is such that for all ¢ = «a1,...,a,,iy = O/ps > G5 € Pr/0, Leng o(¢p) = n. Note that
Lenz/@(if > O/ﬁf > éf) =0.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 375

The function Tailz o : @770 —> Pz/e is such that for all ¢ = ay,...,u,if = O/py >
éf (S CDI/(QZ
. ir>0/pr>qr if Lenz/0(¢) =0
Tailz/o($) = . . .
o2, ..., Qnip > O/pr>qr if Lenz/o(¢) >0

The function Nstarsz/o : ®7;0 —> N returns the number of occurrences of the wildcard * in

a consequent timed invariant, that is, forall ¢ = ay,...,0,if = O/ps > G5 € P7/0,
0 if Lenz/0(¢p) =0
Nstarsz/o(¢) =4 1+ Nstarszp(Tailzo(¢p)) ifLenzjo(p)>0Aa; =x/p
Nstarsz/o(Tailz o(¢)) if Lenz/o(¢p) >0 Ay #*/p

The function NInpz/o : ®7/0 —> T is such thatforall ¢ = oy,...,0,,ip = O/py > Gy €
dz/0:
iy if Lenz/0(¢) =0
NInpz/o(¢) =1 i if Lenz/o(¢) > 0Aay =i1/01/p
NInpz/o(Tailzjo(¢)) ifLenzjo($)>0Aar =x*/p

The next definition introduces some auxiliary functions to deal with transitions and time intervals.
The AfterCondy (S, I, O, p) function computes the set of transitions outgoing from a state in S,
labeled by an input in / and an output in O, and such that the associated time value belongs to the
interval p. The SetStatesI (i) function computes the set of goal states of all transitions of M
that are labeled with the input ;.

Definition 6
Let M = (5,Z,0,7T,s0) be a TFSM. The function AfterCondys : 9(S) x p(Z U {?}) x p(O U
{7) xIr, —> ©(T) is such that for all Suix €S, Taux € ZU{?}, O €O U {7}, and pe Ir,:

s eSu.s' €S,i€Z,a€ lyg,0€0,
AfterConduy (Saxs Laux> Ouxs P) = tr| Z€ Oux, t ERyi=ano=z AL EPA
tr =(s,i,0,t,8)eT

The function SetStatesIy : Z —> »(S) is such that for all i € Z:

SetStatesIpy (i) = {s’| 35,5’ €S, 0€O0,t eRy : (s,i,0,1,8) €T }

Initially, the algorithm obtains the set of states from which a transition labeled by the first
input/output pair of the invariant can be performed and such that the associated time value belongs
to the interval indicated in the invariant. Then, the algorithm computes the set of states that can be
reached from this initial set of states after performing the transitions. The algorithm repeats this
process until it traverses all the components «; of the invariant ¢, with 1 < j < Lengz/o(¢),
taking into account the set of states reached in the previous step. Note that there is a distinction
between input/output pairs, possibly including the ? wildcard character, and occurrences of the
* wildcard character. In the latter case, the AfterInt auxiliary function (shown in Figure 4)
computes the reached states and the amount of time needed to reach each of these states (repre-
sented by an interval). This function does not consider the input/output actions labeling the traversed
transitions, as long as the corresponding input does not appear in the sequence.

The next step of the algorithm make use of the set of transitions that can be executed after match-
ing the invariant. If this set is empty, then the invariant is not correct. The idea is that a tester should
not use an invariant if the sequence of input/output actions cannot be performed by the specification
in the intervals appearing in the invariant.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

376 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Algorithm AfterInT
Data: M = (S,Z,0,T,so) : SETTFSM, s : S,i : Z, [p1, p2] : Ir,

Result: array of I, x ¢(S)

Initialization of variables

z:array of Ip,; T « [

(* is an array of size |S| and [0, 0] is the initial value of all positions*)
Nodes {(s. {s}.10,0)};

Se +0;

Sterminal < SetStatesIy(i);

(* Nodes is a set of all nodes of the breadth first search algorithm, S. is the set of reached
states, and Sierminair With Sc C Sterminal 1S the set of possible reached states™)

Main loop

while Nodes # () do
Choose (Sa, Svisited, [q1, ¢2]) € Nodes; Nodes < Nodes \ {(Sa, Svisited: (a1, 42]) }3

if 5o € Sterminat N [(11: q2] c [phpQ] then
Se < S.U{sq};

z[a] + Update([q1, g2], Z[a]);
end
Tauz < AfterCondy ({sq},Z \ {i}, O, [0,0]);

while 7., # 0 do
Choose (Sa,7,0,t,) € Tauws Tauz < Tauz \ {(Sa, 7', 0,t,)}
if po = oo then
if go # 00 A sy € Syisitea then
(* A loop is detected *)
Nodes + Nodes U {(sp, Syisiteds [q1 +t,00]) };
end
if Sh € Svisited then
Nodes < Nodes U {(Sb-, Suisited U {Sh}: [ql +1,92 + t])}’
end
if ¢ = 00 A ¢1 < p; then
(* A loop (g2 = o0) is executed a finite number of times until the lower bound is
exceeded *)
Nodes < Nodes U {(sp, Syisited U {sb}: [@1 +t,q2])};
end
else
if go + ¢ < po then
Nodes < Nodes U {(51)-, Suisited U {Sb}w [ql +1,92 + t])}’

end
end
end
end
return(z, S.);

Figure 4. Function to compute the set of reached states and the amount of time to reach each of these states.

If the set is not empty, then the algorithm computes the set of transitions from these states labeled
with the input i ¢. If this set of transitions is not empty, then it means that at least there exists a
trace of the specification that is completely matched by the invariant. The final step of the algorithm
checks that the outputs produced by the transitions outgoing from these states and labeled with the
input i belong to the set of outputs O that appears in the invariant. In addition, the time value asso-
ciated with all of these outputs must belong to the time interval p s. Finally, that the time associated
with the performance of the whole trace is correct. In order to do it, all the time values associated
with the transitions that traversed in the specification are recorded during the previous phases of the
algorithm. Each position of the array X contains an interval with bounds of the minimal/maximal
time values that are needed to reach the corresponding states after the whole invariant is traversed.
For all the states having an interval recorded, the algorithm checks if this interval is contained in the
interval appearing in the last position of the invariant, that is, in g r.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 377

Let ¢ be a timed consequent invariant and M = (S,Z, O, T, sg) be a TFSM. In the worst case,
the complexity of the algorithm to decide the correctness of ¢ with respect to M is O(|S| - |T|1S! -
k+|T1-(s—k)), where k = Nstarsz;o(¢) and s = Lenz;o(¢). This worst case is computed by
taking into account the following facts. In the first part of the algorithm, there is a loop depending
on Lengz, o (¢). If the token under evaluation contains the wildcard *, then the AfterInt function
is called |S| times. This function computes a breadth first search algorithm, being its complexity
in O(|T]'S!). But, if the token under evaluation does not contain the wildcard #, then it performs a
loop depending on the set of transitions. Finally, the second part of the algorithm can be translated
into a for-loop being its complexity in O(7T') and can be omitted.

Definition 7
Let ¢ be a timed consequent invariant and M be a TFSM. The invariant ¢ is correct with respect to
M if the algorithm Correctness Consequent Specification(M,¢) returns true.

Example 4
Consider the TFSM M presented in Figure 2 and the consequent invariants ¢; = i; >
{01,02}[2,8] > [2,8] and ¢» = i1/01/[6,7],%/[6,12],i» +— {o01}[1,7] > [5,30] presented in
Example 3.

The ¢, invariant is not correct with respect to M because the algorithm Correctness
Consequent Specification(M,¢) returns false. The first loop of the algorithm is not
performed because Lenz,o(¢1) = 0. In the beginning of the second part of the algorithm, the set

of states is S¢ = {51, 52, 53}. The idea is to select those transitions of M outgoing from states s € S,

. i1/0y i1/o3 i1/o01
and such that their associated input is 7;. These transitions are: s; —>¢ 1, §S1 —>¢6 S1, §3 —>5 52,

S3 lﬂi So, and so lﬁ% s3. Because of the fact that there exists a transition s l]—/0>, s’ in this set such
that s € S; and o & {01, 05}, that is, s; lﬁfs 51, the variable error changes its value to true and
the algorithm returns false.

The ¢, invariant is correct with respect to M because the algorithm Correctness
Consequent Specification(M,¢,) returns true. The first loop checks the initial part of
the invariant: i; /01[6, 7], */[6, 12]. Once the loop finishes, S, contains the reached states whereas x
contains time information regarding the amount of time that the system would spend if the ini-
tial sequence of the invariant would be performed without taking into account the initial state.
Specifically, S, = {s1,53} because the considered traces are the ones induced by the sequences
of transitions presented in Figure 5. In this table, the first row (in boldface) separates the parts of the
invariant that are used to match the traces, and the remaining rows show the traces that are matched.

¢2 — i1/01/[6, 7]7 */[65 12]a i2

i1/01 i1/01

§1 — 7651, | S1—"6S1
i1/01 i1/03

§1 ——6 51, | S1 ——76 S1
i1/01 i1/01 i1/01

§1 ———76 51, | S1 ———76 51,51 — 76 S1
i1/01 i1/03 i1/03

§] — 651, | S1 — 6 51,51 ———6 S1
i1/01 i1/01 i1/03

§$1 ———76 851, | S1 ——76 51,51 ——76 S1
i1/01 i1/03 i1/01

§] ———>6 51, | S1 ———6 51,51 — 76 S1
i1/01 i1/01 i1/01

S ———7 83, | S3 ————>5 82,852 ———7 S3
i1/01 i1 /02 i1/01

§g ———>7 83, | 83 — 4 82,52 ———7 83

Figure 5. Set of traces of M matched by ¢>.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

378 C. ANDRES, M. G. MERAYO AND M. NUNEZ

In addition, x[1] = [12, 18] and X[3] = [18, 19] (the values 1 and 3 correspond to the states s; and
s3, respectively). The values of x are computed by adding the time values from the previous traces
and considering the minimum and maximum values of them as the bounds of the interval.

The second phase of the algorithm checks the conditions presented in the invariant, that is,

ir > {o1}[1,7] > [5,30], if there exists a transition from a state of S starting with i» and pro-

. . .. i2/0] iz/0] . ..
ducing an error. The candidate transitions are s; —>3 s and s3 —> 7 s3. The functional restriction

of ¢, holds because 01 € {01} in both transitions. In addition, the temporal restrictions hold on the
one hand 3 € [1,7] and 7 € [1, 7], and on the other hand, concerning the complete trace, x[1] 4 [3, 3]
and x[3] + [7, 7] belong to [5, 30].

The match predicate relates traces of a specification and timed consequent invariants. A trace
matches a timed consequent invariant if it is correct with respect to both its functional and its tem-
poral behaviour. In order to deal with traces, the function Tail s (e) is introduced. This function
removes the first element of the trace e of M.

Definition 8
Let M = (S,Z,0,7T,so) be a TFSM. The function Taily : Traces(M) — Traces(M) is
such that for all e = (i; /o1 /t1,...,ir /0, /1) € Traces(M):

() if Lenz/po(e) <1

Tailpm(e) =4 . . .
(ir/02/ta,...,ir]0: /1) if Lenz/o(e) > 1
The MatchCyy (e, ¢) function computes whether the trace e of M matches the timed consequent
invariant ¢. This definition uses the MatchCj,(e,i,q,) auxiliary predicate to deal with occur-
rences of the = wildcard character in the invariant with an associated time p being the next input of
the wildcard the action i.

Definition 9

Let M = (S,7,0,T,so) be a TFSM. The function MatchC}, : Traces(M)x I xIr, xRy —>
Traces(M)issuchthat foralle = (i1 /o1 /t1,...,ir/0,/t;) € Traces(M),i €Z,§ = [q1,92] €
I]R+,andt eR;:

() if(t>q2)VLenI/@(e)=O\/(i1 =l/\l‘¢é)
MatchC),(e,i,g.t) =4 e ifiy=iAteqg
MatchC),(Tailpy(e),i,g,t +1t1) ift <gaANip #i

The function MatchCpy : Traces(M) x ®z/0o —> Bool is such that for all e; =

(ir/o1/t1,....irJor/t;) € Traces(M) and ¢ =wy,...,0,if = O/ps > 45 € P70,
MatchCys (e, ¢) is equal to:

false fu—1l<s—k)v(u>1)A(s=0))
i1 =iy ifu=1A5=0
MatchCp(e2, Tailz/o(¢)) ifr>1As>0A0; =x%x/§

i1h=anoy=ZAHEGA
MatchCpy(Tailpy(er), Tailg/o(@)) ifr>1As>0A0; =a/z/q

where e; =MatchC),(e1,NInpz/0(¢).4,0), k =Nstarsz/o(¢), s = Lenzjo(¢), and u =
Lengz/o(er).

