
Gaisler Research IP Core’s Manual

Version eval-1.0, May 2005

Jiri Gaisler, Edvin Catovic

Copyright Gaisler Research, 2005.

2

Table of contents

Gaisler Research IP Core’s Manual 1

1 Introduction..12
1.1 Scope...12

1.2 IP core overview..12

2 AHBJTAG - JTAG Debug Link with AHB Master Interface................................16
2.1 Overview ...16

2.2 Operation...16
2.2.1 Transmission protocol...16

2.3 Configuration options..17

2.4 Vendor and device id...17

2.5 Registers..17

2.6 Signal description..18

2.7 Library dependencies..18

2.8 JTAG Debug link instantiation..19

3 AHBCTRL - AMBA AHB controller with plug&play support............................20
3.1 Overview ...20

3.2 Operation...20
3.2.1 Arbitration...20
3.2.2 Decoding...20
3.2.3 Plug&play information...20

3.3 AHB split support..21

3.4 Component declaration...21

3.5 Configuration options..22

3.6 Signal descriptions..22

3.7 Library dependencies..23

3.8 AHB controller instantiation...23

4 APBCTRL - AMBA AHB/APB bridge with plug&play support..........................24
4.1 Overview ...24

4.2 Operation...24
4.2.1 Decoding...24
4.2.2 Plug&play information...24

4.3 Component declaration...25

4.4 Configuration options..25

4.5 Signal descriptions..25

4.6 Library dependencies..26

4.7 APB bridge instantiation...26

5 AHBRAM - Single-port RAM with AHB interface..28
5.1 Overview ...28

5.2 Configuration options..28

5.3 Library dependencies..28

5.4 Component declaration...28

5.5 Component instantiation example...29

3

6 AHBREPORT - AMBA Plug&Play AHB Report Module30
6.1 Overview ... 30

6.2 Operation... 30

6.3 Configuration options.. 30

6.4 Signal descriptions .. 31

6.5 Library dependencies .. 31

6.6 Component declaration ... 31

6.7 AHB report module instantiation .. 32

7 AHBROM - Single-port ROM with AHB interface ..34
7.1 Overview ... 34

7.2 PROM generation.. 34

7.3 Configuration options.. 34

7.4 Library dependencies .. 35

7.5 Component declaration ... 35

8 AHBSTAT - AHB Status Registers ...36
8.1 Overview ... 36

8.2 Operation... 36

8.3 Configuration options.. 36

8.4 Vendor and device id ... 36

8.5 Registers .. 37

8.6 Signal description.. 37

8.7 Library dependencies .. 37

8.8 AHB status register module instantiation.. 38

9 AHBTRACE - AHB Trace Buffer ...40
9.1 Overview ... 40

9.2 Operation... 40

9.3 Registers .. 41
9.3.1 Register address map .. 41
9.3.2 Trace buffer control register.. 41
9.3.3 Trace buffer index register .. 41
9.3.4 Trace buffer time tag register .. 41
9.3.5 Trace buffer breakpoint registers .. 42

9.4 Configuration options.. 42

9.5 Vendor and device id ... 43

9.6 Library dependencies .. 43

9.7 Component declaration ... 43

10 AHBUART - Serial debug interface for AHB ...44
10.1 Overview ... 44

10.2 Operation... 44
10.2.1 Transmission protocol... 44
10.2.2 Baud rate generation ... 45

10.3 Configuration options.. 45

10.4 Vendor and device id ... 45

10.5 Registers .. 45

10.6 Signal description.. 46

4

10.7 Library dependencies .. 47

10.8 AHB UART instantiation .. 47

11 APBREPORT - AMBA Plug&Play APB Report Module.....................................48
11.1 Overview ... 48

11.2 Operation... 48

11.3 Configuration options.. 48

11.4 Signal descriptions .. 49

11.5 Library dependencies .. 49

11.6 Component declaration ... 49

11.7 APB report module instantiation... 49

12 APBUART - UART with APB interface..52
12.1 Overview ... 52

12.2 Operation... 52
12.2.1 Transmitter operation.. 52
12.2.2 Receiver operation .. 53

12.3 Baud-rate generation ... 54
12.3.1 Loop back mode.. 54
12.3.2 Interrupt generation... 54

12.4 Configuration options.. 55

12.5 Vendor and device id ... 55

12.6 UART registers .. 55
12.6.1 UART Data Register ... 55
12.6.2 UART Status Register ... 56
12.6.3 UART Control Register... 56
12.6.4 UART Scaler Register... 57
12.6.5 Signal descriptions .. 57

12.7 Library dependencies .. 57

12.8 APB UART instantiation... 57

13 CAN_OC - GRLIB wrapper for Opencore CAN core...60
13.1 Overview ... 60

13.2 Configuration options.. 60

13.3 Vendor and device id ... 60

13.4 Signal descriptions .. 61

13.5 Library dependencies .. 61

13.6 Component declaration ... 61

14 DIV32 - Signed/unsigned 64/32 divider module ...62
14.1 Overview ... 62

14.2 Operation... 62

14.3 Signal description.. 62

14.4 Library dependencies .. 63

14.5 Model interface.. 63

14.6 Example instantiation.. 63

15 DSU3 - LEON3 Hardware debug support unit ..64
15.1 Introduction ... 64

15.2 Operation... 64

5

15.3 AHB Trace Buffer ... 65

15.4 Instruction trace buffer .. 66

15.5 DSU memory map... 67

15.6 DSU registers .. 68
15.6.1 DSU control register ... 68
15.6.2 DSU Break and Single Step register ... 68
15.6.3 DSU Debug Mode Mask Register .. 69
15.6.4 DSU trap register .. 69
15.6.5 Trace buffer time tag counter .. 69
15.6.6 DSU ASI register .. 69
15.6.7 AHB Trace buffer control register .. 70
15.6.8 AHB trace buffer index register .. 70
15.6.9 AHB trace buffer breakpoint registers .. 70
15.6.10 Instruction trace control register ... 71

15.7 Configuration and synthesis .. 71
15.7.1 Plug&play configuration... 71
15.7.2 Configuration options ... 71
15.7.3 Signal description.. 72
15.7.4 Library dependencies .. 72
15.7.5 Model interface ... 72
15.7.6 Example instantiation.. 73

16 EDCL - Ethernet Debug communication Link ..74
16.1 Overview ... 74

16.2 Operation... 74
16.2.1 Hardware module.. 74
16.2.2 Transmission protocol... 74

16.3 Configuration options.. 76

16.4 Vendor and device id ... 77

16.5 Registers .. 77

16.6 Signal description.. 77

16.7 Library dependencies .. 77

16.8 EDCL instantiation.. 77

17 ETH_ARB - Ethernet PHY arbiter ..80
17.1 Overview ... 80

17.2 Operation... 80
17.2.1 Arbitration method.. 80

17.3 Configuration options.. 81

17.4 Registers .. 81

17.5 Signal description.. 81

17.6 Library dependencies .. 82

17.7 ETH_ARB instantiation .. 82

18 ETH_OC - GRLIB wrapper for Opencore 10/100 Mbit Ethernet core84
18.1 Overview ... 84

18.2 Configuration options.. 84

18.3 Vendor and device id ... 85

18.4 Signal descriptions .. 85

18.5 Library dependencies .. 85

18.6 Component declaration ... 85

6

18.7 Instantiation example .. 86

19 FTAHBRAM - On-chip SRAM with EDAC and AHB interface88
19.1 Overview ... 88

19.2 Operation... 88

19.3 Configuration options.. 90

19.4 Vendor and device id ... 90

19.5 Registers .. 90

19.6 Signal description.. 91

19.7 Library dependencies .. 91

19.8 FTAHBRAM instantiation .. 92

20 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC94
20.1 Overview ... 94

20.2 Operation... 94
20.2.1 General.. 94
20.2.2 Initialisation .. 94
20.2.3 Configurable SDRAM timing parameters .. 95
20.2.4 Refresh .. 95
20.2.5 SDRAM commands .. 95
20.2.6 Read cycles ... 95
20.2.7 Write cycles .. 95
20.2.8 Address bus connection .. 95
20.2.9 Data bus .. 95
20.2.10 Clocking.. 96
20.2.11 EDAC.. 96

