
Directed Generation of Test Data

for Static Semantics Checker

M.V. Arkhipova and S.V. Zelenov

Institute for System Programming of the Russian Academy of Sciences
{maryn, zelenov} @ ispras.ru

http://www.unitesk.com

Abstract. We present an automatic method, named SemaTESK1, for
generation of test sets for a translator front end. We focus on the valida-
tion and verification of static semantics checker. Most the know meth-
ods for semantics test generation produce test suites by filtering a pre-
generated set of random texts in the target language. In contrast, Se-
maTESK allows to generate tests for context conditions directly. It signif-
icantly reduces generation time and allows reaching completeness criteria
defined in the paper. The presented method to specify static semantics
allows to formalize informal requirements described in normative docu-
ments (e.g. standard). The method includes SRL notation for compact
formal specification of context conditions and STG tool for efficient gen-
eration of test suite from SRL specification.
The SemaTESK method has been used in a number of projects, including
testing static semantics checkers of C and Java.

Keywords: automated test data generation, context condition, gram-
mar, specification based testing, static semantics.

1 Introduction

Formal languages are widely used in many areas of IT: Programming languages
are the main instruments in software development; query languages are used to
manage databases; markup languages are used in various document processing
systems (e.g. browsers, text processors), etc. Translator is a program that con-
verts text written in a formal language into some appropriate form. For example,
a compiler translates a program into an executable form, a DBMS translates a
query written in a high level query language (e.g. SQL) into sequence of low
level operations on DB, a browser translates an information page into drawing
commands, etc. Defects in a translator break entities resulting from translation:
their properties differs from what is specified in the language specification. For
example, defects in executable entities induced by erroneous compiler are hard to
detect and find a workaround, thus correctness of executables obtained from an
incorrect compiler is always a doubt. Validation and verification of a translator
is an important activity for dissemination of the translator in industry.

1 SemaTESK stands for “Semantics Testing Kit”.

Validation and verification of translators is always complicated. The main
source of difficulties is complexity of input and output: the input is a document
with a furcated syntax structure and rich set of context constraints imposed by
the language specification, the output is written in machine or intermediate lan-
guage and possesses similar or even higher degree of complexity. The usual way
to cope with complications of translator validation and verification is decom-
position the validation and verification task into several subtasks that in total
cover the whole functionality of the translator. Typical translator includes the
following set of functions:

1. analysis of syntax correctness and parsing of input text;
2. checking static semantics2 of the input;
3. generation of the output.

In this paper, we focus on the task of validation and verification of static
semantics checker. We treat static semantics as a synonym to context conditions.
Within this paper a static semantics checker is a boolean function of the form
f : S(L) → B, where S(L) is a set of syntactically correct strings in the given
formal language L, and B = {true, false}. f(s) takes a value of true if string s

satisfies all context conditions of language L and takes a value of false if string
s violates at least one of the context conditions of the language L.

We use testing [1] based on formal specifications and models [2] as the pri-
mary tool for validation and verification. In the course of testing, one checks a
software under test for quality on some specially created test input data. There
is the following problem: The set of test data should be representative, so that
results of the testing do reflect real quality of a software under test. Another
problem is: Usually, there are too many situations that should be tested. So,
it is practically impossible to create tests by hand. Usage of formal description
of a software under test allows both formulating appropriate test completeness
criteria and generating tests automatically.

1.1 Related Approaches

The most traditional way to specify language properties uses grammar of some
appropriate kind.

In order to generate semantically correct tests, the approaches presented in
works [3–5] use grammars in the form of extended BNF supplied with special
code fragments that incorporate semantics-related information: actions contain
some calculations, guards are used to check conditions that allow generating cor-
responding part of test. However, such form of a grammar3 is not a specification
of a language. It rather seems like a program for generating tests.

2 Given a formal language, a static semantics describes properties of the language
that may be checked at compile-time (such as scoping and static typing constraints),
whereas a dynamic semantics describes run-time properties of the language (“mean-
ing” of language constructs).