Let M be a TFSM, ¢ be a timed consequent invariant, and e be a trace of M. The sequence
e matches ¢ if MatchCyy (e, ¢) returns true.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 379

The concept of matching can be used to give a characterization of the notion of correctness
introduced by the algorithm given in Figure 3.

Lemma 1

Let M be a TFSMand ¢ = «1,...,0s,if = O/py > Gr be a timed consequent invariant. The
invariant ¢ is correct with respect to M if there exits e; € Traces(M) such that e; matches
¢ and for all traces e, € Traces(M) such that e, matches ¢, the following conditions hold:

OLenI/O(ez) € Oa tLenI/@(ez) € ﬁf, and TT p (62) € éf

The proof of the previous result is straightforward as it is enough to take into account that the
first loop of the algorithm, presented in Figure 3, computes the matches function introduced in
Definition 9. In particular, the algorithm computes the set of traces of the specification matching
the invariants and stores the reached states in S,. If there does not exist a matching sequence (first
condition of Lemma 1), then the invariant is not matched, and it produces an error. This situation is
represented in the second part of the algorithm with the assignments error < (Tux = @). After that,
the second condition of Lemma 1 is checked for each matched trace.

4.2. Timed observational invariants

Even though timed consequent invariants allow testers to represent a wide range of properties, some
classes of properties cannot be expressed with them. As already commented in Section 2, the original
untimed framework provided two types of invariants: (simple) invariants and obligation invariants
[51]. Whereas simple invariants allow testers to check properties taking into account what was
observed to ensure that something will happen in the future, obligation invariants allow testers to
check properties concerning events that were already observed.

The previously presented timed consequent invariant framework represents a temporal adaptation
of (simple) invariants. With respect to the temporal adaptation of obligation invariants, the idea is
still to follow the pattern ‘if one observes something in the future, then something has happened in
the past’. For example, if a disconnection message is observed, then it is necessary to check that the
user previously logged into the system. In this paper, this pattern is slightly modified so that timed
observational invariants can be used to express properties such as ‘if one observes a certain output
in the future and a certain input was observed in the past, then it is necessary to check that some
properties hold between these two actions’. For example, if a user logged into the system and after
20 time units he receives the disconnection screen, then it is necessary to check that the user both
introduced the correct password and that he later pressed the disconnection button.

Definition 10
Let Z, O be two sets of input and output actions, respectively. The function CInvs : Z x O —
OUN) X Ir, x (TUx O UL U{x}) x Ir,)* x T U {?} is such that

Jag, ... 0, € (ZU xOU{) U{x}) x I,),a € TULY,
CInvs(Z/O)= 16| z€e OU{N,melr, :§d=2z/m,ai,...,an,a A
Vjiilsj<n:i(aj=x/p) = (@j+1 7 */q)
An element of CInvs(Z/O) will be called a pattern trace. The set of all pattern traces will be
denoted by PATTRz,¢. During the rest of the paper, a generic pattern trace will be presented by
§=z/m,ay,...,ap,a,wherez € OU{?,m € I, aq,....0n € (ZU{xOUL)U{x}) x TR,)
anda € Z U {?}.

The sequence p is called a timed observational invariant, or simply an observational invariant, if
W 1s defined according to the following EBNF:

wo=i—>pB<o0,p/q

In this expression p,q € Ir,,i € Z, € CInvs(Z/0), and 0 € O. The set of timed observational
invariants for Z/O is denoted by Wz,0.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

380 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Intuitively, the previous EBNF expresses that a timed observational invariant starts with an input
followed by a set of pattern traces and finishes with an output and two time intervals. A pattern
trace is a sequence of symbols where each of its components but the first and the last ones is either
an expression a/z/ p (with a being either an input or the wildcard ?, z being either an output or the
wildcard ?, and p being an interval) or an expression %/ p. The first component of a pattern trace
is an expression z/p, where z is either an output or the wildcard ?, whereas the last component
of the invariant is either an input or the wildcard ?. The occurrence of two consecutive wildcard
characters * is not allowed.

Example 5

The invariant ;1 means ‘whenever the input i, is observed and in a time belonging to [10, 12] the
output o3 is observed, then it must be checked that the system has performed the output action 05 in
a time belonging to [4, 6], then the system received the input i1, and emitted the output 03 in a time
belonging to [5,7].

1 =iz — {{02/[4,6],i1)} < 03,[5,7]/[10, 12]

A complex timed observational invariant can represent more than one behaviour in it. For
example, the invariant

. (02/[3,16].11),
M2 =11 — ([1.7]. %/[0.00].i3) <~ 03,[5,7]/[15,17]

indicates that ‘whenever i; is observed and in the future o3 is observed in a time belonging to
[15,17], then it must be checked that the behaviour of the system between these two actions con-
formed to one of the two considered pattern traces. The first one represents that after observing the
input i1, the output 0, will be observed in a time belonging to [3, 16], followed by the input i; and
the output 03 in a time belonging to [5, 7]. The second one represents the fact that after observing
the input i; followed by a (possibly empty) sequence of input/output pairs without occurrences of
the input 73, and observing the input i3, the output 03 will be observed in a time belonging to [5, 7]’.

Since observational invariants can be defined by a tester, similar to consequent invariants, it
must be checked that they are correct with respect to the specification. The general scheme of the
algorithm that checks the correctness of an observational invariant with respect to a specification
appears in Figure 6. This algorithm makes use of the functions InitialNodes, CheckNode,
and NewNodes defined in Figures 7, 8 and 9 respectively. Next, some additional notation has to
be defined for dealing with pattern traces and timed observational invariants. The Lenz,»(§) func-
tion computes the length of a given pattern trace. The Lenz;»(u) function returns the addition of
the lengths of the pattern traces associated with a timed observational invariants. The Tailz/o(6)
function reduces a give pattern trace into another pattern trace. The Nstarsz,o () function returns
the number of occurrences of the wildcard in a pattern trace, while the Nstarsz;o (1) function
returns the addition of the number of occurrences of the wildcard * in the pattern traces associated
with a timed observational invariants. The NInpz,» () function computes the next input associated
with a pattern trace.

Definition 11

Let Z and O be two sets of input and output actions, respectively. The function Lenz,o
PATTRz/0 — N is such that for all § = z/m,ay,...,an,a € PATTRz/0, Lenz/o(8) = n.
Note that this function is overloaded for pattern traces and returns the length of a pattern trace. The
function Lenz/o : Wz/0 —> Nissuch thatforall u =i — B <0, p/q € ¥7/0:

Lenz/o(p) =) Lenz/o(8)
sep

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 381

Algorithm Correctness_Observational Specification
Data: M = (S,Z,0,T,so) : SETTFSM, u =i = 3 < 0,p/4: ¥1/0
Result: Bool

Struct A {current_state : S
ptt : p(PATTRz/0 X Ry)
ttime : Ry},

Initialization of variables

error < false;
matched < false;
Nodes < InitialNodes(M, u);

Main loop

while Nodes # 0 A —error do
Choose node € Nodes; Nodes <— Nodes \ {node};

(error,matched) < CheckNode (M, p1, node);

if —error then
Nodes < Nodes U NewNodes(M, p1, node);

end

matched < matched V matched gy,
end
error < error V —matched,
return(—error);

Figure 6. Correctness of a timed observational invariant with respect to a specification.

Algorithm InitialNodes
Data: M = (S,7,0,T,s0) : SETTFSM,u =i — 3 < 0,p/4: V1,0
Result: p(Struct A)

Initialization of variables

Nodes + (;
Taus < AfterCondp (S, {i}, O\ {o},[0,]);

Main loop

while 7, # 0 do
Choose (8,1, 0guzs tauzs Saue) € Tauzs Taue < Taue \ {(5:%, Oauz, tauzs Saux) }5
nodeyew-current_state <— Sqyq;
node ey ptt < 0;
nodepey - ttime < taua;
[3ﬂu17 F /3;
while 8., # () do
Choose d € 3auz; “Sauz — ﬁaur \ {6}’
(6 =z/m,aq,...,an,a %)
if 2 = 04qua A taus € M then
N0dep e -ptt < nodeney.ptt U {(5,0)};

end
end
Nodes < Nodes U {nodepey };
end
return(Nodes);

Figure 7. Function to compute the set of initial nodes.

The function Tailz o : PATTRz/0 —> PATTR7/ is such that forall § = z /i, aq,. .., 00,0 €
PATTRz/0:

) z/m,a if Len §) =0
Tailzo(8) = /m if Lenz)o (6)
z/m,ay, ... aya if Lenz;o(8) =1
Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405

DOI: 10.1002/stvr

382 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Algorithm CheckNode
Data: M = (S,Z,0,T,so) : SETTFSM, p = i — 3 <= 0,p/q : ¥1/0,n0de : Struct A
Result: Bool x Bool

Initialization of variables

s < node.current_state;

Taus < AfterCondas({s},Z, {0}, [0, max (0, g2 — node.ttime)|);
error < false;

matched < false;

Main loop

while 7., # 0 A —error do
Choose (87 illule 0‘, tlL'lL(l?? Sll/ll/flf) G 7:1/[1/‘14; 7:1/[“1} (7 ’771111' \ {(S' ia'U/"L'f 07 tU/'U/.'L", SU/'U/.'L')};
if (node.ttime + tq,,) € ¢ then
BT «+ node.ptt;
checked < false;
while 3T # () A —~checked do
Choose (6,t') € BT, BT + BT\ (6,t);
(*6= Z/T;L,(},l,...,an,(l *)
if Lenz /0 (0) = 0V (Lenz o (0) = 1 Aay = %/ A a = ique At € 102') then
matched < true;
checked <+ (a = iquz N taus € D);

end
end
error < —checked,
end
end

return(error, matched);

Figure 8. Function to check the correctness of a node.

The function Nstarsz;o : PATTRzj0 —> N is such that for all § = z/m,aq,...,00,a €
PATTRz/0:

0 if Lenz/0(8) =0
NstarsI/O(S) = 1 + NstarsI/O(TailI/@(S)) if LenI/O(S) >0A o = */ﬁ
Nstarsz/o(Tailz;o(§)) if Lenz;0(8) >0 Ay # x/p

The function Nstarsz/o : Wz/0 —> Nissuch thatforall u =i — B <0, p/q € Y7/0:

Nstarsz/o(u) = Z Nstarsz/o(d)
sep

The function NInpz/» : PATTRz/o —> Z is such that for all § = z/m,ay,...,04,a €
PATTRz/0:

a if Lenz/0(8) =0
NInpz/0(§) =1 i1 if Lenz/o(8) > 0 Ay =i1/01/p1
NInpz/o(Tailz/p(8)) if Lenz/o(8) >0A oy = %/p;

The Correctness Observational Specification(M,p) algorithm is essentially a
breadth first search. It begins at the root node and explores all the neighbouring nodes. Then, for
each of those adjacent nodes, it explores their unexplored neighbour, and so on, until it finds a mis-
match between the invariant and the specification. An additional structure Struct A is defined to
codify the nodes.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 383

Algorithm NewNodes
Data: M = (S,Z,0,T, o) : SETTFSM, yu = i — 3 = 0,9/ : ¥7/0,n0de : Struct A

Result: p(Struct A)

Initialization of variables

s < node.current_state;
Taus < AfterCondys({s},Z,0 \ {0}, [0, g2 — node.ttime]);
Nodes + (;

Main loop

while 7, # () do

Cho0Se (8, laue Oauses tauas Saur) € Toua’ Taus < Taus \ {(5: faus: Ouue aues Saua) ;
node, e -current_state < Sque;

node e .ptt < 0;

noden, e - ttime < node.ttime + tqy.;

BT < node.ptt; all + true; B, + 0; By + 0;

while 8T # () do
Choose (6,t') € BT, BT «+ BT\ (6,t'); Ba + Ba U{0};
(*6 = Z/m7a17~'~7an7a *)
if Lenz/o(é) > 0 then
condy + (o = a' /2" /[my, Ml A @’ = igus A 2" = 0gua N taus € (M), mb));

conds <+ (av; = */[m}, m}] /\NInpl—/o((S) = Qqux AN € [mf,m})]);
conds < (cvp = */[my, m5] A NIan/o((s) # tquz N (tauz + 1) < mb);
all + all A (g = */[mf}, mb]) Aml = oo;
if cond; V conds then

N0dencyw-ptt <= nodeney.ptt U {(Tailz o (5),0)};

ﬁb — ﬁb U {Tailz/o(é)};
end

if conds then
n0deew-Ptt < nodenew-ptt U {(0, taus +1t')};

By < B U{0};
end
end
end
condy < (g2 = 0);
condy < (nodepey . ttime > q1);

if (—condy) V (condy A ((—conds) V (conds N ((Ba # Bo) V (Ba = By A —all))))) then
Nodes < Nodes U {nodeney };

end
end
return(Nodes);

Figure 9. Function to generate a set of nodes from another node.