20.3 Configuration options.. 97

20.4 Vendor and device id ... 97

20.5 Registers .. 97
20.5.1 EDAC Configuration register (ECFG).. 98

20.6 Signal description.. 99

20.7 Library dependencies .. 99

20.8 Memory controller instantiation.. 100

21 FTSRCTL - Fault Tolerant 32-bit PROM/SRAM/IO Controller.........................102
21.1 Overview ... 102

21.2 Operation... 102

21.3 PROM/SRAM/IO waveforms ... 103

21.4 Component declaration ... 104

21.5 Configuration options.. 105

21.6 Vendor and device id ... 105

21.7 Registers .. 105

21.8 Signal description.. 107

21.9 Library dependencies .. 108

21.10 Memory controller instantiation.. 108

22 GRGPIO - General Purpose I/O Port...112
22.1 Overview ... 112

22.2 Operation... 112

22.3 Component declaration ... 113

7

22.4 Configuration options.. 113

22.5 Vendor and device id ... 113

22.6 Registers .. 113

22.7 Signal description.. 115

22.8 Library dependencies .. 115

22.9 I/O port instantiation ... 115

23 GPTIMER - General Purpose Timer Unit ...118
23.1 Overview ... 118

23.2 Operation... 118

23.3 Configuration options.. 119

23.4 Vendor and device id ... 119

23.5 Registers .. 119

23.6 Signal description.. 121

23.7 Library dependencies .. 122

23.8 GP Timer instantiation .. 122

24 GRFPU - High-performance IEEE-754 Floating-point unit................................124
24.1 Overview ... 124

24.2 Functional Description .. 124
24.2.1 Floating-point number formats ... 124
24.2.2 FP operations .. 124
24.2.3 Exceptions... 126
24.2.4 Rounding... 126
24.2.5 Denormalized numbers ... 126
24.2.6 Non-standard Mode .. 127
24.2.7 NaNs ... 127

24.3 Signals and Timing.. 128
24.3.1 Signal Description... 128
24.3.2 Signal Timing.. 128

25 GRFPC - GRFPU Control Unit ...130
25.1 Floating-Point register file... 130

25.2 Floating-Point State Register (FSR).. 130

25.3 Floating-Point Exceptions and Floating-Point Deferred-Queue 130

26 GRPCI - PCI Target / Master Unit...132
26.1 Overview ... 132

26.2 Operation... 132

26.3 Configuration options.. 133

26.4 Vendor and device id ... 133

26.5 PCI Target Interface .. 133
26.5.1 PCI Target - Configuration Space Header Registers... 134

26.6 PCI Master Interface ... 138

26.7 PCI AMBA Registers .. 139

26.8 Signal description.. 140

26.9 Library dependencies .. 141

26.10 Example instantiation.. 141

27 IRQMP - Multiprocessor Interrupt Controller...142

8

27.1 Overview ...142

27.2 Operation...142
27.2.1 Interrupt prioritization...142
27.2.2 Processor status monitoring..143

27.3 Configuration options..143

27.4 Vendor and device id...144

27.5 Registers..144
27.5.1 Interrupt level register...144
27.5.2 Interrupt pending register..145
27.5.3 Interrupt force register (NCPU = 0)..145
27.5.4 Interrupt clear register...145
27.5.5 Interrupt mask register..145
27.5.6 Multi-processor status register..146
27.5.7 Interrupt force register (NCPU > 1)..146

27.6 Signal description..146

27.7 Library dependencies..147

27.8 MP IRQ controller instantiation example...147

28 LEON3 - High-performance SPARC V8 32-bit Processor..................................148
28.1 Overview ...148

28.1.1 Integer unit..148
28.1.2 Cache sub-system..148
28.1.3 Floating-point unit and co-processor..149
28.1.4 On-chip debug support..149
28.1.5 Interrupt interface..149
28.1.6 AMBA interface..149
28.1.7 Power-down mode..149
28.1.8 Multi-processor support..149
28.1.9 Performance..149

28.2 LEON3 integer unit...150
28.2.1 Overview...150
28.2.2 Instruction pipeline...151
28.2.3 SPARC Implementor’s ID...151
28.2.4 Multiply instructions...151
28.2.5 Multiply and accumulate instructions...152
28.2.6 Divide instructions..152
28.2.7 Hardware breakpoints...152
28.2.8 Instruction trace buffer..153
28.2.9 Processor configuration register..153
28.2.10 Exceptions...154
28.2.11 Single vector trapping (SVT)..155
28.2.12 Address space identifiers (ASI)..155
28.2.13 Power-down ..155
28.2.14 Processor reset operation..155
28.2.15 Multi-processor support..156
28.2.16 Cache sub-system..156

28.3 Instruction cache...157
28.3.1 Operation...157
28.3.2 Instruction cache tag...157

28.4 Data cache...159
28.4.1 Operation...159
28.4.2 Write buffer...159

9

28.4.3 Data cache tag...159

28.5 Additional cache functionality..160
28.5.1 Cache flushing...160
28.5.2 Diagnostic cache access..160
28.5.3 Cache line locking...160
28.5.4 Local instruction ram..160
28.5.5 Local data ram...161
28.5.6 Cache Control Register...161
28.5.7 Cache configuration registers..162
28.5.8 Software consideration..162

28.6 Memory management unit..163
28.6.1 ASI mappings..163
28.6.2 Cache operation..163
28.6.3 MMU registers..163
28.6.4 Translation look-aside buffer (TLB)...163

28.7 Floating-point unit and custom co-processor interface...164
28.7.1 Gaisler Research’s floating-point unit (GRFPU)..164
28.7.2 The Meiko FPU...164
28.7.3 Generic co-processor..165

28.8 Configuration and synthesis..166
28.8.1 Plug&play configuration...166
28.8.2 Configuration options...166
28.8.3 Signal description..168
28.8.4 Library dependencies..168
28.8.5 Model interface...169