3 Sirer and Bershad in [5] call it a production grammar.

Boyapati et al. [6] presents the Korat test data generator. This generator
uses a specification of desired test data in the form of Java-method that checks
correctness of data structure, and parameters that restrict the set of all possi-
ble test data to some finite set. Khurshid and Marinov [7] presents the TestEra
framework for specification-based testing of Java programs. Specifications are
first-order logic formulae written in Alloy declarative language [8]. TestEra also
requires a bound that limits the size of the test cases to be generated. Unfor-
tunately, both Korat and TestEra can not be provided with a domain-specific
completeness criteria. They generate all non-isomorphic structures that match
given restrictions. Besides, in the case of semantics checker testing, it is practi-
cally impossible to have a (either reference or “under test”) checker written in
Java.

Daniel et al. [9] present a method for automated testing of refactoring engines.
In order to generate tests for some refactoring, one should develop corresponding
generator on the basis of specific ASTGen library. The main disadvantage of this
approach is that test data generators are developed manually.

Harm and Lämmel [10, 11] present approaches to automated test data gen-
eration for static semantics checker based on usage specification of semantics in
the form of attribute grammars (AG) [12]. Kalinov et al. [13] suggest another
approach to this task that uses specification in the form of Gurevich’s ASM [14].
The authors of these approaches consider various test coverage criteria for static
semantics checker testing and suggest corresponding automated test generators
that work as follows: First, the generator creates a set of syntactically correct
sentences; Next, the generator checks semantical correctness of every generated
sentence with the help of appropriate interpreter of AG or ASM specification of
semantics; All semantically incorrect sentences are rejected.

Thus, in those approaches, specification of semantics is used only for the fol-
lowing purposes: To formulate coverage criteria and to check semantical correct-
ness of generated sentences. Tests generation is syntax-directed. In other words,
specification of semantics is not used to generate semantically correct sentences
directly. In general case, the generation process is very time-consuming: Gener-
ator has to create millions of syntactically correct sentences in order to obtain
several hundreds of semantically correct tests. In papers [11, 15], the authors of
these approaches suggest some optimizations of generation process: They try to
reveal semantic incorrectness of subsentences of generated sentences “as soon as
possible”.

Here we proceed with discussion of AG-related approaches. Similar argu-
ments are also applicable to approaches based on ASM. AG is suitable for de-
veloping checkers, but it seems not suitable for directed generation of tests. One
can treat an AG specification of language semantics as a predicate P over ab-
stract syntax trees. In order to create semantically correct test, one should find
a tree t such that P (t) = true. To do this, the AG-related approaches construct
syntactically correct trees t and check value P (t) for every t.

We believe that more effective way to generate semantically correct tests is to
use an algorithm that directly creates some solutions of the equation P (t) = true.

The form of classical AG is the main obstacle to solve this equation. AG is a
very powerful tool. However, it has several essential weaknesses that are shown
in the following example.

Example 1. Let us consider some procedural programming language that re-
quires separate statements for variable declarations and assignments. There are
two context conditions:

1. All names of variables declared in one procedure must be different;
2. Name of an assigned variable must be declared in the same procedure.

In the classical AG approach, the corresponding part of attribute grammar
for this language looks as follows:

1: Procedure ::= (Stmt)*

2: { attribute SymbolTable vars;
3: attribute Boolean ok; };

4: Stmt ::= VarDecl | Assignment | ... ;
5: VarDecl ::= ‘‘var’’ <name:ID>
6: { Procedure.ok &= !Procedure.vars.has(name);

7: Procedure.vars.add(name); };
8: Assignment ::= <name:ID> ‘‘=’’ ...

9: { Procedure.ok &= Procedure.vars.has(name); };

In this grammar, there is the symbol table vars declared in the Procedure

rule that collects information about names of variables declared in one proce-
dure. The table is updated in the VarDecl rule and checked in the VarDecl and
Assignment rules. The checking results are stored in the boolean attribute ok

declared in the Procedure rule.

This example uncovers the following weaknesses of classical AG:

– The attributes declared in the Procedure rule are sort of global variables,
which yields well known problems in maintenance of a grammar.