The initial phase of the algorithm calls the InitialNodes function. It computes the initial set
of nodes. Next, the algorithm takes a node and examines it by performing the CheckNode func-
tion. This function provides a verdict about the correctness of this node. Finally, if there is no error
in using this node and performing NewNodes function, a new set of nodes is computed.

Let u =i — B <« o0, p/q be a timed observational invariant and M = (S,Z,O,T,sg) be a
TFSM. In the worst case, the complexity of the algorithm to decide the correctness of j« with respect
to M isin (|T|'S!-|T|-|B|). This worst case is computed by taking into account the following facts.
The algorithm performs once the function InitialNodes. The complexity of this function is in
O(|T] - |B]). Next, a loop that computes a breadth first search algorithm, being its complexity in
o718, is performed. The functions CheckNode and NewNodes are executed inside this loop.
The complexity of the function CheckNode is in O(|T| - |B]) and the complexity of the function
NewNodes is also in O(|T |- |B]).

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

384 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Definition 12
Let u be a timed observational invariant and M be a TFSM. The invariant p is correct with
respect to M if the algorithm Correctness Observational Specification(M,p)
returns true.

Example 6
Consider the TFSM M presented in Figure 2 and the consequent invariants

1 =iz — {{02/[4,6],i1)} < 03,[5,7]/[10, 12]
and

o = i1 — (02/[3.16L. 1), < 03,[5,7)/[15,17]

(?/11. 7], %/[0, 00], i3)
introduced in Example 5. The invariant p; is correct with respect to M whereas (., is incorrect.

. . L i2/o
Concerning [t1, the algorithm initially computes the first node. It represents s, 2—35 s1. The next
step of the algorithm generates, for the initial node, the next nodes taking into account that it can pro-
duce an error. In this example, only one node is generated. This node represents that there is a trace

i2/0o i1/o
matched by the invariant: the one composed from the sequence of transitions s, —>5 81,851 1—>36 S1.

The next step of this algorithm checks whether the trace is correct with respect to the pattern trace
02/[4,6],i1. As this trace is checked by this pattern, the invariant h is correct.

i1/o02 iz/02 i1/o3
Concermng M2, the set of traces that must check the invariant is 53 —>4 52,52 —>5 81,81 —>6 S1

i1/oy i2/02 i1/o3
and s3 —>5 So,82 —>5 851,51 —>6 s1. There exists a trace in this set that does not check a pat-

i1/02 ir/02 i1/o3
tern belonging to the invariant. The trace s3 ez 4 52,852 —>5 851,51 —>¢ §1 does not match either

02/[3,16],iy or ?[1,7], [0, 0o], i3. Therefore, ., is incorrect with respect to M .

As in the case of timed consequent invariants, a match relation will be used to provide a formal
alternative characterization of the notion of correctness introduced in Definition 12. Intuitively, a
trace matches an observational invariant if the initial input and the last output match the initial input
and the last output represented in the invariant, respectively, and the addition of all time values
belongs to the time interval presented in the invariant. Some additional notation for dealing with
traces has to be defined. The SetTracesOy (i, p,0) function computes the set of traces having as
initial input 7, such that output o appears only once at the end of the trace and such that the sum of
the time values appearing in the timed trace must belong to p.

Definition 13
Let M =(S,7,0,T,s0) be a TFSM. The function SetTracesOpy :ZxIgr, xO—
g(Traces(M)) is such that foralli € 7,0 € O, and p € Ig :

dis,....ir€ZL,01,...,00,_1€0O,t1,...,1; eRy,r=2:
SetTracesOp (i, p,o) = se| e=(i/o1/t1,i2/02/t2,...,ir/0/t;) € Traces(M)A
Vj:1<j<Lengole):0; #0ATTy(e) € p

The function MatchOyy : Traces(M) x Wz,» —> Bool is such that for all e € Traces(M)
and u € ¥7,0:

true ife € SetTracesOpy(i,q,0)
MatchOps(e, n) =)

false ifedSetTracesOpy(i,q,0

Let M be a TFSM, u be a timed observational invariant, and e € Traces(M). The trace e
matches ju if MatchOyy (e,) returns true.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 385

The Check (e,) function computes whether the trace e of M checks the pattern trace §. This
definition uses the Check;,, (e, i, p,t) auxiliary predicate to deal with occurrences of the x wildcard
character in a time p without performing the input ;.

Definition 14

Let M = (S,Z,0,T,so) be a TFSM. The function Check}, : Traces(M) x I x Tr, xRy —>
Traces(M) is such that for all e = (iy/01/t1,...,i;/0;/t;) € Traces(M),i € Z, p € Igr,.,
and7r e Ry:

9 if (¢ > p2) v (Lenz/o(e) = 0)v
i1=iAtEp
Checkj),(e,i, p,t) = . .(1 . ¢Ap)
e ifiy=intep

Check},(Tailpy(e),i, p,t +t1) ift < pr ANiy #i

The function Checky : Traces(M) x PATTRz/o —> Bool is such that for all ey €
Traces(M)and § = z/m,ay,...,0,,a € PATTRz/0, Checky (e1,6) is equal to:

false fu=0vu>1Ars=0Vvu=1As>0)
ii=a ifu=1As=0
Checkpy (e2,Tailz o (8)) ifu>1As>0Aa;=%/p

i1=ano1=ZALLEPA

Checky(Tailpy(er), Tailzp(8) ifu>1As>0Aay=a/z/p

where e, = Check},(e1,NInpz/0(8), p.0), s = Lenz/o(§), and u = Lenz o (e1).
A trace e = (iy/o1/t1,...,ir]0r/t;) of M checks the pattern trace § = z/m, oy, ..., 0y, a if
01 =2z, t; €m, and Checkys ((ir/02/12,...,ir/0r /1), 8) returns true.

The previous definitions of matching and checking can be used to give an alternative characteriza-
tion of the soundness of a timed observational invariant with respect to a specification. This notion
is based on the idea that if a trace of the specification matches the invariant, then it must check a
pattern trace belonging to S.

Lemma 2

Let M bea TFSM M and u = i — B < o0, p/q be a timed observational invariant. The invari-
ant u is correct with respect to M if the following conditions hold: there exists at least one trace
e € Traces(M) that matches p and for all trace e € Traces(M) that matches u there exists
8 € B such that e checks §.

The proof of the previous result is easy, and it is based on the following ideas. There are two
conditions in Lemma 2 that must be checked to ensure the correctness of an invariant. The first
one depends on the existence of a matched trace of the specification and the second condition of
Lemma 2 checks that for all matched trace e there exists a pattern trace ¢ in the invariant such that
e checks 6.

These two conditions are computed together in the algorithm presented in Figure 6. First, the
algorithm computes the tree of matched traces. For each node, the algorithm checks that if the
trace is matched, then there exists a pattern trace of the invariant that checks this trace. Finally,
if the Correctness Observational Specification algorithm returns true, then the
invariant is correct with respect to the specification.

5. CORRECTNESS OF LOGS AGAINST INVARIANTS

This section presents an implementation relation to formally define what a good implementation is
with respect to a specification. The ultimate goal is to show the correctness of the passive testing

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

386 C. ANDRES, M. G. MERAYO AND M. NUNEZ

approach presented in this paper. The section gives two algorithms: one that checks the conformance
between logs and timed consequent invariants and another one that checks the conformance between
logs and timed observational invariants. A simple timed implementation relation is considered, but
other alternative relations [15] could be easily incorporated to the framework.

Definition 15
Let Mg and M be two TFSMs. Mjconf Mg denotes that Traces(M;) C Traces(Ms).

5.1. Correctness of logs against timed consequent invariants

Essentially, a log is incorrect with respect to a timed consequent invariant if there exists a subse-
quence of the log that matches the invariant; that is, it is coherent until the last input of the invariant,
but it does not fulfil the requirements expressed in its last part. Therefore, a log is correct with
respect to an invariant if it does not violate any requirement expressed in the invariant.

An algorithm to establish the conformance between logs and timed consequent invariants is pre-
sented. The core of the algorithm is given in Figure 10. The algorithm traverses all the elements of
the log and checks whether each subsequence of it matches the invariant. If this happens, then the
restrictions of the invariant are checked.

Definition 16
Let ¢ be a timed consequent invariant and / be a log recorded from an IUT. The log / is correct with
respect to ¢ if the algorithm Correctness logs Consequent(/,¢) returns true.

Algorithm Correctness_Logs_Consequent
Data: | = (i1 /o1 /t1,... ir/o,/t;) : (T X O x Ry)*,

d=au,...,an,ip = O/py >4y : Pz/0
Result: Bool

Initialization of variables

error < false; m < 1;
Main loop

while m < Lenz o (I) A— error do
k < m; tt < 0; j < 1; matching < true;
while j < Lenz,n(¢) Ak <Lenz,o(l) A matching do
if o; = a/z/p then
matching < (iy, =aNok, =z Nty €P)stt «—tt+tp k< k+1;
else
(*aj =x/[p1,p2] *)
tpartial «—0;
while
k < Lenz;o(l) Atpartial < p2 Nig 7 NIan/O((yj, o om,ip = Ofpy > Gr) do
tpartial — tpartial + tk; k+—Fk+ 1;
end
tt < tt + tpartials
matching < (ix = NInpz p(aj, ..., an,if = O/Bs > 4f) A tpartial € [P1,D2]);
end
j—Ji+1
end
(* j = Lenz ;0 (¢) + 1 indicates that the invariant was completely traversed *)
if matching A j = (Lenz;o(¢) + 1) A (i, = iy) then
error < (op € OV ity &€ pr Vit 4+t & dr);
end
m<—m+1;
end

return(—error);

Figure 10. Correctness of a log with respect to a timed consequent invariant.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 387

Let ¢ be a timed consequent invariant and / be a log recorded from an IUT. The complexity
of the pattern matching strategy is in the worst case (’)(Lenz/o(l)2 -k + Lenz/o(l) - (s — k)),
where k = Nstarsz/o(¢) and s = Lengz;o(¢). Note that even though good algorithms for pat-
tern matching on strings perform in O(Lenz,(!)) (after the pre-processing phase), this complexity
cannot be achieved because all the occurrences of the pattern in the log must be checked. However,
if the length of the invariant is much smaller than the length of the log and the number of stars is
low, as it is usually the case, the complexity is almost linear with respect to the length of the log.
The next result states the soundness of the approach.

Lemma 3
Let ¢ be a timed consequent invariant, M; be a TFSM, and / € Traces(My) be a log of Mj.
The log [is correct with respect to ¢ if for all I’ = (ij/oj/t;.....ix/ok/tk), with 1 < j <k <

Lenz/o(/), such that /" matches ¢, ox € O, tx € pr,and TT(I') € G 7.

The proof of this result is easy, and it is based on the following ideas. A log [is correct with respect
to a timed consequent invariant if each matching sublog [” of / respects some conditions about its
structure. The Correctness logs Consequent algorithm implements indeed these condi-
tions (see Definition 16). The two loops in Figure 10 compute the sublogs of the log by using the m
and k indexes for the first and last elements, respectively. If the sublog matches the invariant, then
the last two lines of the loop check the conditions of Lemma 3.

The following example shows how the sublogs of a log are considered to check the correctness
of the approach.

Example 7

Let [= (i1/01/3.i1/02/4) be a log of a system and ¢ = i; + {01}[3,4] > [3,4] be a timed
consequent invariant. It is easy to check that (i1 /0;/3) matches ¢ but / is not correct with respect
to ¢ as it contains the sublog (i;/02/4).

Note that the subsequence of the matched log can be longer than the invariant because invariants
can include the wildcard *. The next result presents the relation among specification, implementa-
tion, logs, and timed consequent invariants. Consider a log recorded from an implementation and a
correct timed consequent invariant with respect to a specification. If the timed consequent invariant
detects an error in the log, then the implementation does not conform to the specification.

Theorem 1

Let Mg and M be two TFSMs and ¢ be a correct timed consequent invariant with respect to M.
Let / be a log recorded from Mj. If [is not correct with respect to ¢, then M; conf Mg does
not hold.