29 MUL32 - Signed/unsigned 32x32 multiplier module..170
29.1 Overview ...170

29.2 Operation...170

29.3 Configuration options..170

29.4 Signal description..171

29.5 Library dependencies..172

29.6 Model interface..172

29.7 Example instantiation..172

30 MULTLIB - High-performance multipliers...174
30.1 Overview ...174

30.2 Configuration...174

30.3 Signal description..174

30.4 Library dependencies..174

30.5 Model interface..175

30.6 Example instantiation..175

31 PHY - Ethernet PHY simulation model...176
31.1 Overview ...176

31.2 Operation...176

31.3 Configuration options..177

31.4 Signal descriptions..178

31.5 Library dependencies..178

31.6 PHY model instantiation...178

10

32 PCITARGET - Simple 32-bit PCI target with AHB interface.............................180
32.1 Overview ... 180

32.2 Configuration options.. 180

32.3 Vendor and device id ... 180

32.4 Registers .. 181

32.5 Signal description.. 181

32.6 Library dependencies .. 181

33 PCIDMA - DMA Controller for the GRPCI interface...182
33.1 Introduction ... 182

33.2 Operation... 182

33.3 Configuration options.. 183

33.4 Vendor and device id ... 183

33.5 Registers .. 183

33.6 Signal description.. 185

33.7 Library dependencies .. 185

33.8 Example instantiation.. 185

34 REGFILE_3P 3-port RAM generator (2 read, 1 write)186
34.1 Operation... 186

34.2 Component declaration ... 186

34.3 Signals ... 186

34.4 Parameters (generics) .. 187

35 SDCTRL - 32/64-bit SDRAM PC133 SDRAM Controller188
35.1 Overview ... 188

35.2 Operation... 188
35.2.1 General.. 188
35.2.2 Initialization .. 188
35.2.3 Configurable SDRAM timing parameters .. 189
35.2.4 Refresh .. 189
35.2.5 SDRAM commands .. 189
35.2.6 Read cycles ... 189
35.2.7 Write cycles .. 189
35.2.8 Address bus connection .. 189
35.2.9 Data bus .. 189
35.2.10 Clocking.. 190
35.2.11 Configuration options ... 190

35.3 Vendor and device id ... 190

35.4 Registers .. 190
35.4.1 SDRAM configuration register (SDCFG) .. 191

35.5 Signal description.. 192

35.6 Library dependencies .. 192

35.7 Memory controller instantiation.. 192

36 SRCTRL- 8/32-bit PROM/SRAM Controller ...196
36.1 Overview ... 196

36.2 8-bit PROM access .. 197

36.3 PROM/SRAM waveform .. 197

36.4 Burst cycles ... 198

11

36.5 Component declaration ... 198

36.6 Configuration options.. 199

36.7 Vendor and device id ... 199

36.8 Registers .. 199

36.9 Signal description.. 200

36.10 Library dependencies .. 201

36.11 Memory controller instantiation.. 201

37 SYNCRAM - Single-port RAM generator ..204
37.1 Operation... 204

37.2 Component declaration ... 204

37.3 Signals ... 204

37.4 Parameters and technology support... 204

37.5 Component instantiation ... 205

38 SYNCRAM_2P - Two-port RAM generator ...206
38.1 Operation... 206

38.2 Component declaration ... 206

38.3 Signals ... 206

38.4 Parameters and supported technologies .. 207

38.5 Component instantiation ... 207

39 SYNCRAM_DP dual-port RAM generator...208
39.1 Operation... 208

39.2 Component declaration ... 208

39.3 Signals ... 208

39.4 Parameters and supported technologies .. 209

39.5 Component instantiation ... 209

40 TAP - JTAG TAP Controller ..210
40.1 Overview ... 210

40.2 Operation... 210
40.2.1 Generic TAP Controller .. 210

40.3 Technology specific TAP controllers... 210

40.4 Configuration options.. 211

40.5 Vendor and device id ... 211

40.6 Registers .. 211

40.7 Signal description.. 212

40.8 Library dependencies .. 212

40.9 JTAG TAP Controller instantiation ... 213

12

1 Introduction

1.1 Scope

This documentdescribesspecificIP coresprovided by GaislerResearchinside the GRLIB IP
library. Whenapplicable,thecoresusetheGRLIP plug&play configurationmethodasdescribed
in the ‘GRLIB User’s Manual’.

1.2 IP core overview

Thetablesbelow lists theprovidedIP coresandtheir AMBA plug&play device ID. All coresuse
vendor ID 0x01 (Gaisler Research).

TABLE 1. Processors and support functions

Name Function Device ID License

LEON3 SPARC V8 32-bit processor 0x003 COM/GPL

DSU3 Multi-processor Debug support unit 0x004 COM/GPL

IRQMP Multi-processor Interrupt controller 0x00D COM/GPL

GRFPU High-performance IEEE-754 Floating-point unit - COM

GRFPC LEON2/3 Controller for GRFPU - COM

MFPC LEON3 Controller for Meiko FPU - COM

TABLE 2. Memory controllers

Name Function Device ID License

SRCTRL 8/32-bit PROM/SRAM controller 0x008 COM/GPL

SDCTRL PC133 SDRAM controller 0x009 COM/GPL

FTSDCTRL PC133 SDRAM Controller with EDAC 0x009 COM

FTSRCTRL 32-bit PROM/SRAM controller with EDAC 0x051 COM

TABLE 3. AMBA Bus control

Name Function Device ID License

AHBCTRL AMBA AHB bus controller with plug&play - COM/GPL

APBCTRL AMBA APB Bridge with plug&play - COM/GPL

AHBTRACE AMBA AHB Trace buffer 0x017 COM/GPL

AHBUART Serial/AHB debug interface 0x007 COM/GPL

AHBJTAG JTAG/AHB debug interface 0x01C COM/GPL

EDCL Ethernet/AHB debug interface 0x019 COM/GPL

TABLE 4. PCI interface

Name Function Device ID License

PCITARGET 32-bit target-only PCI interface 0x012 COM/GPL

PCIMTF 32-bit PCI master/target interface with FIFO 0x014 COM/GPL

PCITRACE 32-bit PCI trace buffer 0x015 COM/GPL

PCIDMA DMA controller for PCIMTF 0x016 COM/GPL

13

NOTE: The CCSDS functions are described in separate manuals

TABLE 5. Memory functions

Name Function Device ID License

AHBRAM Single-port RAM with AHB interface 0x00E COM/GPL

AHBROM ROM generator with AHB interface 0x01B COM/GPL

SYNCRAM Parametrizable 1-port RAM - COM/GPL

SYNCRAM_2P Parametrizable 2-port RAM - COM/GPL

SYNCRAM_DP Parametrizable dual-port RAM - COM/GPL

REGFILE_3P Parametrizable 3-port register file - COM/GPL

TABLE 6. Serial communication

Name Function Device ID License

ETHAHB AHB interface for Opencores 10/100 Mbit Ethernet MAC 0x005 COM/GPL

APBUART Programmable UART with APB interface 0x00C COM/GPL

CANAHB AHB interface for Opencores CAN 2.0 MAC 0x019 COM/GPL

TABLE 7. Misc. peripherals

Name Function Device ID License

GPTIMER Modular timer unit 0x011 COM/GPL

GPIO 32-bit General purpose I/O port 0x01A COM/GPL

TAP Generic TAP controller - COM/GPL

NUHOSP3 PROM & I/O interface for Nuhorizons Spartan3 board 0x02B COM/GPL

TABLE 8. Simulation and debugging

Name Function Device ID License

APBREPORT APB bus reporting module - COM/GPL

AHBREPORT AHB bus reporting module - COM/GPL

SRAM SRAM simulation model with srecord pre-load - COM/GPL

AHBMSTEM AHB master simulation model with scripting capability 0x040 COM/GPL

AHBSLVEM AHB slave simulation model with scripting capability 0x041 COM/GPL

TABLE 9. CCSDS Telecommand and telemetry functions

Name Function Device ID License

GRTM CCSDS Telemetry encoder 0x030 COM/GPL

GRTC CCSDS Telecommand decoder 0x031 COM/GPL

GRPW Packetwire receiver with AHB interface 0x032 COM/GPL

GRCTM CCSDS Time manager 0x033 COM/GPL

14

TABLE 10. Fault-tolerant functions

Name Function Device ID License

FTAHBRAM Single-port RAM with AHB interface and EDAC protection 0x050 COM

FTSDCTRL PC133 SDRAM Controller with EDAC 0x009 COM

FTSRCTRL 32-bit PROM/SRAM controller with EDAC 0x051 COM

AHBSTAT AHB failing address register 0x052 COM

LEON3FT 32-bit Fault-tolerant SPARC V8 Processor 0x053 COM

GRFPCFT Fault-tolerant LEON2/3 controller for GRFPU - COM

15

16

2 AHBJTAG - JTAG Debug Link with AHB Master Interface

2.1 Overview

TheJTAG Debug link providesaccessto on-chipAHB busthroughJTAG. TheJTAG DebugLink
module implementsa simple protocol which translatesJTAG instructionsto AHB transfers.
Through this link, a read or write transfer can be generated to any address on the AHB bus.