– In order to formalize a context condition, one has to write many lines of code
in several different parts of a grammar: For example, the second context
condition (see above) is formalized in four lines (2, 3, 7, and 9) that relate
to three different rules. This yields very weak traceability.

We suppose that the weaknesses stated above do not allow creating seman-
tically correct tests directly on the basis of a language semantics description in
AG form. Indeed, a generator must be very intelligent to understand what it
should do in order to resolve a context condition.

In this paper, we present the SemaTESK method aimed at automated gen-
eration of tests for static semantics checkers. The SemaTESK method is based
on UniTESK approach [16, 17] that belongs to the family of specification-based
approaches to testing. The SemaTESK method includes an appropriate language
called SRL4. The purpose of SRL is to write formal specifications of static seman-
tics in a form that is suitable for directed generation of tests. The SemaTESK

4 SRL stands for “Semantics Relation Language”

method is supported by a test case generator called STG5 that allows automated
generating of tests on the basis of static semantics specifications written in SRL.

The remainder of the paper is organized as follows. In Section 2 we present
the SRL language. In Section 3 we formulate completeness criteria. In Section 4
we describe the STG generator. In Section 5 we show several application exam-
ples and discuss benefits of the SemaTESK method. Section 6 contains some
discussion. In Section 7 the paper is concluded.

2 Semantics Relation Language

2.1 Peculiarities of SRL

We start with the following example:

Example 2. The context condition “Name of an assigned variable must be de-
clared in the same procedure” from Example 1 written in SRL looks as follows:

one-to-many relation DeclareAssignedVarName {
ordered equal

target Assignment {name}
source VarDecl {name}

context: same Procedure }

One can read this context condition descriptor as follows: If there is an oc-
currence of Assignment in a sentence, then there must exist an occurrence of
VarDecl in the same Procedure such that the attribute name of the VarDecl

is equal to the attribute name of the Assignment, the Assignment must be in
succession to the VarDecl (i.e. the Assignment and VarDecl must be ordered),
and the name declared in one VarDecl may be used in many Assignments (cf.
one-to-many keyword).

This example shows the following peculiarities of SRL:

– The static semantics of a language are formalized as context condition de-
scriptors over an attributed context-free grammar. We do not relate a con-
text condition descriptor to a particular grammar production rule, as in AG,
since in many cases it is difficult to choose pertinent production rule (e.g. in
Example 2, do the context condition relates to Assignment? or to VarDecl?
or to Procedure? As Example 1 shows, in the AG-related approach, different
parts of code of this context condition relate to all those three rules!).

– One context condition from a language specification expressed in a natural
language corresponds to one block of code (i.e. context condition descriptor)
written in SRL. This yields efficient traceability.

– Context condition descriptors have a form of “item declaration — item us-
age” relations6. The core of a context condition descriptor is a pair of con-
structions started with keywords target and source. Generally speaking,

5 STG stands for “Semantic Tests Generator”
6 The practice shows, that in the majority of cases, context conditions are managed to

be specified in such manner but, when it is necessary, context condition specification
can be appended by Java code

for any occurrence of target (i.e. an item usage), there must exist an appro-
priate occurrence of source (i.e. an item declaration) that meets the context
condition.

At present, both the SRL language and the STG generator are still evolving.
Every new application of the STG generator uncovers new ways the generator
could be improved “if only SRL had this new feature”. Nevertheless, the under-
lying principle of SRL remains firm, and this is the subject of the rest of this
section.

2.2 The Form of Underlying Grammar

In order to formalize a context-free grammar, we use the TreeDL7 language [18].
The purpose of TreeDL is to describe structure of abstract syntax trees. TreeDL
allows describing structure of tree nodes that includes specification of children
nodes and additional attributes.

Example 3. The context-free part of the grammar presented in Example 1 may
be described in TreeDL as follows:

node Procedure { child Stmt* statements; }
abstract node Stmt {}

node VarDecl : Stmt { child ID name; }
node Assignment : Stmt { child ID name; ... }
node ID { attribute string value; }

The TreeDL form of a grammar has the following advantages over BNF:

– All children and attributes in one node are named; So, each child or attribute
can be unambiguously addressed.