Proof
If [is not correct with respect to ¢ = o,...,0,,iy = O/pr > Gy, then there exists a subse-
quence [’ = (ij/o;/t},...,ix/ok/tx) of | such that /" matches ¢ and either ox & O ortx & pr or

TT(') €. If ox & O, then!’ € Traces(My) but [’ ¢ Traces(Ms). Thus, M; conf Mg does
not hold. If tx & p s, then [’ € Traces(My) but I’ ¢ Traces(Ms). Thus, M7 conf Mg does not
hold. Finally, if TT(/") € 4, then I’ ¢ Traces(Ms) because time values of invariants fit those of
the specification. In this case, again, M; conf Mg does not hold. O

5.2. Correctness of logs against timed observational invariants

This section presents a method to establish the correctness of a log, collected from an IUT, with
respect to a timed observational invariant. The main algorithm is given in Figure 11. The idea is
to traverse the log and decide whether there exists a subsequence e matching the invariant. In this
case, it must be established that at least one pattern trace belonging to 8 checks it. For this task,
the Checked PatternTrace function, given in Figure 12, is used. If there is not a pattern trace
checked by e, then an error is produced.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

388 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Algorithm: Correctness_Logs_Observational
Data: | = (i1 /o1 /t1,...,ir/0p[tr) : (T X OX R p=1i— B 0,p/q: V)0
Result: Bool

Initialization of variables

error < false; j <+ 1;
Main loop

while j < Lenz,»(l) A —error do
if i; = i then
etk j+1;
(* tt stores the time of the matched sequence, j computes the initial index of the
matched sequence, and k computes the final index of the matched sequence*)
while % < Lenz,o(I) A (0 # 0) Attt < g2 do
tt < tt + ty;

k<« k+1;
end

ifop, =0A (tt + tk) € ¢ then
Bauz < B cmatching < false;
(* ematching holds if (ij/o0;/t;, ..., ir/or/tk) checks a pattern trace in 3*)
while (... # 0 A —cmatching do
Choose § € Bauzs Bauz < Baua \ {0};
cmatching < tj, € p A Checked PatternTrace((i;/0;/t;,. .. ir/or/tr),))
end
error < —cmatching,
end
end
J<Ji+1
end

return(—error);

Figure 11. Correctness of a log with respect to a timed observational invariant.

Definition 17
Let u be a timed observational invariant and / be a log of an IUT. The log [is correct with respect
to u if the algorithm Correctness Logs Observational(/, u) returns true.

Let u =i — B < 0, p/q be a timed observational invariant and / be a log. This matching strat-
egy works in the worst case in (’)(LenI/o(1)3-k+LenI/@(l)2-(s—k)), where k = Nstarsz/o(i)
and s = Leng,o(p). As it was the case with timed consequent invariants, if the invariant is much
shorter than the length of the log and the number of appearances of the wildcard « is low, as is
usually the case, then this complexity becomes almost O(Lenz/o(/)?). The following result states
the soundness of the approach.

Lemma 4

Let p be a timed observational invariant, M be an IUT, and [€ Traces(My) be a log of Mj.
The log / is correct with respect to p if for all I’ = (ij /oj/tj.....ix/ok/tk), with 1 < j <k <
Lenz/o(/), such that /" matches u there exists § € B such that /” checks §.

This result is immediate as the algorithm given in Figure 11 initially computes the set of sublogs
that are matched. If this set is empty, then the log is correct; otherwise, for each matched (sub)log,
the algorithm looks for a pattern trace checked by this sublog. This task is carried out by the
Checked PatternTrace function, introduced previously.

In a similar way to timed consequent invariants, it is possible to give a relation among invariants,
implementation, logs, and specification. The idea is again that if there is a correct timed observa-
tional invariant with respect to a specification, then if this invariant detects an error in a log recorded
from an implementation, then this implementation does not conform to the specification.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 389

Algorithm Checked PatternTrace
Data: | = (i1/o1/t1, ..., ir/0r/tr) : (T X O x Ry)*, 6 = z/1n, u, ...,y a0 PATTRz)0
Result: Bool

Initialization of variables

checked < (01 = z) A (t1 € m) A (i = a);
(* checked denotes that the trace continues being checked with respect to the pattern trace*)
k2,7 1;

Main loop

while % < Lenz,o(I) A checked A j < Lenz;o(d) do
if oj = a/z/p then
checked + (a =i Nz = o ANty € P);
k<« k+1;
else
(¥ =*/[p1,p2] ¥)
tparf,ia,l — 07
while k& < Lenz /o (1) A tpartiat < p2 N ig 7 NIan/O(Z/ﬁL7 ..., Qp,,a) do
tpwrtiul — tpurtml + ks
k«—k+1;
end
checked <+ (i, = NIan/o(z/ﬁz, Qj,y ..oy Oy, @) Atpartial € [P1,D2)s
end
Jeg+L
end
(* Make sure that the complete trace has been checked against the complete pattern trace *)
checked < checked N (k = Lenz,o(l)) A (j = Lenz ;o (d) + 1);
return (checked);

Figure 12. Function to compute whether a log checks a pattern trace.

Theorem 2

Let Mg and M be two TFSMs and p be a correct timed observational invariant with respect to M.
Let [be a log recorded from My. If [is not correct with respect to , then My does not conform
to Mg.

Proof

If / is not correct with respect to u, then there exists a subsequence [’ = (ij /0 /tj,....ix/0k/tk),
with 1 < j < k < Leng/o(/), of [such that /" matches v and there does not exist § € 8 such as
e checks 8. If p is correct with respect to Mg, then for all trace e € Traces(My) that matches u,
there exists § € B such that e checks 8. Thus, I’ € Traces(Mj) but !’ ¢ Traces(Ms). Therefore,
M7 conf Mg does not hold. (|

6. PASTE

This section presents a PASive TEsting tool, called PASTE, that allows users to work with the for-
mal framework presented in this paper. The original core and the GUI were implemented in JAVA
and initially were a stand-alone project. Later, it was decided to integrate this academic tool as a
module of the monitoring software developed by the Spanish SME Peopleware. In order to improve
the performance of the tool and the possibilities to integrate it with other existing tools, the core of
PASTE was rewritten in C++ and the GUI was adapted accordingly. The tool can be downloaded
from https://simba.fdi.ucm.es/paste.

6.1. Functionalities
PASTE is a tool that allows users to automatize the passive testing methodology presented in this

paper. The tool obtains the data from a database that contains a set of invariants, the logs to be

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

390 C. ANDRES, M. G. MERAYO AND M. NUNEZ

checked, and, optionally, a specification represented as a TFSM model. First, the information in the
database is transformed into the internal data format of the application. In particular, in this phase,
time information of the log is transformed so that it is expressed in the same time units as the
specification and invariants.

Next, the algorithm that checks the correctness of the invariants with respect to the specification
is applied. Invariants have to be checked against the specification before the logs are checked with
respect to the invariants. If the specification is not provided, then the tool considers that the invari-
ants are correct. Once a correct set of invariants is fixed, it is possible to check the correctness of the
logs with respect to the invariants by executing the corresponding algorithms. If an error is detected,
then PASTE notifies it to the tester.

In addition to the theoretical framework, PASTE implements a module to provide a measure of
how good a set of invariants is. In order to do it, a methodology based on mutation testing [74-77] is
used. In PASTE, the specification is mutated, and for each mutant, a log is recorded. These logs are
checked against the set of available invariants in order to determine, based on the obtained results,
their level of fault detection. If the evaluation of the log against an invariant finds an error, then the
invariant kills the mutant that generated this log. The idea is that if an invariant finds many errors in
the logs recorded from mutants, then the probability that it detects an error in a faulty IUT is higher.
Note that only first order mutants are considered, that is, mutants obtained by the application of one
mutation operator. PASTE provides three different mutation operators: changing the goal state of
a transition (CGS), changing output (CO), and changing time (CT). The first one corresponds to
create a mutant of a specification by changing the final state of a transition. The second mutation
operator creates a mutant by changing the output associated to a transition. Finally, the last one
modifies the time value associated with a transition.

Definition 18

Let M = (S,Z,0,T,sp) be a TFSM. The changing goal state mutant operator CGSps : 7 X S —>
SETTFSM, the changing output mutant operator COps : 7 x O —> SETTFSM, and the changing
time value mutant operator CTys : 7 X Ry —> SETTFSM are functions to generate mutants such
that for all M = (S,Z,0,T,s9) € SETTFSM, t¢c = (5,i,0,1,8') €T, s5m €S,0m € O,a € Ry:

CGSp(tc,sm) = (S,Z,0, Toas, S0), Where Togs = {tr|tr € T A tr £ tcy U{(s,1,0,t,5m)}
Copm(te,0m) = (S,I,0,To, So), where Teg = {tr|tr € T A tr #tey U{(s,i,0m,t,8)}

CTy(te,a) = (S,Z,0, Ter, o), where Top = {tr|tr € T A tr #teyU{(s,i,o,t +a-t,s)}

Mutants of M are generated after applying mutant operators to M . The set of all mutants of M is
denoted by MUT ;. Let M C MUT), be a set of mutants generated from M and consider that a set of
logs is extracted from these mutants. MTrazes y4 is a set of pairs (mutant, log), where several logs
can be associated with the same mutant. A mutant M,, € M is killed by the invariant ¥ if there exist
a pair (M,,,[) € MTrazes such that / is incorrect with respect to . Skmys (¥, MTrazes) C
M denotes the set of mutants killed by 1. Similarly, Remove s (¢, MTrazes) C MTrazes
returns those pairs (mutant, log) belonging to MTrazes such that the mutant has not been
killed by .

Example 8
Figure 13 presents different TFSMs to illustrate the mutation operators. Consider the machine Mc,.

In this case, the CO mutant operator has been applied. The transition s lﬂl s, belonging to Mg
has been replaced by s; llﬁfl s2. In order to build another mutant, the CGS mutant operator can be
applied, for example, to generate the machine M.g. In this case, the transition s lﬂl s1 has been
replaced by the transition s, iﬂl s2. Finally, M, is obtained by applying the CT mutant operator

. ir/o
to Mg. In this case, the operator replaces the time value associated with the transition s; 2% 3 857
by 6.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 391

Ms

i1/02/4 i1/02/4

ir/o1/1
i2/02/3 i2/01/3

il/Ol/l
A/Ico J\[c gs A'[c/,
i1/02/4 i1/02/4 i1/02/4
iz/02/3 i2/02/3 i2/02/6
ip/o1/1 i1/02/1 i1/01/1 i1/01/1 i1/o01/1
in/01/3 ° i1 /0s/4 in)01/3 in/01/3
i1/02/4 i1/o1/1 i1/02/4

Figure 13. A specification Mg and three of its mutants.

6.2. The system SSadmin

This section presents the results obtained from the experiments that were performed to estimate
the quality of a set of the invariants. Figure 14 presents the specification of the system: SSadmin.
This system is used by students to check their marks and their student information profile, to send
emails, to fill questionnaires, and, at the beginning of the academic year, to register their subjects.
This paper considers a simplified version of the system. Essentially, data are not used but the main
features concerning the input/output behaviour of the system are included.

The sets of input and output actions, Z and O, are given in Figure 14. The initial state, s, corre-
sponds to the point in which the users connect to the system. The nodes represent the states of the
model, and the edges represent its transitions. 7Ty is the subset of depicted transitions. For the sake
of clarity, not all the transitions are included in the figure as this would overload the graph. Specifi-
cally, the transitions corresponding to the functionality that allows users to return to option scr
by introducing the return_ option input at some states have been removed. These transitions
are given by the set

i12/02
Ti =1{si —> 1052 |8i €{54,55,58,513,519}}

Thus, the set of transitions of SSadmin corresponds to the union of these two sets of transitions,
that is, 7 = To U T7.

Next, the standard interaction between a student and SSadmin is described. Note that the spec-
ification is described from the point of view of the system whereas this example is presented from
the point of view of the student because it is more intuitive. Thus, inputs of the student are outputs
of the system and vice versa. The behaviour of the system has been divided in five different stages.
The first one corresponds to the connection phase. When students connect, the system shows the
welcome scr message. At this point, students can log into the system. If an erroneous 1ogin is
introduced, then the system returns the error user message. If the student introduces the cor-
rect 1ogin, then the system will show option scr. At this screen, the student can log out by
answering disconnection and the system will return to welcome scr. The time values asso-
ciated with the processes of connection and disconnection are 30 and 15 time units, respectively.
The difference between these amounts is due to the fact that during the login phase, the system must
access the database to check the correctness of the provided information. When the student logs out,
it is not necessary to interact with the database.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

392 C. ANDRES, M. G. MERAYO AND M. NUNEZ

ir/030/30
start —> i5/04/15 ° @ @
i6/020/30
i11/07/80
i1/01/15 i4/04/25 i11/0s/80
ig/05/30
12/02/30 8/0s/
ig /06 /200 i10/06/15
i2/03/3l) a/0s/ s 10/06/
i13/010/15
oI5 13/010/
i10/06/15
Z'19/015/15
i20/016/8 @ i17/014/15 i14/011/15
i21/016/8 i18/014/15

i15/012/15
i15/012/15 i16/013/15

iz0/017/8
in1/017/8

i20/018/8
i21/018/8

iz0/019/8
iz1/019/8 in2/09/20 @
S17 518
i1 = connect iy = login i3 = disconnection
i4 =profile i5 = data ig = cancel
i7 = save ig = marks ig = register
7— i190 = data_subject i1 = save_registration ;2 = return_option
i13 = send_msg i14 = Wwritemsg i15 = send
i1 = attachF i17 = save_and_send i1 = cancel_and_exit
i19 = sel_quest ig0 = sel_true i9; = sel_false
i92 = send_quest
01 = welcome_scr 0y = option_scr 03 = error_user
o0y =profile_scr o5 =marks_scr 0¢ = register_scr
oy = confirmation_scr og=no_confirmation_scr o9 = quest_sent
0= 0190 = Msg_scr 011 =msg_written 012 = msg_sent
013 = attached_scr 014 = ok_msg 015 = question_l
016 = question_2 017 = question_3 013 = question_4

019 = quest_finished 090 = updating_scr

Figure 14. Specification of SSadmin by using a TFSM model.