2.2 Operation

2.2.1 Transmission protocol

The JTAG Debug link decodestwo JTAG instructionsandimplementstwo JTAG dataregisters:
the command/addressregisteranddataregister. A readaccessis initiated by shifting in a com-
mandconsistingof read/writebit, AHB accesssizeandAHB addressinto thecommand/address
register. TheAHB readaccessis performedanddatais readyto beshiftedout of thedataregister.
Write accessis performedby shifting in command,AHB sizeandAHB addressinto the com-
mand/dataregisterfollowedby shifting in write datainto thedataregister. Sequentialtransferscan
be performedby shifting in commandandaddressfor the transferstartaddressandshifting in
SEQbit in dataregisterfor following accesses.TheSEQbit will incrementtheAHB addressfor
thesubsequentaccess.Sequentialtransfersshouldnot crossa1 kB boundary. Sequentialtransfers
arealwaysword based.

[34]: Write (W) - ‘0’ - read transfer, ‘1’ - write transfer
[33:32]: AHB transfer size - “00” - byte, “01” - half-word, “10” - word, “11”- reserved
[31:0]: AHB address

Figure 1. JTAG Debug link block diagram

AHB master interface

AMBA AHB

JTAG Communication
Interface

JTAG TAP
Controller

TCK

TMS

TDI

TDO

Figure 2. JTAG Debug link Command/Address register

0313234

W

33

AHB ADDRESSSIZE

Figure 3. JTAG Debug link Data register

03132

AHB DATASEQ

17

[32]: Sequential transfer (SEQ) - If ‘1’ is shifted in this bit position when read data is shifted out
or write data shifted in, the subsequent transfer will be to next word address.

[31:0]: AHB Data - AHB write/read data. For byte and half-word transfers data is aligned
according to big-endian order where data with address offset 0 data is placed in MSB bits.

2.3 Configuration options

JTAG Debug link module has the following configuration options (VHDL generics):

2.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x01C. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

2.5 Registers

The JTAG Debug link module does not implement any registers mapped in AHB address
space. JTAG registers are described in section 2.2.

TABLE 11. JTAG Debug link configuration options (VHDL generics)

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

hindex AHB master index 0 - NAHBMST-1 0

nsync Number of synchronization registers between
clock regions

1 - 2 1

idcode JTAG IDCODE instruction code (generic tech
only)

0 - 255 9

id_msb JTAG Device indentification code MSB bits
(generic tech only)

0 - 65536 0

id_lsb JTAG Device indentification code LSB bits
(generic tech only)

0 - 65536 0

idcode JTAG IDCODE instruction (generic tech only) 0 - 255 9

ainst Code of the JTAG instruction used to access JTAG
Debug link command/address register

0 - 255 2

dinst Code of the JTAG instruction used to access JTAG
Debug link data register

0 - 255 3

18

2.6 Signal description

JTAG Debug link signals are described in table 12.

*) If the target technology is Xilinx Virtex-II or Spartan3 the modules JTAG signals TCK, TCKN, TMS,
TDI and TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins are implicitly
made visible to the module through Xilinx TAP controller instantiation.

**) User interface signals from the JTAG TAP controller. These signals are used to interface additional
user defined JTAG data registers such as boundary-scan register. For more information on the JTAG
TAP controller user interface see JTAG TAP Controller IP-core documentation. If not used tie
TAPI_TDO to ground and leave TAPO_* outputs unconnected.

2.7 Library dependencies

Table 13 shows libraries that should be used when instantiating a JTAG Debug link.

TABLE 12. JTAG Debug link signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input System clock (AHB clock domain) -

TCK N/A Input JTAG clock* -

TCKN N/A Input Inverted JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

AHBI * Input AHB Master interface input -

AHBO * Output AHB Master interface output -

TAPO_TCK N/A Output TAP Controller User interface TCK signal** High

TAPO_TDI N/A Output TAP Controller User interface TDI signal** High

TAPO_INST[7:0] N/A Output TAP Controller User interface INSTsignal** High

TAPO_RST N/A Output TAP Controller User interface RST signal** High

TAPO_CAPT N/A Output TAP Controller User interface CAPT signal** High

TAPO_SHFT N/A Output TAP Controller User interface SHFT signal** High

TAPO_UPD N/A Output TAP Controller User interface UPD signal** High

TAPI_TDO N/A Input TAP Controller User interface TDO signal** High

TABLE 13. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER JTAG Signals, component JTAG signals and component declaration

19

2.8 JTAG Debug link instantiation

This examples shows how a JTAG Debug link can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.jtag.all;

entity ahbjtag_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- JTAG signals
 tck : in std_ulogic;
 tms : in std_ulogic;
 tdi : in std_ulogic;
 tdo : out std_ulogic
);
end;

architecture rtl of ahbjtag_ex is

 -- AMBA signals
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal gnd : std_ulogic;

begin

gnd <= ‘0’;

 -- AMBA Components are instantiated here
 ...

-- AHB JTAG
 ahbjtag0 : ahbjtag generic map(tech => 0, hindex => 1)
 port map(rstn, clkm, tck, tckn, tms, tdi, tdo, ahbmi, ahbmo(1),
 open, open, open, open, open, open, open, gnd);

end;

20

3 AHBCTRL - AMBA AHB controller with plug&play support

3.1 Overview

The AHB controller is a combined AHB arbiter, bus multiplexer and slave decoder according to
the AMBA-2.0 standard. The controller supports up to 16 AHB masters, and any number of
slaves. The maximum number of masters and slaves are defined in the GRLIB.AMBA package, in
the constants NAHBSLV and NAHBMST. It can also be set with the nahbm and nahbs generics.

Figure 4. AHB Controller block diagram

3.2 Operation

3.2.1 Arbitration

The AHB controller supports two arbitration algorithms: fixed-priority and round-robin. The
selection is done by the generic rrobin. In fixed-priority mode (rrobin = 0), the bus request priority
is equal to the master’s bus index, with index 0 being the lowest priority. If no master requests the
bus, the master with bus index equal to the generic defmast will be granted.

In round-robin mode, priority is rotated one step after each AHB transfer. If no master requests the
bus, the last owner will be granted (bus parking).

3.2.2 Decoding

Decoding (generation of HSEL) of AHB slaves is done using the plug&play method explained in
the GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of 1 -
4096 Mbyte. A specific I/O area is also decoded, where slaves can occupy 256 byte - 1 Mbyte.
The default address of the I/O area is 0xFFF00000, but can be changed with the cfgaddr and cfg-
mask generics. Access to unused addresses will cause an AHB error response.