– One can add some additional (e.g. semantics related) attributes into nodes.

2.3 Context Condition Descriptor

The main atomic object of a language semantics description written in SRL is
a context condition descriptor (CCD). Every CCD specifies a relation between
two nodes called source and target in the following sense: A structure of a target
node depends on a structure of a source node. In most cases, one can treat target
node as a usage of an item and a source node as a declaration of that item. In
Example 2, source and target nodes are described by their types:

target Assignment {...}
source VarDecl {...}

This description means that for the CCD under consideration, any node of
type Assignment may be a target and any node of type VarDecl may be a
source. In general case, source and target nodes may be described more accurate
(see Subsection 2.4). In fact, a CCD specifies a relation between some subtrees
of source and target nodes. Those subtrees are described in braces that follows
node descriptions. In Example 2, the CCD specifies a relation between the field
name of a source node and the field name of a target node:

7 TreeDL stands for “Tree Description Language”

target Assignment {name}

source VarDecl {name}

One can treat such subtrees as arguments of a CCD. Dependency between
the arguments is specified by means of describing an appropriate dependency
kind. SRL provides several keywords to specify dependency between source and
terget. Those keywords cover almost all context conditions of typical program-
ming languages (see Subsection 2.5). In Example 2, the keyword equal is used
in the CCD in order to specify that the arguments must be equal.

In some cases, a context condition is restricted to have source and target in
some specific context. For instance, in Example 2, both assignment and variable
declaration must be in the same procedure. A context is specified in CCD by
means of context keyword. There are two variants of a context specification.

– If both source and target should be located in the same subtree with the
root node of type <RootNodeType>, then the following construction is used:

context: same <RootNodeType>

– If source and target must be in different subtrees with roots of (possibly)
different types, then the following construction is used:

context: differ source_context <SourceRootNodeType>

target_context <TargetRootNodeType>

If a source node of a CCD must precede the target node, then the CCD
should be marked by ordered keyword (cf. Example 2). Otherwise, it should be
marked by unordered keyword.

In order to specify, how many nodes may relate to each other by a depen-
dency imposed by a CCD, one should describe a relation type of the CCD (see
Subsection 2.6). In Example 2, the relation type is specified by the keyword
one-to-many that means that a name declared in one VarDecl may be used in
many Assignments.

Here we proceed with detailed description of some SRL constructions used
in CCDs.

2.4 Node Description

Source and target nodes are specified by paths over an abstract syntax tree. Such
a path has a form of chain e1. · · · .en of path elements ei separated by dots. Each
path matches a corresponding set of nodes. Such a set is defined inductively as
follows. Let S0 be an empty set, and Sk (k = 1, . . . , n) be a set of nodes that
match a path e1. · · · .ek. The set Sk (k = 1, . . . , n) depends on Sk−1 and the kind
of the element ek.

There are the following kinds of path elements:

– <NodeType> — if k = 1, then such an element matches all nodes N such
that type of N is <NodeType>; If k > 1, then it matches all nodes N such
that N is a child of type <NodeType> some node from Sk−1.

– <fieldName> — matches all nodes N such that N is a value of a child or an
attribute named <fieldName> in some node from Sk−1.

– parent — matches all nodes N such that N is the parent of some node from
Sk−1.

– ^<ParentNodeType> — matches all nodes N such that N is the nearest
parent node of type <ParentNodeType> for some node from Sk−1.

– target — matches the target of the current CCD (valid only in path that
specifies a source node).

– context — matches the context of the current CCD (valid only if context
has the “same” form).

– source context and target context — match context of the source and
the target nodes of the current CCD correspondingly (valid only if context
has the “differ” form).

Example 4. For trees described in Example 3, the node description Assign-

ment.name specifies all names of all assignments, the node description Assign-

ment.^Procedure.VarDecl specifies all variable declarations contained in pro-
cedures that contain an assignment.

2.5 Dependency Kind

SRL provides the following keywords for specifying a kind of dependency between
arguments of a CCD:

– equal — means that values of the arguments of the CCD must be equal
(more precisely, subtrees that have the arguments of the CCD as roots must
be isomorphic).