The second stage includes the most frequent operations performed by students: checking marks
and accessing and modifying personal profiles. When a student is connected to SSadmin, if
she introduces profile, then the system will show the profile scr. Then, the student is
able to change some personal information, such as her e-mail and telephone number. Each data
that she might change is introduced by the data action, and the system replies by showing the
profile scr. When the student updates her information, she can either save the changes or
cancel the operation. Both actions lead to the updating scr, and when the student introduces
return option, the system will show the option scr. The second operation of this stage
corresponds to checking the marks. The student can access them by using the marks action and the
system will show marks scr. In order to return to the option scr, the student must introduce
the return_ option action. The time values associated with these transitions reflect the differ-
ence between the values that are extracted from the disk and the values that are in temporal memory.
For example, when the students are modifying their profile, the changes are not stored until the users
save them. Thus, the access to this data is faster.

The third stage corresponds to the register feature. This feature is available only at the
beginning of an academic course and allows the student to register their subjects. This is one
of the most important and critical parts of SSadmin. After the student logs into the sys-
tem, she must introduce register and the system will show the register scr. The time

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 393

tmp/worskpace5.txt - PASTE Visor of Machines

Tree Layout H Circle Layout | b?; [v] Show Legends Export to PNG...
N
(50) 4 ik
_/ ___ save/updatingscr / 3%4)
data/profilescr /15.0 4 \ cancel/updatingscr / 30" —
6/ /55\
N

connect/welcomescr /15.0

profile/profilescr /25.0 marks/marksscr / 30.0

returnoption/optionscr /10.0

Fei e JECR 75N returnoption/optionscr / 10.0
' sl

\,_,c/sconnection/weIcomescr Jel:5:0 /\
loginfoptianscr / 30.0 i register/registerscr /200.0 | s6)
7 ity

returnoption/optionscr / 10.0

Figure 15. Specification of SSadmin in PASTE.

associated with this transition is 200. This amount of time is due to the fact that the system
has to search and filter the available subjects for the student. In order to choose the subjects,
the student must introduce the data_subject. When she finishes the process and introduces
save registration, the system will display either confirmation scr, if the registration
was correct, or no_confirmation_ scr, if there was an error.

The fourth stage corresponds to the internal mail capability that allows a student to send mes-
sages to other students. These messages can include attachments. In order to send a message, the
student must introduce send_msg. The system will show the msg scr, where the student can
write the text of the message. This action is performed by write msg, and the screen returned
by the system is msg_ written. After writing the message, the student can either send the mes-
sage, by applying the input send, or attach a file, by performing the input attachF. The second
option leads the student to the attached scr where she can attach the file. After the student
introduces the send input, the system will ask the student whether she confirms the sending of the
message. The student confirms the sending, by applying the input save and send, or cancels it,
by answering cancel and_exit. In both cases, the system will show the ok msg screen.

The last stage corresponds to the guestionnaire feature. This feature allows SSadmin to obtain
some feedback in order to improve future versions of the system based on user experiences. The
action sel quest leads the student to the sequential presentation of the questionnaire screens:
question 1, question 2, question 3, and question 4. The student will navigate
them by answering either sel true or sel false. Finally, Figure 15 partially shows the
SSadmin specification.

6.3. A set of invariants for SSadmin

The first invariant denotes the property that after login, if a user eventually disconnects from the
system, then the welcome scr must be displayed.

login/option scr/[20,40],

Invar, = */[0, 0], disconnection

> { welcome_scr }/[14.5,15.5] > [35,00]

In addition to the functional behaviour, the Invar; invariant establishes that the observation of
login and the display of option_scr must belong to the interval [20, 40]. Similarly, the amount
of time elapsed between the input disconnection and the output welcome scr must be
greater than 14.5 and less than or equal to 15.5. Finally, the sum of all the time values observed
between login and welcome scr must be greater than 35. The next invariant can be used to
observe two different behaviours after the specified input:

option_ scr,

/[29.5,30.5] > [29.5, 30.5]
error_user

Invar, = login —

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

394 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Intuitively, this invariant expresses that after observing an occurrence of 1ogin in the log, it is
necessary to observe either option scr or error user. Moreover, the amount of time asso-
ciated with these actions must belong to the time interval [29.5, 30.5]. The next invariant focuses on
the profile option:

Invars = data/profile scr/[10,20], save — {updating scr}/[29.5,30.5] >> [40, 50]

This invariant denotes that after inserting the last update of the data in the system and save
all the changes, the updating scr must be displayed. In addition, the total amount of time to
perform this process must belong to the interval [40, 50]. Note that the delay tolerated by the last
timed restriction can be different from the sum of all time intervals presented in the invariant. For
example, [10,20] + [29.5, 30.5] # [40, 50].

Finally, the invariant Invar, describes the fact that if a student is at the option scr and she
inserts the marks input, then the marks_scr must appear before a certain amount of time passes:

Invary =?/option scr/[5,35],marks > {marks scr}/[29.5,30.5] > [39,70]

Next, some observational invariants are introduced. The next one expresses that whenever a user
connect to SSadmin, if she observes the option scr in a lapse of time belonging to [20, 80],
she previously introduced the 1ogin. It could happen either that the login was correct and the
option_ scr was displayed or that the user introduced an erroneous login and she had to try
another 1ogin before the option scr was displayed.

wsq = (welcome scr/[10,20],login)
wsp = (welcome scr/[10,20], login/error user/[25,35],1ogin)

Invars = connect — {ws,, wsp} <— option_scr,[29.5,30.5]/]20, 80]

Note that the correctness of this invariant depends on the time interval associated with the perfor-
mance of the whole sequence, that is, [20, 80]. The next invariant represents some possible actions,
in a time belonging to [15, 100], that a student can perform when she sends a message, that is,
the sequence of actions observed between the introduction of write msg by the student and the
moment when the system shows the msg_sent screen. The student can either write msg and
send itor write msg the message and attachF to this message before to send it.

weq = (msg_written/[14.5,15.5], send)
wep = (msg_written/[14.5,15.5],attachF/attached scr[l14.5,15.5], send)

Invare = write msg — {weq, Wep} < msg_sent, [14.5,15.5]/[15, 100]

The observational invariant Invar; can be used to check the questionnaire option. If a student
sel quest to fulfil it and after a non-empty sequence of actions in a time belonging to [30, 160]
the quest sent option appears, then the student has started the questionnaire.

w7 = (question 1/[14.5,15.5], x/[20,35], send quest)

Invar; = sel _quest — {w7} < quest_sent,[19.5,20.5]/[30, 160]

Instead of using the wildcard x character in Invar, it is possible to describe all the possible ques-
tion/answer situations. The Invarg invariant, similar to the Invar; invariant, focuses on checking
the questionnaire option. The main difference with respect to Invar; is that in Invarg, all the possi-
bilities are explicitly described; that is, the 16 different possibilities of answering true/false to

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 395

each of the four questions are included. Even though Invar; and Invarg have similar behaviour, the
empirical results will show that their power of error detection is different.

(question 1/[14.5,15.5],sel true/question_ 2[7.5,8.5],
wgs = sel true/question 3[7.5,8.5],sel true/question 4[7.5,8.5],
sel true/quest finished[7.5,8.5],send quest)

(question_ 1/[14.5,15.5],sel false/question 2[7.5,8.5],
wgp = sel_false/question 3[7.5,8.5],sel_false/question_ 4[7.5,8.5],
sel false/quest finished[7.5,8.5], send quest)

Invarg = sel quest — {a)ga, e ,wgp} < quest_sent,[19.5,20.5]/(30, 160]

6.4. Estimation of power fault detection

Once a set of invariants is defined, it is necessary to check the correctness of this suite with respect
to the specification. Benchmark results are presented in Figure 16. Note that the values presented in
the figure represent the average of performing the experiments 100 times and the time value repre-
sent the number of clock ticks elapsed since the program was launched. In these experiments, there
are exactly 1 000 000 clock cycles per second. As an additional remark, the time for computing the
correctness of the observational invariants depends on the number of pattern traces that they have. In
this case, Invary and Invarg have a similar number, and therefore, a similar performance is observed.
Moreover, the time for checking the correctness of logs with respect to consequent invariants
strongly depends on the appearance of the wildcard *, as in the case of Invar;, whereas in the case
of observational invariants, it depends on the length of the invariant, being Invarg the longest one.
Next, the results obtained from the application of the mutation methodology for estimating a
measure of the effectiveness of the invariants detecting errors are reported. In order to do this, the
different mutation operators were applied to the specification of SSadmin. First, the CO operator
was applied to all the transitions, modifying the associated output with each output available in the
specification. Next, the CGS operator was used, resulting in the modification of the final state of
the transitions of the specification. An exhaustive set of mutants was generated. However, this is
not possible when the CT operator is applied. In this case, the amount of possible mutants is astro-
nomic. Thus, it is necessary to establish a finite number of changes for each fixed time value. The
right-hand side of Figure 17 presents the screen displayed when this functionality is selected by

Computation time (in cycles of CPU) to check the correctness of the invariants with respect to the
specification.

Invary Invary Invars Invary Invars Invarg Invar; Invarg
Correctness Alg. Oc. 10000¢. Oc. Oc. Oc. Oc. 113000¢. 114000c.
Computation time (in cycles of CPU) to check the correctness of the traces with respect to each
invariant.
Invar/Length 100tokens 1000tokens 10000tokens 100000tokens 1000000tokens
Invar, 600c. 4800c. 11600c¢. 92500c¢. 915500c¢.
Invars 700c. 1200c¢. 3200c. 16500c¢. 83100c¢.
Invars 700c. 1400c. 4700c¢. 19900c¢. 133500¢.
Invary 400c. 1000c¢. 5900c. 26200c¢. 189600c¢.
Invars Oc. 100c. 2900c. 25600c. 218300c.
Invarg Oc. 600c. 6500c. 29700c. 299300c.
Invarz; Oc. 700c. 2400c. 36400c. 359700c.
Invarg Oc. 1500c. 8300c. 74900c. 744800c.

Figure 16. Computation time for correctness algorithms in PASTE.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

396 C. ANDRES, M. G. MERAYO AND M. NUNEZ

Paste GUT

Eile Run Tool

| «+Reload €9 save and Exit

Projects browser | Tasks |

Workspaces
¢ Workspace:S

o SET OF ACTIONS

o €] FT Spec

o General SoS FILES

o Set of FT MutantsFT Change output

e Set of FT MutantsFT Change goal state

o Set of FT MutantsFT Change time value

T Task

Insert the desviation of the
mutation time operator:

- invar
o W Invar 2
o W Invar 3
™ Invar 4 |
§ FT SetofObservationalinvariant t 13
- nvar S
o @ Invar &

o @ Invar 7 Remove Action Performing Action
o W Invar
o Set of Experiments

System Log

Figure 17. Correctness of invariants and generation of mutants for SSadmin in PASTE.

Mutants Invary Invars Invars Invary
- % # - % # - % # - %
CO 19 - 277% 36 - 526% 19 - 277% 19 - 277%
CGS 0o - 0% 0 - 0% 0o - 0% 0o - 0%
CT 2 - 277% 4 - 555% 2 - 277% 2 - 277%
Mutants Invars Invarg Invary, Invars
- % # - % # - % # - %
CO 19 - 277% 38 - 5.55% 25 - 3.65% 169 - 247%
CGS 16 - 233% 9 - 131% 130 - 19% 136 - 19.88%
CT 2 - 277% 8 - 11.11% 4 - 555% 20 - 27.77%

Figure 18. Mutants killed by each of the invariants.

the user. Consider the transition (s, i, 0,1, s’). If the CT mutant operator is applied to this transition
with two deviations « and —«, two different mutants are obtained: one of them presents the mutated
transition (s,7,0,f + « -7, s’) and the other one the transition (s,7,0,f — o -1,5’).