3.2.3 Plug&play information

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records
are combined into an array which is connected to the AHB controller unit. The plug&play infor-
mation is mapped on a read-only address area defined by the cfgaddr and cfgmask generics. by
default, the area is mapped on address 0xFFFFF000 - 0xFFFFFFFF. The master information is
placed on the first 2Kbyte of the block (0xFFFFF000 - 0xFFFFF800), while the slave information
id placed on the second 2Kbyte block. Each unit occupies 32 bytes, which means that the area has
place for 64 masters and 64 slaves. The address of the plug&play information for a certain unit is
defined by its bus index. The address for masters is thus 0xFFFFF000 + n*32, and 0xFFFFF800 +
n*32 for slaves.

MASTER MASTER

SLAVESLAVE

ARBITER/
DECODER

AHBCTRL

21

Figure 5. AHB plug&play information record

3.3 AHB split support

AHB SPLIT functionality is supported if the split generic is set to 1. In this case, all slaves
must driver the AHB SPLIT signal.

3.4 Component declaration

library grlib;
use grlib.amba.all;

component ahbctrl
 generic (
 defmast : integer := 0;-- default master
 split : integer := 0;-- split support
 rrobin : integer := 0;-- round-robin arbitration
 timeout : integer range 0 to 255 := 0; -- HREADY timeout
 ioaddr : ahb_addr_type := 16#fff#; -- I/O area MSB address
 iomask : ahb_addr_type := 16#fff#; -- I/O area address mask
 cfgaddr : ahb_addr_type := 16#ff0#; -- config area MSB address
 cfgmask : ahb_addr_type := 16#ff0#; -- config area address maskk
 nahbm : integer range 1 to NAHBMST := NAHBMST; -- number of masters
 nahbs : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
 ioen : integer range 0 to 15 := 1; -- enable I/O area
 disirq : integer range 0 to 1 := 0 -- disable interrupt routing
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 msti : out ahb_mst_in_type;
 msto : in ahb_mst_out_vector;
 slvi : out ahb_slv_in_type;
 slvo : in ahb_slv_out_vector
);
 end component;

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 5 4 0

31 20 19 16 15 4 3 0

Identification Register 00

10 9

HADDR P MASK TYPEC0 0ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

ADDR P MASK TYPEC0 0

Bank Address Registers

USER-DEFINED

USER-DEFINED

USER-DEFINED

00

04

08

10

14

18

1C

0C

18 17

BAR0

BAR1

BAR2

BAR3

C = Cacheable

P = Prefetchable TYPE

0010 = AHB Memory space

0011 = AHB I/O space

0001 = APB I/O space

22

3.5 Configuration options

The AHB controller has the following configuration options (VHDL generics):

3.6 Signal descriptions

The AHB controller signals are described in Table 15.

TABLE 14. AHB controller options (VHDL generics)

Generic Function Allowed range Default

ioaddr The MSB address of the I/O area. Sets the 12 most sig-
nificant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O area
and the start address together with ioaddr.

0 - 16#FFF# 16#FFF#

cfgaddr The MSB address of the configuration area. 0 - 16#FFF# 16#FF0#

cfgmask The address mask of the configuration area. Sets the
size of the configuration area and the start address
together with cfgaddr. If set to 0, the configuration will
be disabled.

0 - 16#FFF# 16#FF0#

rrobin Selects between round-robin (1) or fixed-priority (0)
bus arbitration algorithm.

0 - 1 0

split Enable support for AHB SPLIT response 0 - 1 0

defmast Default AHB master 0 - NAHBMST-1 0

ioen AHB I/O area enable. Set ot 0 to disable the I/O area 0 - 1 1

nahbm Number of AHB masters 1 - NAHBMST NAHBMST

nahbs Number of AHB slaves 1 - NAHBSLV NAHBSLV

timeout Perform bus timeout checks (NOT IMPLEMENTED
YET).

0 - 1 0

TABLE 15. AHB controller signals

Signal name Type Function Active

RST Input AHB reset Low

CLK Input AHB clock -

MSTI* Output

MSTO* Input AMBA AHB master interface record array

SLVI* Output AMBA AHB master interface record array -

SLVO* Input AMBA AHB slave interface record array -

*1) see AMBA specification

23

3.7 Library dependencies

Table 16 shows libraries that should be used when instantiating the AHB controller.

3.8 AHB controller instantiation

This examples shows how an AHB report module can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

.

.

 -- AMBA signals
 signal ahbsi : ahb_slv_in_type;

 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

-- ARBITER

ahb0 : ahbctrl -- AHB arbiter/multiplexer
 generic map (defmast => CFG_DEFMST, split => CFG_SPLIT,
rrobin => CFG_RROBIN, ioaddr => CFG_AHBIO, nahbm => 8, nahbs => 8)
 port map (rstn, clkm, ahbmi, ahbmo, ahbsi, ahbso);

-- AHB slave

sr0 : srctrl generic map (hindex => 3)
port map (rstn, clkm, ahbsi, ahbso(3), memi, memo, sdo3);

-- AHB master

e1 : eth_oc
 generic map (mstndx => 2, slvndx => 5, ioaddr => CFG_ETHIO, irq => 12,

memtech => memtech)
 port map (rstn, clkm, ahbsi, ahbso(5), ahbmi => ahbmi,

ahbmo => ahbmo(2), ethi1, etho1);

...
end;

TABLE 16. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

24

4 APBCTRL - AMBA AHB/APB bridge with plug&play support

4.1 Overview

The APB bridge is a APB bus master according the AMBA-2.0 standard. The controller supports
up to 16 slaves. The actual maximum number of slaves is defined in the GRLIB.AMBA package,
in the constant NAPBSLV. The number of slaves can also be set using the nslaves generic.

Figure 6. APB Bridge block diagram

4.2 Operation

4.2.1 Decoding

Decoding (generation of PSEL) of APB slaves is done using the plug&play method explained in
the GRLIB User’s Manual. A slave can occupy any binary aligned address space with a size of
256 bytes - 1 Mbyte.

4.2.2 Plug&play information

GRLIB APB slaves contain two plug&play information words which are included in the APB
records they drive on the bus (see the GRLIB User’s manual for more information). These records
are combined into an array which is connected to the APB bridge. The plug&play information is
mapped on a read-only address area at the top 4 kbytes of the bridge address space. Each
plug&play block occupies 8 bytes. The address of the plug&play information for a certain unit is
defined by its bus index. If the bridge is mapped on AHB address 0x80000000, the address for the
plug&play records is thus 0x800FF000 + n*8.

Figure 7. APB plug&play information

APB SLAVE

APB SLAVEAHB Slave

APB Bridge

Interface

•••

AHB BUS

APBI

APBO[0]

APBO[n]

AHBSI

AHBSO[n]

VENDOR ID DEVICE ID VERSION IRQ

31 24 23 12 11 4 3 0

ADDR C/P MASK TYPE

31 20 19 16 15 4 3 0

BAR

Configuration wordAPB Plug&play record
0x00

0x04

25

4.3 Component declaration

library grlib;
use grlib.amba.all;

component apbctrl
 generic (
 hindex : integer := 0;
 haddr : integer := 0;
 hmask : integer := 16#fff#;
 nslaves : integer range 1 to NAPBSLV := NAPBSLV
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbi : in ahb_slv_in_type;
 ahbo : out ahb_slv_out_type;
 apbi : out apb_slv_in_type;
 apbo : in apb_slv_out_vector
);
 end component;

4.4 Configuration options

The APB bridge has the following configuration options (VHDL generics):

4.5 Signal descriptions

The APB bridge signals are described in Table 18.