– unequal — means that values of the arguments of the CCD must be different
(more precisely, subtrees that have the arguments of the CCD as roots must
not be isomorphic).

– present — means that if the source-related argument of the CCD exists,
then the target-related argument of the CCD must exist as well.

– absent — means that if the source-related argument of the CCD exists,
then the target-related argument of the CCD must not exist.

– compatible — means that the source-related argument of the CCD must
be compatible (in a sense of type compatibility in programming languages,
see Subsection 2.7) with the target-related argument of the CCD (in this
case, the arguments of the CCD must describe types; see Example 6 below).

We understand that in some cases, a dependency imposed by some context
condition may have a kind that differs from the kinds listed above. In such a
case, one should use the keyword custom and provide some additional program
code that implements processing the CCD in the test generator (this subject is
beyond the scope of this paper, see [19] for details). Practice shows that in a
such complex language as Java, there are only two context conditions (of about
300) that requires usage of the custom keyword8.

8 Those context conditions relates to semantics of method signature.

2.6 Relation Type

Relation type of a CCD specifies, how many nodes may relate to each other by
a dependency imposed by the CCD. SRL provides the following keywords for
specifying a relation type:

– The keyword one-to-many means that one source node may correspond
to many target nodes, such that for any occurrence of a target node, there
must exist an appropriate occurrence of a source node that meets the context
condition (see Example 2).

– The keyword many-to-many means that many source nodes may correspond
to many target nodes, such that any occurrence of a target node and any
occurrence of a source node (that differs from the occurrence of the target
node) must meet the context condition.

– The keyword one-node means that a context condition is imposed on one
node (more precisely, it is imposed on a subtree that has this node as the
root). Such a node is specified as a target node, and location of a source
node is addressed relatively to the target node (i.e. source construction of
a CCD starts with target).

Example 5. The context condition “All names of variables declared in one pro-
cedure must be different” from Example 1 written in SRL looks as follows:

many-to-many relation DifferentVarNames {
unordered unequal

target VarDecl {name}
source VarDecl {name}

context: same Procedure }

Example 6. Let the Assignment statement from Example 1 has an Expression

in its RHS. Let us consider the following corresponding TreeDL description:

node Assignment : Stmt { child ID name; child Expression rhs; attribute Type lhs_type; }
abstract node Expression { attribute Type type; }

In order to describe semantics of types, we add the attribute lhs type to the
Assignment node and the attribute type to the Expression node. Thus, the
context condition “A variable of one type can store only a value of a compatible
type” written in SRL looks as follows:

one-node relation AsgnTypes {
unordered compatible

target Assignment {rhs.type}
source target {lhs_type} }

2.7 Type Compatibility

Given a programming language, the semantics of the language usually has a
significant part that relates to semantics of types. Semantics of types is generally
reduced to conditions of type compatibility in different contexts.

In SRL, compatible types are specified as follows. Given a language under
consideration, one should specify a partially ordered set of types of the language

imposed by the compatibility relation. Such a set should be specified by means
of chains of linearly ordered subsets. In order to specify a chain of types that
are compatible from left to right, one should enumerate the types of the chain
in an SRL typeset construction.

Example 7. Let us consider a language that contains the following types: short,
int, and long. For this language, type compatibility may be specified by the
following chain of types:

typeset PrimitiveTypes { PrimitiveType.SHORT, PrimitiveType.INT, PrimitiveType.LONG }

In this example, constructions PrimitiveType.SHORT and the others are the
possible values of node attributes that describe types of expressions (cf. the
attributes lhs type and type in Example 6).

The SRL language also allows describing compatibility of user-defined types.
This requires usage of some features of SRL that are beyond the scope of this
paper (see [19] for details).

3 Completeness Criteria

3.1 Semantically Correct Tests

Given an SRL specifications, one can formulate the following naive completeness
criterion for semantically correct tests: All CCDs from the specification must be
covered with respect to the following definition:

Definition 1. A CCD is considered covered iff a test set contains a sentence,
such that the corresponding abstract syntax tree contains two nodes that match
a pair of the source and the target of the CCD.