Once the generation of mutants has finished, a list of all mutants is compiled. The mutants are
sorted by the mutation operator used to generate them. In PASTE, for each mutant, it is possible to
access the mutated transition, the new transition generated for this mutant, and the logs collected
from the mutant.

For each mutant, a log consisting of 10 000 interactions was collected. The size of the logs was
limited because of the following two considerations. First, it was observed that if the invariants did
not find an error soon, then they were not able to find errors later. Second, the full set of collected
logs requires 1.8 GB, which can be considered a reasonable size.

Figure 18 presents the data corresponding to the logs obtained from the application of the CO,
CGS, and CT operators. Regarding the CO mutation operator, timed consequent invariants and timed
observational invariants do not present materially different behaviours concerning the number of
mutants killed. There is an exception: Invarg. This fact is due to the number of pattern traces con-
sidered in this invariant. Note that occurrences of the wildcard * in pattern traces reduces the number
of killed mutants. This situation happens in the case of Invare and Invary.

With respect to the length of consequent invariants, it is concluded that the shorter the length of
the invariant, the higher the number of killed mutants. Note that the length of the /nvar; invariant
is different from the length of invariants Invars and Invarg, but they detect the same number of
mutants. The reason is that Invar; contains an occurrence of the wildcard * together with the time
interval [0, oc], and this pair matches any possible non-empty sequence of actions.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 397

20 40 60 80 120 140 4000 5000 6000
Invary | 8 8 9 10 12 14 21 21 21
Invary | 35 37 37 37 40 40 40 40 40
Invars | 5 6 6 8 9 9 21 21 21
Invary | 9 12 15 19 19 20 21 21 21
Invars | 37 37 37 37 37 37 37 37 37
Invarg | 23 33 39 43 45 47 55 55 55
Invar; | 37 50 57 64 75 80 158 159 159
Invarg | 94 145 185 210 230 240 320 325 325

Figure 19. Mutants killed by each invariant according to the length of the logs.

Concerning the results obtained from the logs recorded from the mutants generated by applica-
tions of the mutation operator CGS, it is worth pointing out that timed consequent invariants are not
able to kill any mutant. The reason is that the application of the CGS operator does not affect the
functional behaviour of the system; that is, the mutation only changes the final state of a transition,
not the input/output/time that labels it. Regarding timed observational invariants, all of them are able
to kill mutants: Invarg and Invar; kill almost the same number of mutants. It has been observed that
the longer the pattern traces associated with the observational invariant, the higher their capacity to
detect errors in logs.

Next, the results obtained when considering the logs derived from the application of the mutation
operator CT are analysed. The proportion of killed mutants is less than the one obtained with the
other mutation operators. As it was mentioned before, the number of CT mutants is less than the
number of the other mutants, specifically, it is equal to 2 - |7'|. However, this relation changes when
the percentage of killed mutants is considered. The results obtained from all the invariants with
respect to the CT mutation operator are better than the ones obtained for the CO mutation operator.
Furthermore, the percentage is, in general, a little better than that for the CGS mutation operator.

Finally, the table presented in Figure 19 shows the results obtained by taking into account the
invariants and the length of the logs. It can be concluded that timed observational invariants need
logs of at least 5000 interactions to be effective, whereas timed consequent invariants produce some
useful results already with logs of size 100.

6.5. Metrics and heuristics

This section introduces a metric to compare sets of invariants. The core of the method is a heuristic
to obtain the set of the n most representative invariants out of a (possibly huge) set of invariants.
Essentially, an invariant suite is better than another one if the former kills more mutants than the
latter. Even though the underlying idea is very simple and it can be indeed used as a first approach
to compare invariants suite, a direct implementation of this approach cannot be effectively realized
because it would require to generate the powerset of the initial set of invariants, with the conse-
quent exponential explosion. Therefore, it is necessary to look for approximate solutions that can
be computed in polynomial time. The main idea of the heuristic is to implement a greedy algorithm
that in each iteration includes in the partial solution the best invariant still available. Even though
this approach does not guarantee that the best set of invariants will be returned, the experiments
show that the obtained suites are close enough to the optimal solution. The heuristic consists of the
following steps.

. Generate from the specification m mutants. From each mutant, a set of logs is collected.

. Check the correctness of each log with respect to each invariant.

. Compute the number of mutants killed by each invariant.

. Obtain the invariant i that kills more mutants and add it to the solution.

. Delete ¥ from the invariant suite. Delete the mutants killed by 1 from the set of mutants.
. Jump to step 3 until the solution has n elements.

AN W=

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

398 C. ANDRES, M. G. MERAYO AND M. NUNEZ

This heuristic is a greedy solution. Note that invariants have to be sorted after each iteration as
their goodness depends on their performance against the set of mutants. Also note that as this set is
reduced after each iteration, the initial sorting of the invariants cannot be used along the execution
of the algorithm. The main consequence of sorting each interaction is that this algorithm works in
the worst case in O(NConsqg-Cy +NObs-C, +n - (NConsg + NObs)), where NConsqg and NObs
denote respectively the number of consequent and observational invariants in the suite. Additional
C; and C, denote respectively the complexity of checking a consequent and observational invariant,
that is, C; = |S| - |T|!S!- k|T| - (s — k), where k = Nstarsz/o(¢) and s = Lenz/o(¢), and
Cy = |T|'S'- T |B|. Finally, n is the number of invariants that will be selected.

Definition 19

Let M = (S5,2,0,7,s0) be a TFSM. The function Besty : p(Wz0 U Pz/0) X
p(MTrazesy) —> W0 U @7/ is such that given a set of invariants and a set of pairs
(mutant,log) returns one of the invariants that kills more mutants. Given M € SETTFSM, K C
(Wz/0 U P7/0) and LM C MTrazes y, this function is defined as:

Besty(K.LM)=v | y e KAVpeK,p#y: |Skmy (¥, LM)| = |Skmpy (p, LM)|

The function MRepr s : N x (V1,0 U P1/0) X p(MTrazesy) — p(Vz0 U Pz/0) returns
a set of representative invariants with respect to a set of pairs (mutant,log). For any M € SETTFSM,
neN, K C(VzpoUPz/0)and LM C MTrazesy, MRepry(n, K, LM) is defined as:

@ ifn=0
W ifn=1
{Y'} UMRepr)(n — 1, K\ {¢'},Removey (¥',LM)) if n>1

where V' = Best (K, LM).

Note that MRepr,, is non-deterministic: if several invariants kill the same number of mutants, it
non-deterministically chooses one of them. Also note that the definition of MRepr,, is consistent
as once Best s selects one invariant, this invariant is used in all possible branches of the definition.
The following abstract example informally shows how the heuristic works.

Example 9

Let M be a specification and K = {y,...,¥s} be a set of eight correct invariants with respect
to M. Let LM be a set of (mutant, log) pairs produced from 14 mutants of M. These mutants are
denoted by My, ..., My4. The next table shows the relation between the set of invariants and the
mutants that they kill. A token in the position [7, j] of the matrix represents that the invariant v;
killed the mutant M ;, that is, found an error in a log generated by the mutant.

My, M, M; My Ms Ms M; Mg My Mo My My M3z My
1 ° ° ° ° °
) ° ° °
V3 o i
Va °
Vs °
Ve °
1] o
Vg ° °

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 399

If the heuristic is applied to select the n most representative invariants, the obtained results are
as follows:

MReprp (1, K,LM) = {y1}

MRepr (2, K, LM) = {{1, ¥4}

MRepr s (3, K, LM) = {{r1, V4, Y2}

MRepry (4, K, LM) = {Y1, V4, Y2, ¥3}

MRepr (5, K, LM) = {Y1, V4, V2, Y3, ¥s}

MRepT (6, K, LM) = {{r1, V4, V2, V3, ¥5, Y6}

MRepr (7, K, LM) = {{r1, Y4, Y2, V3, V5, Y6, Y7}
MRepr s (8, K, LM) = {1, V4, Y2, V3, Y5, V6, Y7, U8}

Note that the solutions provided by the heuristic are good, but sometimes there exists a better option.
For example, the real set of the two more representative invariants is not {11, ¥4} but {2, ¥3}.

The heuristic has been applied to the running system SSadmin presented in this paper. Consider
the set of eight invariants previously introduced in Section 6.3: INVAR = {Invary,...,Invarg}. A
total of 1440 mutants were generated from the SSadmin specification, and a log of length 10 000
was produced for each mutant. Let LM = ((e1, My), ..., (e1.440, M1.440)) be the set of considered
(mutant, log) pairs. The heuristic provided the following results:

MRepTgsagmin(l, INVAR, LM) = {Invarg}

MRepTrgsagmin(2, INVAR, LM) = {Invarg, Invare}

MRepTrgsagmin(3, INVAR, LM) = {Invarg, Invare, Invar, }

MRepPTYssagmin(4, INVAR, LM) = {Invarg, Invarg, Invar,, Invars}

MRePTgsagmin(3, INVAR, LM) = {Invarg, Invare, Invar,, Invars, Invar 4}

MRepPTgsagmin (0, INVAR, LM) = {Invarg, Invarg, Invar,, Invars, Invary, Invars }
MRepTYgsaamin(7, INVAR, LM) = {Invarg, Invare, Invar,, Invars, Invar 4, Invars, Invar; }
MRePTgsaanin(8, INVAR, LM) = {Invarg, Invare, Invar,, Invars, Invary, Invars, Invary, Invars}

The method shows that the best invariant is /nvarg. Note that according to Figure 18, the two
invariants that kill more mutants are Invary and Invarg, but when MRepr (2, INVAR, LM) is com-
puted, the result does not correspond to this pair of invariants. This situation means that many of the
mutants killed by Invar; are also killed by Invarg. Thus, if only two invariants have to be selected
to check the correctness of the system, using /nvar; and Invarg is less effective than using Invarg
and Invarg.

7. CONCLUSIONS

This paper presents a revised, enhanced and extended version of previous work on passive testing of
timed systems [22,23]. The formal model to represent systems is a timed extension of the classical
FSMs model. Timed invariants are used to find errors on logs extracted from the IUT. This paper
introduced a novel type of invariant that allows testers to study interesting properties that could not
be represented with the original notion. In addition to present the syntax of invariants, the paper
also provides algorithms to check the correctness of invariants with respect to a specification and
algorithms to check the correctness of the logs recorded from an IUT with respect to invariants. The
soundness of the approach is shown by relating it to an implementation relation.

This paper also reports on the PASTE tool, a tool that can be used to put in practice the theoret-
ical results. In particular, this tool implements all the algorithms presented in this paper. The main
task of the tool is to automate the process of checking the correctness of invariants with respect to

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

400 C. ANDRES, M. G. MERAYO AND M. NUNEZ

a specification and determining whether logs extracted from an IUT are correct with respect to a
given invariant.

Taking previous ideas as an initial step [24], the paper provides an approach that uses mutation
testing techniques as a way to classify invariants according to their power to find errors. In this
methodology, specifications are mutated by using three mutation operators. Then, different logs,
which simulate real faults, are extracted from the mutants. These logs are used to evaluate the capa-
bilities of the invariants proposed by the tester to find errors and estimate their effectiveness. The
reported experiments show that timed observational invariants are able to detect more errors than
timed consequent invariants. However, there are some errors that can be found only by timed conse-
quent invariants. Therefore, the best approach is to use a set of invariants that keeps an appropriate
balance between consequent and observational invariants.

Even though this paper presents a complete framework, so that there is not much room for exten-
sions, it is possible to continue the research on formal passive testing of timed systems. Specifically,
a first line of work is to evaluate invariants in a completely different environment. There is initial
work on the application of the techniques presented in this paper to detect malicious patterns that
can indicate threats to the integrity of the system. As PASTE is a very light-weight tool, so that it
does not overload the system where it is running, it would be interesting to use it as a personal
anti-virus as the user can specify the patterns that he is looking for.

APPENDIX A: TRANSLATION OF INVARIANTS TO AN ALTERNATIVE
SEMANTIC MODEL

This section provides a method to transform timed consequent invariants into a specific class of
extended finite state machines (EFSM). This formalism is an extension of the FSM formalism,
where variables and conditions over these variables are introduced. The machines used in this paper
need only two variables. These variables deal respectively with the time associated with occurrences
of the » wildcard character and with the total time invested by the subsequences of the processed
log. The only difference with respect to the original EFSM formalism is the inclusion of a specific
error state. This translation provides a formal semantics of consequent invariants by translating
them into an EFSM. Therefore, it helps to understand the meaning of these invariants as it relies on
a well-known formalism. The concepts related to invariants and traces/logs (e.g., correctness of a
log with respect to a consequent invariant) are also adapted to this translation. The translation for
observational invariants is not included because it follows a similar pattern: It essentially consists in
repeating the translation process for each pattern trace.