TABLE 17. APB bridge options (VHDL generics)

Generic Function Allowed range Default

hindex AHB slave index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12
most significant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the
AHB area and the start address together with haddr.

0 - 16#FFF# 16#FFF#

nslaves The maximum number of slaves 1 - NAPBSLV NAPBSLV

TABLE 18. APB bridge signals

Signal name Type Function Active

RST Input AHB reset Low

CLK Input AHB clock -

AHBI* Output AHB slave inputs

AHBO* Input AHB slave outputs

APBI* Output APB slave inputs -

APBO* Input APB slave outputs -

*1) see AMBA specification

26

4.6 Library dependencies

Table 19 shows libraries that should be used when instantiating the APB bridge.

4.7 APB bridge instantiation

This examples shows how an APB bridge can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

.

.

 -- AMBA signals

 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

begin

-- APB bridge

apb0 : apbctrl-- AHB/APB bridge
 generic map (hindex => 1, haddr => CFG_APBADDR)
 port map (rstn, clk, ahbsi, ahbso(1), apbi, apbo);

-- APB slaves

uart1 : apbuart
 generic map (pindex => 1, paddr => 1, pirq => 2)
 port map (rstn, clk, apbi, apbo(1), u1i, u1o);

irqctrl0 : irqmp
 generic map (pindex => 2, paddr => 2)
 port map (rstn, clk, apbi, apbo(2), irqo, irqi);

...
end;

TABLE 19. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

27

28

5 AHBRAM - Single-port RAM with AHB interface

5.1 Overview

AHBRAM implements a 32-bit wide on-chip RAM with an AHB slave interface. Memory size is
configurable in binary steps through a VHDL generic. Minimum size is 1kB and maximum size is
dependent on target technology and physical resources. Read accesses are zero-waitstate, write
access have one waitstate. The RAM supports byte- and half-word accesses, as well as all types of
AHB burst accesses. Internally, the AHBRAM instantiates four 8-bit wide SYNCRAM blocks.

5.2 Configuration options

The AHBRAM has the following configuration options (VHDL generics):

The AHBRAM has vendor id 0x01 (Gaisler Research) and device id 0x00E. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

5.3 Library dependencies

Table 21 shows libraries that should be used when instantiating the AHBRAM module.

5.4 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbram
generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;

tech : integer := 0; kbytes : integer := 1);
port (

rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type

);
end component;

TABLE 20. VHDL Generics

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12
most significant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the
AHB area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Technology to implement on-chip RAM 0 - NTECH 0

kbytes RAM size in Kbytes target-dependent 1

TABLE 21. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration

29

5.5 Component instantiation example

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

.

.

ahbram0 : ahbram generic map (hindex => 7, haddr => CFG_AHBRADDR,
tech => CFG_MEMTECH, kbytes => 8)
 port map (rstn, clkm, ahbsi, ahbso(7));

30

6 AHBREPORT - AMBA Plug&Play AHB Report Module

6.1 Overview

The AHB report module is provided for printing plug&play information of GRLIB devices on
standard output during simulation. It prints vendor-ids and device-ids of all AHB devices and the
address ranges occupied by the slave devices. It can also assist in debugging by checking that the
index numbers returned by the devices match the signal record they are driving. There is a sepa-
rate APB report unit which prints information of APB devices.

6.2 Operation

GRLIB devices contain a number of plug&play information words which are included in the AHB
records they drive on the bus (see the GRLIB user’s manual for more information). These records
are combined into an array which is connected to the AHB controller unit. There is one array for
all master interfaces and one for all slave interfaces. The AHB report module is also connected to
both of these arrays and prints out all the plug & play information found.

The report module starts by scanning the master interface array from 0 to NAHBMST - 1 (defined
in the grlib.amba package). It checks each entry in the array for a valid vendor-id (all nonzero ids
are considered valid) and if one is found, it also retrieves the device-id. The descriptions for these
ids are obtained from the iptable constant in the WORK.DEVLIB package, and are then printed
on standard out together with the master number. If the index check is enabled (done with a
VHDL generic), the report module also checks if the hindex number returned in the record
matches the array number of the record currently checked (the array index). If they do not match,
the simulation is aborted and an error message is printed.

This procedure is repeated for slave interfaces found in the slave interface array. It is scanned from
0 to NAHBSLV - 1 and the same information is printed and the same checks are done as for the
master interfaces. In addition, the address range and memory type is checked and printed. The
address information includes type, address, mask, cacheable and pre-fetchable fields. From this
information, the report module calculates the start address of the device and the size of the range.
The information finally printed is type, start address, size, cacheability and pre-fetchability. The
address ranges currently defined are AHB memory, AHB I/O and APB I/O. APB I/O ranges are
ignored by this module.

6.3 Configuration options

The AHB report module has the following configuration options (VHDL generics):

TABLE 22. AHB report module options (generics)

Generic Function Allowed range Default

ioaddr The MSB address of the I/O area. Sets the 12 most
significant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O
area and the start address together with ioaddr.

0 - 16#FFF# 16#FFF#

cfgaddr The MSB address of the configuration area. 0 - 16#FFF# 16#FF0#

cfgmask The address mask of the configuration area. Sets
the size of the configuration area and the start
address together with cfgaddr.

0 - 16#FFF# 16#FF0#

icheck If asserted (1), the hindex and bus index of each
device are checked for equality.

0 - 1 1

timeout Perform bus timeout checks (NOT IMPLE-
MENTED YET).

0 - 1 0

nmasters Maximum number of AHB masters 1 - NAHBMST NAHBMST

31

6.4 Signal descriptions

The AHB report module signals are described in Table 23.

6.5 Library dependencies

Table 24 shows libraries that should be used when instantiating the AHB report module.

6.6 Component declaration

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

component ahbreport
 generic (
 ioaddr : ahb_addr_type := 16#fff#; -- I/O area MSB address
 iomask : ahb_addr_type := 16#fff#; -- I/O area address mask
 cfgaddr : ahb_addr_type := 16#ff0#; -- config area MSB address
 cfgmask : ahb_addr_type := 16#ff0#; -- config area address mask
 icheck : integer := 1;-- check bus indexes
 timeout : integer := 0; -- check bus timeout
 nmasters: integer := NAHBMST; -- Number of masters
 nslaves : integer := NAHBSLV; -- Number of slaves
 ioen : integer := 1-- enable I/O area
);
 port (
 msto : in ahb_mst_out_vector;
 slvo : in ahb_slv_out_vector
);
end component;

nslaves Maximum number of AHB slaves 1 - NAHBSLV NAHBSLV

ioen AHB I/O area enable 0 - 1 1

TABLE 23. AHB report module signals

Signal name Field Type Function Active

MSTO* - Input AMBA AHB master interface record array -

SLVO* - Input AMBA AHB slave interface record array -

*1) see AMBA specification

TABLE 24. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

WORK DEBUG Component Component declaration

TABLE 22. AHB report module options (generics)

Generic Function Allowed range Default

32

6.7 AHB report module instantiation

This examples shows how an AHB report module can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

entity ahbreport_ex is
 port (

rst : std_ulogic;
clk : std_ulogic;

);
end;

architecture rtl of ahbreport_ex is

 -- AMBA signals
 signal ahbsi : ahb_slv_in_type;

 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

begin

 -- AMBA Components are instantiated here
 ...