Example 8. Suppose that the language from Example 1 allows using nested
blocks in a procedure. A compiler developer will say that the following situ-
ations are different for a static semantics checker, whereas they cover the same
context condition:

{
{ var A;

var A; {

A = 1; A = 1;
} }

}

Thus, the criterion “All CCDs” is not sufficient for good testing, and one
can improve it by the following way: All CCDs from the specification must be
covered with all possible environments of source and target nodes with respect
to the following definition:

Definition 2. An environment of a node in an abstract syntax tree is a chain
of nodes on the path from the node under consideration to the root of the tree.

3.2 Semantically Incorrect Tests

Another important task in testing static semantics checkers is to test that a
checker rejects incorrect sentences. Given a test that violates some context con-
ditions, one may expect that a static semantics checker rejects this test and
provides some appropriate diagnostics. If the test violates several different con-
text conditions, then in general case it is difficult to predict the corresponding
diagnostics since a checker under test may exit immediately after detecting only
one violated context condition. Thus, we suggest generating such tests that each
test violates only one context condition. Suppose that we can generate tests
that do meet static semantics. In order to generate tests that violates some con-
text condition, we suggest to generate tests that meet negation of this context
condition.

Definition 3. Given a CCD R, a negation R̃ of R is a CCD such that the
following condition holds: if a sentence meets R̃, then the sentence violates R.

Example 9. An example of negation for the CCD “Name of an assigned variable
must be declared in the same procedure” from Example 2 looks as follows:

many-to-many relation DeclareAssignedVarName_neg {

ordered unequal
target Assignment {name}
source VarDecl {name}

context: same Procedure }

Let S be a specification of a language semantics written in SRL, and R ∈ S.
Let us consider the following R-negation of the specification: S̃(R) = {R̃} ∪
S\{R}. One can summarize the above discussion by the following completeness
criterion for semantically incorrect tests: For each CCD R, all negations R̃ must
be covered in S̃(R) with all possible environments of source and target nodes.

4 Semantic Tests Generator

The purpose of SRL is to describe a language semantics in a form that is suitable
for automated generation of tests for static semantics checker. In the method Se-
maTESK we present in this paper, the test case generator STG generates test
sets that meet the completeness criteria formulated above (see Section 3). STG
takes a corresponding language grammar in TreeDL and a context conditions
specification in SRL. The core of STG is the engine that builds syntax trees
according to the grammar and the context conditions. Text builder maps gener-
ated trees to concrete documents in the given language. Text builder traverses
syntax tree and creates textual elements that correspond to generated syntax
nodes. Before we briefly formulate the algorithm of test generation used in STG
engine (see [19] for details), let us give the following definitions.

Definition 4. A subtree of an abstract syntax tree is called a syntactically com-
plete tree if it corresponds to some syntactically correct sentence.

Definition 5. A context condition corresponding to some target node and de-
scribed in some CCD over an abstract syntax tree is resolved if the tree contains
all necessary elements (nodes and attributes) in required contexts such that the
tree with this target node match the CCD.

Definition 6. An abstract syntax tree is called semantically complete if it cor-
responds to some semantically correct sentence.

Definition 7. Given a CCD, a subtree of an abstract syntax tree is called a
prime tree if it contains nodes that match specifications of source and target
nodes of the CCD.

One can treat a prime tree for some CCD as a tree that contains only the
source node and the target node with their environments. All context conditions
in any semantically complete tree are resolved.

The STG generator applies the following algorithm to each CCD from the
specification of a language semantics:

1. Given a CCD, the generator creates a set of all possible prime trees9 (with
respect to the given value of the recursion depth).

2. For each prime tree tprime, the generator creates a minimal10 syntactically
complete tree t that contains tprime as a subtree.

3. Given a syntactically complete tree t, the generator tries to create the cor-
responding semantically complete tree t̄ (see below).

4. If the generator successfully creates the tree t̄, then it prints its text in the
formal language under consideration.