Definition 20

An extended finite state machine is a tuple M = (S,Z, O, Tr, sin, X, Se) where S is a finite set of
states, T is the set of input actions, O is the set of output actions, 7r is the set of transitions, s;, is
the initial state, x € Ri is the pair of initial values of the variables, and s, is the error state. The
set of all EFSM will be denoted by SETEFSM.

A transition is a tuple (s,i,0,Q,Z,s’) where s,s’ € S are the initial and final state of the
transition, i € Z and o € O are the input and output actions associated with the transition,
0: Ri — Bool is a predicate on the set of variables, and Z : Ri — Ri is a transformation
over the variables.

A configuration in M is a pair (s, X¢), where s € § is the current state and X € R%r is the tuple
containing the current values of the variables. The initial configuration of M is (s;,, X).

Given a configuration (s, X¢), a transition (s, i,0, Q, Z,s’) denotes that if the input i is received
and Q(Xp) holds, then the output o will be produced and the new configuration will be (s”, Z(X)).

As it was previously said, these machines have only two variables. In the rest of this Appendix,
the variables considered in the machine will be denoted by x; and x,. Next, the method for trans-
forming a timed consequent invariant into an EFSM is given. Given an invariant ¢p, My denotes the
EFSM associated with this invariant.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 401

Definition 21
The function Construct : SETEFSM x § x ®7/0 —> SETEFSM is such that for all
M = (S,Z,0,Tr,siy,X) € SETEFSM,s € S, and ¢ = oy,...,an, = Oprqs € P70 If
(Lenz;o(¢) = 0) then return My = (S,Z,0,Try, sin, X, se) where
o Try = TrU\J;_, Tr; with
Tri={(s,if,0,x2+t€qsntepr,(0,0),s,)0€ 0}
Try={(s,if,0,x2+t¢qrVt ¢ pr,X,s.)o€ O}
Tr3={(s,if,0,true, X,s.)|o ¢ O}
Tra ={(s,i,0,true,(0,0),s;)|i €ZAi #if noe€ O}
Trs ={(Se,i,0,true, X, s.|li € Z Ao € O}
If (Lenz/o(¢) =1 Aay = x/[p}, p5]) thenreturn My = (S,Z, O, Trgy, Sin, X, se) where
o Try =TruU Uz?=1 Tr; with
Try={(s,i,0,x1 +t < pj,(x1:=x1+t,x2:=x2+1),8)[i €I Ni #ifNo€O}
Try ={(s,i,0,x1 +t > p5,(0,0),six)|i €T ANi #ifAoeO}
T}"3 :{(S’l.f,O,Xl 2 pl* /\X2 +t eéf AN AS ﬁf,(o’o),sin)|0 € O}
Tra={(s,if,0,x1 = pi A2+t ¢qr NVt ¢ pr)X,se)|oec O}
Trs ={(s,if,0,x1 = pi,X,se)|o ¢ O}
Tre ={(s,if,0,x1 < p7,(0,0),5:n)|0 € O}
Tr7 ={(Se,1,0,true,X,s.)|i € Z Ao € O}
If (Lenz/o(¢) > 0 Aoy = a/z/p) then return Construct(My,sq, (Q2,...,0n,if
O/prt>qyr)) where My = (So.Z, O, Trg, Sin, X, Se) With
o Sy =S U{sq} suchthat s, ¢ S is a fresh state
o Try = TrU|J;_, Tr; with
Tri={(s,i,0,t € p,xa:=x2+1,8a)i €ZAha=iNo€EODAZ=0}
Tro ={(s,i,0,t & p,(0,0),sin)li €Zrha=irnoeODAZz=0}
Tr3 ={(s,i,0,true, (0,0),sin)|i €ZAN0oe€cOA(aFiVzF#o0)}
If (Lenz/o(¢) = 2A01 = x/[p1, p2]Aaz = a/z/ p) thenreturn Construct (Mg, sq, (o3, . . .,
on,if > O0/pr>qyr)) where My = (So,Z, 0, Trg, Sin, X, S.) With
e Sy = S U{sy} such that s, & S
o Tro =TruU U?:l Tr; with
Tri ={(s,i,0,x1 +t < po,(x1:=x1+t,x2:=x2+1),8)[i €T ANiFanoeO}
Tro ={(s,i,0,x1 +1t > p2,(0,0),six)|i €ZAi F#anoeO}
Trs ={(s,i,0,true,(0,0),sin)|i €ZANi =anoecO}
Tra ={(s,i,0,x1 = piAt€p,(x1:=0,x2:=x2+1),8)[i €T Aha=iNo€EODAZ=0}

¢ =1i1/?/[3,7],%[20,79],i1/02/[5,4],i3 — {07,08} > [3, 14], [20, 88]

An informal explanation of the Construct function follows. Intuitively, the spine of the
returned machine represents the trace reflected in the invariant. The rest of the transitions corre-
spond to the set of alternative behaviours. The invariant is traversed, and for each of its components,
transitions that reflect the expected and unexpected behaviours expressed in the invariant are gen-
erated. The initial call for the transformation of an invariant ¢ is Construct(My, Sin,), where

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

402 C. ANDRES, M. G. MERAYO AND M. NUNEZ

¢ = 21/?/[3,7],*[20, 79}77;1/02/[5,4],2'3 — {07708} > [3, 14], [20, 88]

Try,Try Trg
Trs Try {(Sin,i,0,true, (0,0),s:n)|i € Z\ {ir} Ao € O}
@ Try {(sinsi1,0,t € [3,7],(0,0),8:)|0 € O}
Trs {(Sin,i1,0,t € [3, 7], 20 :=x2 + t,51)|0 € O}

717‘47 TT5

Try Try {(s1,71,0,21 <20Vt & [5,4],(0,0),8:)0 € O}

Trs, Trg Trs = {(sl.i,o,ml +t>79, (0,0),S¢n)‘i61—\{i1}/\060}
Tre = A{(s1,4,0,21+t <7921 =21+t ANxo:=20+1t,51)[i €T\ {i1} Noe O}
Tre = {(s1,i1/02,t € [5,4] Awy > 20,21 := 0 A g := a2 + ¢, 52)}
Trs = {(sa,i,0,true,(0,0),s:,)i €Z\{iz} Ao O}
Trio,Tr11 Trg = {(s2,i3,0, (w2 +1t) € [20,88] At € [3,14],(0,0), 5:,)|0 € {o7,08}}
Trip = {(s2,i3,0,true,z,s.)o € O\ {o7,08}}
° Tryy = {(s2.i5,0,2 +t & [20,88] V£ & [3,14], 7, 5.)|o € O}
Tria = {(Se,i,0,true, T, s.)|i € ZANoe O}

T?“lg

Figure A.1. Example of extended finite state machine associated to an invariant.

My = ({Sin. 8¢}, Z,0,9,5in,(0,0),s.). This machine initially has only two states, that is, the ini-
tial and the error states, whereas the set of transitions is empty. The process finishes when the
last component of the invariant; that is, iy +— O/ps > §y, is reached and processed. Depend-
ing on the component of the invariant that is being processed, the function generates a different
set of transitions. The first and second options present the set of transitions produced for the last
component of the invariant. Therefore, they do not include a recursive call. In addition to the set of
transitions produced to deal with the behaviour reflected in the invariant, a set of transitions for man-
aging the possible errors are included. If the component corresponds to an expression a/z/ p, then
a set of transitions is produced for dealing with the conditions related to the expected/unexpected
input/output actions and the temporal restriction associated with them. If the component corre-
sponds to a wildcard *, then the function generates transitions that control the time associated with
the sequences of input/output actions that do not contain the input of the next component of the
invariant. Note that the input actions that can be matched with the wildcard x must be different from
the input of the next component in the invariant. In this case, the function transforms not only the
wildcard » component but also the next one.

The concepts related to correctness of consequent invariants with respect to traces/logs can be
easily adapted to this translation. Given a specification M and a timed consequent invariant My, the
invariant ¢ is correct with respect to the specification M if the following two conditions hold:

e There does not exist a trace in Traces(M) that when applied to M reaches the error state and
e There is a transition labeled by i r /o1, x2+t € G s At € pr,(0,0) with oy € O that s traversed
at least once.

Note that this transition is triggered only when the last component of the invariant is found in the
trace and the conditions represented in it are fulfilled. Intuitively, this means that there exists a trace
that contains the pattern expressed in the invariant. Finally, a log is correct with respect to a timed
consequent invariant My, if when the log is applied to My the last state reached is not the error
state. Figure A.1 shows an example of this translation.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers of this paper for the careful reading and the
useful suggestions that improved the quality of the paper. Research partially supported by the Spanish
MEC project TESIS TIN2009-14312-C02-01 and the Santander-UCM Programme to fund research groups
GR35/10-A-910606.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405
DOI: 10.1002/stvr

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 403

REFERENCES

. Myers GJ. The Art of Software Testing, (2nd edn). John Wiley and Sons: New York, 2004.
. Ammann P, Offutt J. Introduction to Software Testing. Cambridge University Press: Cambridge, 2008.
. Lee D, Yannakakis M. Principles and methods of testing finite state machines: a survey. Proceedings of the IEEE

1996; 84(8):1090-1123.

. Hierons RM, Bowen JP, Harman M (eds). Formal Methods and Testing, LNCS 4949. Springer: Berlin Heidelberg,

2008.

. Jacky J, Veanes M, Campbell C, Schulte W. Model-Based Software Testing and Analysis with C#. Cambridge

University Press: Cambridge, 2008.

. Rodriguez I, Merayo MG, Nufiez M. HOT L: hypotheses and observations testing logic. Journal of Logic and

Algebraic Programming 2008; 74(2):57-93.

. Hierons RM, Bogdanov K, Bowen JP, Cleaveland R, Derrick J, Dick J, Gheorghe M, Harman M, Kapoor K, Krause P,

Luettgen G, Simons AJH, Vilkomir S, Woodward MR, Zedan H. Using formal methods to support testing.
ACM Computing Surveys 2009; 41(2):1-76.

. Rodriguez I. A general testability theory. In 20th International Conference on Concurrency Theory, CONCUR’ 09,

LNCS 5710. Springer: Berlin Heidelberg, 2009; 572-586.

. Utting M, Legeard B. Practical Model-Based Testing: A Tools Approach. Morgan-Kaufmann: San Francisco, 2007.
. Mandrioli D, Morasca S, Morzenti A. Generating test cases for real time systems from logic specifications.

ACM Transactions on Computer Systems 1995; 13(4):356-398.

Clarke D, Lee I. Automatic generation of tests for timing constraints from requirements. In 3rd Workshop on
Object-Oriented Real-Time Dependable Systems, WORDS’97. IEEE Computer Society Press: Los Alamitos, 1997;
199-206.

Higashino T, Nakata A, Taniguchi K, Cavalli A. Generating test cases for a timed I/O automaton model. In /2th
International Workshop on Testing of Communicating Systems, INTCS’99. Kluwer Academic Publishers: Boston,
1999; 197-214.

Springintveld J, Vaandrager F, D’Argenio PR. Testing timed automata. Theoretical Computer Science 2001;
254(1-2):225-257. Previously appeared as Technical Report CTIT-97-17, University of Twente, 1997.

En-Nouaary A, Dssouli R, Khendek F. Timed Wp-method testing real time systems. /EEE Transactions on Software
Engineering 2002; 28(11):1024-1039.

Merayo MG, Nifez M, Rodriguez I. Formal testing from timed finite state machines. Computer Networks 2008;
52(2):432-460.

Merayo MG, Niiez M, Rodriguez 1. Extending EFSMs to specify and test timed systems with action durations and
timeouts. /[EEE Transactions on Computers 2008; 57(6):835-848.

Hessel A, Larsen KG, Mikucionis M, Nielsen B, Pettersson P, Skou A. Testing real-time systems using UPPAAL.
In Formal Methods and Testing, LNCS 4949. Springer: Berlin Heidelberg, 2008; 77-117.

Uyar MU, Batth SS, Wang Y, Fecko MA. Algorithms for modeling a class of single timing faults in communication
protocols. IEEE Transactions on Computers 2008; 57(2):274-288.

Wang Y, Uyar MU, Batth SS, Fecko MA. Fault masking by multiple timing faults in timed EFSM models. Computer
Networks 2009; 53(5):596-612.

Hierons RM, Merayo MG, Nufez M. Testing from a stochastic timed system with a fault model. Journal of Logic
and Algebraic Programming 2009; 78(2):98-115.