--pragma translate off
 -- AHB Report
 ahbrep : ahbreport
 generic map (icheck => 1)
 port map(msto => ahbmo, slvo => ahbso);

--pragma translate on
end;

33

34

7 AHBROM - Single-port ROM with AHB interface

7.1 Overview

AHBROM implements a 32-bit wide on-chip ROM with an AHB slave interface. Read accesses
take zero waitstates, or one waitstate if the pipeline option is enabled. The ROM supports byte-
and half-word accesses, as well as all types of AHB burst accesses.

7.2 PROM generation

The AHBPROM is automatically generated by the make utility in GRLIB. The input format is a
sparc-elf binary file, produced by the BCC cross-compiler (sparc-elf-gcc). To create a PROM, first
compile a suitable binary and the run the make utility:

bash$ sparc-elf-gcc prom.S -o prom.exe
bash$ make ahbrom.vhd

Creating ahbrom.vhd : file size 272 bytes, address bits 9

The default binary file for creating a PROM is prom.exe. To use a different file, run make with the
FILE parameter set to the input file:

bash$ make ahbrom.vhd FILE=myfile.exe

The created PROM is realized in synthesizable VHDL code, using a CASE statement. For FPGA
targets, most synthesis tools will map the CASE statement on a block RAM/ROM if available. For
ASIC implementations, the ROM will be synthesized as gates. It is then recommended to use the
pipe option to improve the timing.

7.3 Configuration options

The AHBROM has the following configuration options (VHDL generics):

The AHBRAM has vendor id 0x01 (Gaisler Research) and device id 0x01B. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

TABLE 25. VHDL Generics

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

haddr The MSB address of the AHB area. Sets the 12
most significant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

hmask The AHB area address mask. Sets the size of the
AHB area and the start address together with haddr.

0 - 16#FFF# 16#FF0#

tech Not used

pipe Add a pipeline stage on read data 0 0

kbytes Not used

35

7.4 Library dependencies

Table 26 shows libraries that should be used when instantiating the AHBRAM module.

7.5 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbrom
generic (hindex : integer := 0; haddr : integer := 0; hmask : integer := 16#fff#;

pipe : integer := 0; tech : integer := 0);
port (

rst : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type

);
end component;

TABLE 26. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration

36

8 AHBSTAT - AHB Status Registers

8.1 Overview

The AHB status registers store information about AHB accesses triggering an error response.
There is a status register and a failing address register. Both are contained in a module accessed
from the APB bus. Figure 8 shows the registers’ contents.

8.2 Operation

The AHB status module monitors AHB bus transactions and stores the current HADDR,
HWRITE, HMASTER and HSIZE internally. It is always active after startup and reset until it
detects an error response (HRESP = “01”). When the error is detected it freezes the status and
address register contents and sets New Error (NE) to one. At the same time it also generates an
interrupt on the line selected by the pirq generic. The interrupt is usually connected to the IRQ
controller so that the CPU is informed about the condition. The normal procedure is that an inter-
rupt routine handles the error with the aid of the information in the status registers. When it is fin-
ished it resets NE and the status module becomes active again.

Not only error responses on the bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a single error is detected. These
should be connected to the stati.cerror input signal of the status module which is ored internally
and if the resulting signal is asserted, it will have the same effect as an AHB error response. The
only difference is that the CE bit in the status register is set when a single error is detected. When
the ce bit is set the interrupt routine can acquire the address containing the single error from the
failing address register and correct it.

8.3 Configuration options

The AHB status register has the following configuration options (VHDL generics):

8.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x052. For description of vendor
and device ids see GRLIB IP Library User’s Manual.

TABLE 27. AHB status register configuration options (VHDL generics)

Generic Function Allowed range Default

pindex APB slave index 0 - NAHBSLV-1 0

paddr APB address 0 - 16#FFF# 0

pmask APB address mask 0 - 16#FFF# 16#FFF
#

pirq Interrupt line driven by the status module 0 - 16#FFF# 0

nftslv Number of FT slaves connected to the cerror vector 1 - NAHBSLV-1 3

37

8.5 Registers

Figure 8 shows the status register and failing address register. The registers are accessed from
the APB bus. The status register has offset 0x0 and the failing address register has offset 0x4 to
the base address of the module.

Status register:

[2:0]: The HSIZE signal of the AHB transaction that caused the error.
[6:3]: The HMASTER signal of the AHB transaction that caused the error.
[7]: The HWRITE signal of the AHB transaction that caused the error.
[8] NE: New Error. Deasserted at start-up and after reset. Asserted when an error is detected.

Reset by writing a zero to it.
[9] CE: Correctable Error. Set if the detected error was caused by a single error and zero

otherwise.
[31:10] Reserved.

Failing address register:

[31:0]: The HADDR signal of the AHB transaction that caused the error.

8.6 Signal description

The AHB status register signals are described in table 28.

8.7 Library dependencies

Table 29 shows libraries that the AHB status register module depends on.

TABLE 28. AHB status register signal description.

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB slave input signals -

AHBSI * Input AHB slave output signals -

STATI CERROR Input Correctable Error Signals High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

* see GRLIB IP Library User’s Manual

TABLE 29. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MISC Component Component declaration

Figure 8. AHB status and failing address register.

31

HSIZEHMASTERHWRITE

2 03678

RESERVED

9

CE NE

10

31 0

AHB FAILING ADDRESS

38

8.8 AHB status register module instantiation

This examples shows how an AHB status register module can be instantiated. The example design
contains an AMBA bus with a number of AHB components connected to it including the status
register. There are three Fault Tolerant units with EDAC connected to the status register cerror vec-
tor. The connection of the different memory controllers to external memory is not shown.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

--other signals
....

);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo, sdo2: sdctrl_out_type;

 signal sdi : sdctrl_in_type;

-- correctable error vector
signal stati : ahbstat_in_type;

 signal aramo : ahbram_out_type;

begin

 -- AMBA Components are defined here ...

-- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,

 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));
 stati.cerror(3 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
 a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,

 kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 e rrcnt => 1, cntbits => 4)
 port map(rst, clk, ahbsi, ahbso, apbi, apbo(4), aramo);

stati.cerror(0) <= aramo.ce;

39

-- SDRAM controller
 sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
 ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,

 cntbits => 4)
 port map (rstn, clk, ahbsi, ahbso(3), sdi, sdo);

 stati.cerror(1) <= sdo.ce;

-- Memory controller
 mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,

 edacen => 1, errcnt => 1, cntbits => 4)
 port map (rstn, clk, ahbsi, ahbso(0), apbi, apbo(10), memi, memo, sdo2);

 stati.cerror(2) <= memo.ce;
end;

40

9 AHBTRA CE - AHB Trace Buffer

9.1 Overview

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address,
data and various control signals of the AHB bus are stored and can be read out for later analysis.

The trace buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, a 32-bit counter is also stored in the trace as time tag.

9.2 Operation

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each trans-
fer. Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. An interrupt is
generated when a breakpoint is hit.

Note: the LEON3 Debug support unit (DSU3) also includes an AHB trace buffer. The AHB-
TRACE module is intended to be used in system without the LEON3 processor or when the DSU3
is not present.