The STG generator uses both attribute dependency graph and syntax tree for
stepwise directed creation of tests that meet context conditions. Given a syntax
tree obtained at the previous step, the generator searches the tree for unresolved
context conditions and, in order to resolve them, creates additional subtrees in
the tree. Given a syntactically complete tree t, the STG generator tries to create
the corresponding semantically complete tree by the following algorithm:

1. The generator searches the tree t for unresolved CCDs; If all CCDs are
resolved, then t is semantically complete.

2. In order to resolve the CCDs found on the previous step, the generator tries
to modify the tree by the following rules:

a) the prime subtree tprime is always invariant;
b) if for some one-to-many CCD, there is no a source node in the tree, then

the generator walks the tree and tries to add new subtree containing a
node that match the specification of a source node in the CCD;

9 This set consists of prime trees that contain source nodes and target nodes (w.r.t.
the CCD) in all various possible combinations of environments.

10 All lists are instantiated with minimal possible size; alternatives are instantiated to
the simples variant, e.g. empty or terminal, etc.

c) if a dependency kind of some CCD requires that the tree must contain
some specific node that currently does not exists in the tree, then the
generator tries to add new such node (like in rule 2.b).

3. If the generator could not resolve the previously found unresolved CCDs,
then the tree is rejected; Otherwise, go to the step 1 of this algorithm, since
the tree has been changed in the step 2 and may contain new unresolved
CCDs.

5 Case Studies

The SemaTESK method has been approved in the following projects:

– testing IPMP-21 message header processors [20];
– testing the C front-end of the GCC compiler;
– testing the CTESK translator [21] developed in ISP RAS.
– testing the JavaTESK translator [22] developed in ISP RAS.

Some properties of the languages under test are presented in Table 1.

Table 1. Properties of languages under test

Language Number of CCDs Size of specification Tests generated

IPMP-21 XML 4 28 lines 54

C 85 1019 lines about 10000

Java 278 3350 lines about 32000

The main purpose of the pilot project on testing IPMP-21 was to demon-
strate feasibility of SemaTESK approach to static semantics formalization for
the generation of semantically correct XML documents. The purpose of the pilot
project on testing GCC was to demonstrate feasibility of SemaTESK approach
to static semantics formalization of a complex programming language.

The SemaTESK method has been successfully approved in specifying seman-
tics of C for testing the CTESK translator [21] and in specifying semantics of
Java for testing the JavaTESK translator [22]: several bugs have been found in
the semantics checkers of translators that had been thoroughly tested before by
means of manually developed tests.

We consider a static semantics checker as a boolean function. In SemaTESK,
we use an automatic test oracle to run generated semantically correct tests. The
oracle considers a test run successful if a semantics checker under test returns
true for the given test input. In practice, the true value means that work of the
semantics checker completes without any error messages about context condi-
tions violations. To run generated semantically incorrect tests we also use the
automatic test oracle that considers a test run successful if a semantics checker
under test returns false for the given test input. In practice, the false value means

that the semantics checker completes with error messages about some context
conditions violations.

Let us estimate benefits from using the SemaTESK method. Suppose that
one test for a static semantics checker contains about 10–30 lines of code. Here
are the approximate numbers of lines that should be manually written in order
to create 10 tests by means of different methods (the estimations are based on
the Table 1 and the assumption stated above):

– Manual development – about 100–300 of manually written lines per 10 tests.
– The SemaTESK method – about 1–2 of manually written lines per 10 tests.

Thus, the effort for development of tests by means of the SemaTESK method is
about hundred times less than the effort for manual test development.

6 Discussion

We have developed the SemaTESK method just for directed generation of test
data for static semantics checkers of formal languages. We doubt whether the
presented ideas can be used for generation of efficient static semantics checkers.

We have applied SemaTESK to testing checkers of programming languages
most of all. At present, the method is still evolving. Every new application of
it may require to improve both SRL and STG. We believe that the method is
applicable to testing checkers of formal documents content, telecommunications
messages, DB queries, etc as well.

It is of interest to note that the most promising way of SemaTESK use is a
generation of tests sets for language dialects under development. Because it is
rather simple to change specifications of language dialects and thus the amount
of handwork required to make language specification matching current state is
reduced. On the other hand, if some context conditions change, then it is much
easier to modify several CCDs in a corresponding SRL specifications than to
revise all manually written tests that concern the changed context conditions.