Ayache JM, Azema P, Diaz M. Observer: a concept for on-line detection of control errors in concurrent systems.
In 9th Symposium on Fault-Tolerant Computing. IEEE Computer Society Press: Los Alamitos, 1979; 83-90.
Andrés C, Merayo MG, Nifiez M. Passive testing of timed systems. In 6¢h International Symposium on Automated
Technology for Verification and Analysis, ATVA’08, LNCS 5311. Springer: Berlin Heidelberg, 2008; 418—427.
Andrés C, Merayo MG, Nufiez M. Formal correctness of a passive testing approach for timed systems. In 5th
Workshop on Advances in Model Based Testing, A-MOST’09. IEEE Computer Society Press: Los Alamitos, 2009;
67-76.

Andrés C, Merayo MG, Molinero C. Advantages of mutation in passive testing: an empirical study. In 4th Workshop
on Mutation Analysis, Mutation’09. IEEE Computer Society Press: Los Alamitos, 2009; 230-239.

Leucker M, Schallhart C. A brief account of runtime verification. Journal of Logic and Algebraic Programming
2009; 78(5):293-303.

Artho C, Barringer H, Goldberg A, Havelund K, Khurshid S, Lowry MR, Pasareanu CS, Rosu G, Sen K, Visser W,
Washington R. Combining test case generation and runtime verification. Theoretical Computer Science 2005;
336(2-3):209-234.

Yeh SW, Wu C, Sheng HD, Hung CK, Lee RC. Expert system based automatic network fault management system. In
13th Annual International Computer Software and Applications Conference, COMPSAC’89. IEEE Computer Society
Press: Los Alamitos, 1989; 767-774.

Wang C, Schwartz M. Fault detection with multiple observers. IEEE/ACM Transactions on Networking 1993;
1(1):48-55.

Lee S, Shin KG. Probabilistic diagnosis of multiprocessor systems. ACM Computer Surveys 1994; 26(1):121-139.
Lee D, Netravali AN, Sabnani KK, Sugla B, John A. Passive testing and applications to network management. In
5Sth IEEE International Conference on Network Protocols, ICNP’97. IEEE Computer Society Press: Los Alamitos,
1997; 113-122.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405

DOI: 10.1002/stvr

404 C. ANDRES, M. G. MERAYO AND M. NUNEZ

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.
52.
53.
54.
55.
56.

57.

Wu J, Zhao Y, Yin X. From active to passive: progress in testing of internet routing protocols. In 2/st IFIP WG
6.1 International Conference on Formal Techniques for Networked and Distributed Systems, FORTE’01. Kluwer
Academic Publishers: Boston, 2001; 101-116.

Zhao'Y, Yin X, Wu J. Problems in the information dissemination of the internet routing. Journal of Computer Science
and Technology 2003; 18(2):139-152.

Ural H, Xu Z, Zhang F. An improved approach to passive testing of FSM-based systems. In 2nd International
Workshop on Automation of Software Test, AST’07. IEEE Computer Society Press: Los Alamitos, 2007; 6.
Tabourier M, Cavalli A. Passive testing and application to the GSM-MAP protocol. Information and Software
Technology 1999; 41(11-12):813-821.

Lee D, Chen D, Hao R, Miller R, Wu J, Yin X. A formal approach for passive testing of protocol data portions.
In 10th IEEE International Conference on Network Protocols, ICNP’02. IEEE Computer Society Press: Los
Alamitos, 2002; 122—-131.

Alcalde B, Cavalli AR, Chen D, Khuu D, Lee D. Network protocol system passive testing for fault management:
a backward checking approach. In 24th IFIP International Conference on Formal Techniques for Networked and
Distributed Systems, FORTE 04, LNCS 3235. Springer: Berlin Heidelberg, 2004; 150-166.

Lee D, Chen D, Hao R, Miller RE, Wu J, Yin X. Network protocol system monitoring: a formal approach with
passive testing. IEEE/ACM Transactions on Networking 2006; 14:424-437.

Ural H, Xu Z. An EFSM-based passive fault detection approach. In Joint 19th IFIP TC6/WG6.1 International Con-
ference on Testing of Software and Communicating Systems, TestCom’07, and 7th International Workshop on Formal
Approaches to Software Testing, FATES 07, LNCS 4581. Springer: Berlin Heidelberg, 2007; 335-350.

Benharref A, Dssouli R, Serhani MA, En-Nouaary A, Glitho R. New approach for EFSM-based passive testing of
web services. In Joint 19th IFIP TC6/WG6.1 International Conference on Testing of Software and Communicating
Systems, TestCom’07, and 7th International Workshop on Formal Approaches to Software Testing, FATES’ 07, LNCS
4581. Springer: Berlin Heidelberg, 2007; 13-27.

Miller RE. Passive testing of networks using a CFSM specification. In IEEE International Performance Computing
and Communications Conference. IEEE Computer Society Press: Los Alamitos, 1998; 111-116.

Miller RE, Arisha KA. On fault location in networks by passive testing. In /9th IEEE International Performance,
Computing, and Communications Conference, IPCCC’00. IEEE Computer Society Press: Los Alamitos, 2000;
281-287.

Miller RE, Arisha KA. Fault identification in networks by passive testing. In 34th Simulation Symposium, SS’01.
IEEE Computer Society Press: Los Alamitos, 2001; 277-284.

Noubir G, Vijayananda K, Nussbaumer HJ. Signature-based method for run-time fault detection in communication
protocols. Computer Communications 1998; 21(5):405-421.

Lee D, Sabnani KK, Kristol DM, Paul S, Uyar MU. Conformance testing of protocols specified as communicat-
ing FSMs. In 12th Annual Joint Conference of the IEEE Computer and Communications Societies, Networking:
Foundation for the Future, INFOCOM’93. IEEE Computer Society Press, 1993; 115-127.

Lee D, Sabnani KK, Kristol DM, Paul S. Conformance testing of protocols specified as communicating finite state
machines - a guided random walk based approach. IEEE Transactions on Communications 1996; 44(5):631-640.
Shu G, Lee D. Message confidentiality testing of security protocols—passive monitoring and active checking.
In 18th International Conference on Testing Communicating Systems, TestCom’06, LNCS 3964. Springer: Berlin
Heidelberg, 2006; 357-372.

Needham RM, Schroeder MD. Using encryption for authentication in large networks of computers. Communications
of the ACM 1978; 21(12):993-999.

Lowe G. Breaking and fixing the Needham—Schroeder public-key protocol using FDR. In 2nd International Work-
shop on Tools and Algorithms for Construction and Analysis of Systems, TACAS 96, LNCS 1055. Springer: Berlin
Heidelberg, 1996; 147-166.

Wei W, Suh K, Wang B, Gu Y, Kurose J, Towsley D. Passive online rogue access point detection using sequen-
tial hypothesis testing with TCP ACK-pairs. In 7th ACM SIGCOMM Internet Measurement Conference, IMC "07.
ACM Press: New York, 2007; 365-378.

Arnedo JA, Cavalli A, Nufiez M. Fast testing of critical properties through passive testing. In 15th Interna-
tional Conference on Testing Communicating Systems, TestCom’03 LNCS 2644. Springer: Berlin Heidelberg, 2003;
295-310.

Bayse E, Cavalli A, Nuifez M, Zaidi F. A passive testing approach based on invariants: application to the WAP.
Computer Networks 2005; 48(2):247-266.

Cavalli A, Gervy C, Prokopenko S. New approaches for passive testing using an extended finite state machine
specification. Information and Software Technology 2003; 45(12):837-852.

Boyer RS, Moore JS. A fast string searching algorithm. Communications of the ACM 1977; 20:762-772.

Knuth DE, Morris JH, Pratt VR. Fast pattern matching in strings. SIAM Journal on Computing 1977; 6(1):323-350.
Andrés C, Merayo MG, Nifez M. Passive testing of stochastic timed systems. In 2nd International Conference on
Software Testing, ICST’09. IEEE Computer Society Press: Los Alamitos, 2009; 71-80.

Pnueli A. The temporal logic of programs. In /8th Annual Symposium on Foundations of Computer Science,
SFCS’77. IEEE Computer Society Press: Los Alamitos, 1977; 46-57.

Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson TE. Eraser: a dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems 1997; 14(4):391-411.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405

DOI: 10.1002/stvr

58.

59.

60.

61.

62.

63.
64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

FORMAL PASSIVE TESTING OF TIMED SYSTEMS 405

Artho C, Havelund K, Biere A. High-level data races. Software Testing, Verification and Reliability 2003;
13(4):207-227.

Colin S, Mariani L. Run-time verification. In Model-Based Testing of Reactive Systems, LNCS 3472, Broy M, Jonsson
B, Katoen J-P, Leucker M, Pretschner A (eds), chapter 19. Springer: Berlin Heidelberg, 2005; 557—-603.

Richardson DJ, Aha SL, O’Malley TO. Specification-based test oracles for reactive systems. In /4th International
Conference on Software Engineering, ICSE’92. ACM Press: New York, 1992; 105-118.

Havelund K, Rosu G. An overview of the runtime verification tool Java PathExplorer. Formal Methods in System
Design 2004; 24(2):189-215.

Kim M, Viswanathan M, Kannan S, Lee I, Sokolsky O. Java-MaC: a run-time assurance approach for Java programs.
Formal Methods in System Design 2004; 24(2):129-155.

Schneider K. Verification of Reactive Systems: Formal Methods and Algorithms. Springer: Berlin Heidelberg, 2004.
Drusinsky D. Modeling and Verification Using UML Statecharts: A Working Guide to Reactive System Design,
Runtime Monitoring and Execution-based Model Checking. Newnes: London, 2006.

Kim M, Kannan S, Lee I, Sokolsky O, Viswanathan M. Computational analysis of run-time monitoring—
fundamentals of Java-MaC. Electronic Notes in Theoretical Computer Science 2002; 70(4):80-94.

Sammapun U, Sharykin R, DeLap M, Kim M, Zdancewic S. Formalizing Java-MaC. Theoretical Computer Science
2003; 89(2):171-190.

Drusinsky D. The temporal rover and the ATG rover. In 7th International SPIN Workshop on Model Checking of
Software, SPIN’00, LNCS 1885. Springer: Berlin Heidelberg, 2000; 323-330.

Brat GP, Drusinsky D, Giannakopoulou D, Goldberg A, Havelund K, Lowry MR, Pasareanu CS, Venet A, Visser W,
Washington R. Experimental evaluation of verification and validation tools on martian rover software. Formal
Methods in System Design 2004; 25(2-3):167-198.

Barringer H, Goldberg A, Havelund K, Sen K. Rule-based runtime verification. In 5th Verification, Model Check-
ing, and Abstract Interpretation, VMCAI’05, Vol. 2937 of Lecture Notes in Computer Science. Springer: Berlin
Heidelberg, 2004; 277-306.

Raz O, Koopman P, Shaw M. Semantic anomaly detection in online data sources. In 24th International Conference
on Software Engineering, ICSE’02. ACM Press: Los Alamitos, 2002; 302-312.

Koymans R. Specifying real-time properties with metric temporal logic. Real-Time Systems 1990; 2(4):255-299.
Kristoffersen KJ, Pedersen C, Andersen HR. Runtime verification of timed LTL using disjunctive normalized
equation systems. Electronics Notes Theoretical Computer Science 2003; 89(2):201-225.

Merayo MG, Nifiez M, Rodriguez I. Formal testing of systems presenting soft and hard deadlines. In 2nd IPM Inter-
national Symposium on Fundamentals of Software Engineering, FSEN’07, LNCS 4767. Springer: Berlin Heidelberg,
2007; 160-174.

Offutt J. A practical system for mutation testing: help for the common programmer. In 7th International Test
Conference, ITC’94. IEEE Computer Society Press: Los Alamitos, 1994; 824-830.

Fabbri SCPF, Maldonado JC, Sugeta T, Masiero PC. Mutation testing applied to validate specifications based on stat-
echarts. In /0th International Symposium on Software Reliability Engineering, ISSRE’99. IEEE Computer Society
Press: Los Alamitos, 1999; 210-219.

Sugeta T, Maldonado JC, Wong WE. Mutation testing applied to validate SDL specifications. In /6th International
Conference on Testing of Communicating Systems, TestCom’04, LNCS 2978. Springer: Berlin Heidelberg, 2004;
193-208.

Nilsson R, Offutt J, Mellin J. Test case generation for mutation-based testing of timeliness. In 2nd Workshop on Model
Based Testing, MBT 06, Electronic Notes in Theoretical Computer Science. Elsevier: Amsterdam, 2006; 164(4):
97-114.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. 2012; 22:365-405

DOI: 10.1002/stvr