7 Conclusions

This paper presents the SemaTESK method that implements specification-based
testing approach for static semantics checker testing. The SemaTESK method
provides the SRL language for writing formal specifications of static semantics
in the form that yields efficient traceability and is suitable for semantics-directed
automated generation of tests. The SemaTESK method is supplied by the cor-
responding test case generator STG that allows generating test sets that meet
appropriate completeness criteria formulated on the basis of SRL specifications
of a language under test. The STG generator takes SRL specifications as an
input and automatically produces both semantically correct and semantically
incorrect (with unambiguously stated kind of an incorrectness) tests.

The SemaTESK method has been used in several case studies including test-
ing static semantics checker of such a complex programming languages as C and
Java. Obtained practical results prove effectiveness of the SemaTESK method.

References

1. Beizer, B.: Software Testing Techniques. Second edn. van Nostrand Reinhold
(1990)

2. Petrenko, A.: Specification based testing: Towards practice. LNCS 2244 (2001)
287–300

3. Duncan, A., Hutchison, J.: Using attributed grammars to test designs and im-
plementation. In: Proceedings of the 5th international conference on Software
engineering. (1981) 170–178

4. Guilmette, R.F.: TGGS: A flexible system for generating efficient test case gener-
ators (1995)

5. Sirer, E.G., Bershad, B.N.: Using production grammars in software testing. In:
Second Conference on Domain-Specific Languages. (1999) 1–13

6. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on java
predicates. In: Proc. of International Symposium on Software Testing and Analysis
(ISSTA). (2002)

7. Khurshid, S., Marinov, D.: Testera: Specification-based testing of java programs
using sat. Automated Software Engineering Journal 11(4) (2004) 403–434

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2) (2002) 256–290

9. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: ESEC/FSE. (2007) 185–194

10. Harm, J.: Automatic test program generation from formal language specifications.
Rostocker Informatik-Berishte 20 (1997) 33–56

11. Harm, J., Lämmel, R.: Two-dimensional approximation coverage. Informatica
24(3) (2000)

12. Paakki, J.: Attribute grammar paradigms – a high-level methodology in language
implementation. ACM Computing Surveys 27(2) (1995) 196–255

13. Kalinov, A., Kossatchev, A., Posypkin, M., Shishkov, V.: Using ASM specifica-
tion for automatic test suite generation for mpC parallel programming language
compiler. In: Proceedings of Fourth International Workshop on Action Semantic,
AS’2002, BRICS note series NS-02-8. (2002) 99–109

14. Gurevich, Y.: Abstract state machines: An overview of the project. LNCS 2942

(2004) 6–13
15. Kossatchev, A., Kutter, P., Posypkin, M.: Automated generation of strictly con-

forming tests based on formal specification of dynamic semantics of the program-
ming language. Programming and Computing Software 30(4) (2004) 218 – 229

16. Bourdonov, I., Kossatchev, A., Kuliamin, V., Petrenko, A.: Unitesk test suite
architecture. LNCS 2391 (2002) 77–88

17. ISP RAS: UniTESK Technology Web-site. http://www.unitesk.com/.
18. Demakov, A.V.: TreeDL: Tree Description Language. Available on: http://

treedl.sourceforge.net/treedl/treedl en.html.
19. Arkhipova, M.V.: Automated Generation of Tests for Semantics Analysers in

Translators. PhD thesis, Moscow, Russia (2006) (in Russian).
20. ISO/IEC JTC1/SC29/WG11: IPMP: Intellectual Property Management and Pro-

tection in MPEG Standards. Available on: http://www.chiariglione.org/mpeg/
standards/ipmp/.

21. ISP RAS: CTESK: toolkit for testing applications developed in C. Available on:
http://www.unitesk.com/content/category/7/14/33/.

22. ISP RAS: JavaTESK: Toolkit for testing applications developed in Java. Available
on: http://www.unitesk.com/content/category/7/28/74/.