TABLE 30. AHB Trace buffer data allocation

Bits Name Definition

127:96 Time tag The value of the time tag counter

95 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

Figure 9. AHBTRACE block diagram

AHB slave interface

AMBA AHB

Trace buffer RAMTrace control

AHB trace buffer

IRQ

41

9.3 Registers

9.3.1 Register address map

The trace buffer occupies 128 Kbyte address space in the AHB I/O area. The following regis-
ter address are decoded:

9.3.2 Trace buffer control register

The trace buffer is controlled by the trace buffer control register:

0: Trace enable (EN). Enables the trace buffer.
1: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
31:16 Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of

the trace buffer.

9.3.3 Trace buffer index register

The trace buffer index register indicates the address of the next 128-bit line to be written.

31:4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented depends on the size of
the trace buffer.

9.3.4 Trace buffer time tag register

The time tag register contains a 32-bit counter that increments each clock when the trace
buffer is enabled. The value of the counter is stored in the trace to provide a time tag.

TABLE 31. Trace buffer address space

Address Register

0x000000 Trace buffer control register

0x000004 Trace buffer index register

0x000008 Time tag counter

0x000010 AHB break address 1

0x000014 AHB mask 1

0x000018 AHB break address 2

0x00001C AHB mask 2

0x010000 - 0x020000 Trace buffer

..0 Trace bits 127 - 96

...4 Trace bits 95 - 64

...8 Trace bits 63 - 32

...C Trace bits 31 - 0

Figure 10. Trace buffer control register

0131

DCNT ENRESERVED

16

DM

Figure 11. Trace buffer index register

0331

INDEX

4

0000

42

9.3.5 Trace buffer br eakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used
to freeze the trace buffer by clearing the enable bit. Freezing can be delayed by programming the
DCNT field in the trace buffer control register to a non-zero value. In this case, the DCNT value
will be decremented for each additional trace until it reaches zero, after which the trace buffer is
frozen. A mask register is associated with each breakpoint, allowing breaking on a block of
addresses. Only address bits with the corresponding mask bit set to ‘1’ are compared during
breakpoint detection. To break on AHB load or store accesses, the LD and/or ST bits should be
set.

BADDR : breakpoint address (bits 31:2)
BMASK : Breakpoint mask (see text)
LD : break on data load address
ST : beak on data store address

9.4 Configuration options

The AHBTRACE has the following configuration options (VHDL generics):

TABLE 32. VHDL Generics

Generic Function Allowed range Default

hindex AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The MSB address of the I/O area. Sets the 12 most
significant bits in the 20-bit I/O address.

0 - 16#FFF# 16#000#

iomask The I/O area address mask. Sets the size of the I/O
area and the start address together with ioaddr.

0 - 16#FFF# 16#E00#

irq Interrupt number 0 - NAHBIRQ-1 0

tech Technology to implement on-chip RAM 0 - NTECH 0

kbytes Trace buffer size in Kbytes 1 - 64 1

Figure 12. Trace buffer time tag counter

031

TIME TAG VALUE

01231

LD

BADDR[31:2]
Break address reg.

0231

STBMASK[31:2]
Break mask reg.

Figure 13. Trace buffer breakpoint registers

0

1

0

43

9.5 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x017. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

9.6 Library dependencies

Table 33 shows libraries that should be used when instantiating the AHBTRACE module.

9.7 Component declaration

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

component ahbtrace is
 generic (
 hindex : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#E00#;
 tech : integer := 0;
 irq : integer := 0;
 kbytes : integer := 1);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type
);
end component;

TABLE 33. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER MISC Component Component declaration

44

10 AHBUART - Serial debug interface for AHB

10.1 Overview

The AHBUART consists of a UART connected to the AHB bus as a master (figure 14). A simple
communication protocol is supported to transmit access parameters and data. Through the com-
munication link, a read or write transfer can be generated to any address on the AHB bus.

10.2 Operation

10.2.1 Transmission protocol

The AHB UART supports simple protocol where commands consist of a control byte, followed by
a 32-bit address, followed by optional write data. Write access does not return any response, while
a read access only returns the read data. Data is sent on 8-bit basis as shown below.

Block transfers can be performed be setting the length field to n-1, where n denotes the number of
transferred words. For write accesses, the control byte and address is sent once, followed by the

Figure 14. AHB UART block diagram

RX TXReceiver shift register Transmitter shift register

AHB master interface AHB data/response

AMBA AHB

Serial port
Controller

8*bitclkBaud-rate
generator AMBA APB

Figure 15. AHB UART data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 16. AHB UART commands

 Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

Receive

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

Read command

Resp. byte (optional)

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16] Resp. byte (optional)

bit 7:3 = 00000

bit 1:0 = AHB HRESP

Response byte encoding

bit 2 = DMODE

45

number of data words to be written. The address is automatically incremented after each data
word. For read accesses, the control byte and address is sent once and the corresponding num-
ber of data words is returned.

The UART receiver is implemented with same glitch filtering as the GR APB UART.

10.2.2 Baud rate generation

The AHB UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The
scaler is clocked by the system clock and generates a UART tick each time it underflows. The
scaler is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate.

If not programmed by software, the baud rate will be automatically discovered. This is done
by searching for the shortest period between two falling edges of the received data (corre-
sponding to two bit periods). When three identical two-bit periods has been found, the corre-
sponding scaler reload value is latched into the reload register, and the BL bit is set in the
UART control register. If the BL bit is reset by software, the baud rate discovery process is
restarted. The baud-rate discovery is also restarted when a ‘break’ or framing error is detected
by the receiver, allowing to change to baudrate from the external transmitter. For proper
baudrate detection, the value 0x55 should be transmitted to the receiver after reset or after
sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:
scaler = (((system_clk*10)/(baudrate*8))-5)/10

10.3 Configuration options

AHB UART has the following configuration options (VHDL generics):

10.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x007. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

10.5 Registers

The AHB UART is programmed through tree registers mapped into APB address space.

TABLE 34. AHB UART configuration options (VHDL generics)

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR filed of the APB BAR. 0 - 16#FFF# 0

pmask MASK filed of the APB BAR. 0 - 16#FFF# 16#FFF#

TABLE 35. AHB Uart registers

Register APB Address offset

AHB UART status register 0x4

AHB UART control register 0x8

AHB UART scaler register 0xC

46

0: Receiver enable (RE) - if set, enables both the transmitter and receiver.
1: Baud rate locked (BL) - is automatically set when the baud rate is locked.

0: Data ready (DR) - indicates that new data has been received by the AHB master interface.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.

10.6 Signal description

AHB UART signals are described in table 36.

TABLE 36. AHB UART signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

UARTI RXD Input UART receiver data High

CTSN Input UART clear-to-send High

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High

TXD Output UART transmit data High

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBI * Input AMB master input signals -

AHBO * Output AHB master output signals -

* see GRLIB IP Library User’s Manual

Figure 17. AHB UART control register

01231

RESERVED ENBL

Figure 18. AHB UART status register

0123456731

RESERVED DRTSTHOVFE

Figure 19. AHB UART scaler reload register

0131431

RESERVED SCALER RELOAD VALUE

47

10.7 Library dependencies

Table 37 shows libraries that should be used when instantiating an AHB UART.

10.8 AHB UART instantiation

This examples shows how an AHB UART can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity ahbuart_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- UART signals
 ahbrxd : in std_ulogic;
 ahbtxd : out std_ulogic
);
end;

architecture rtl of ahbuart_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- UART signals
 signal ahbuarti : uart_in_type;
 signal ahbuarto : uart_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- AHB UART
 ahbuart0 : ahbuart
 generic map (hindex => 5, pindex => 7, paddr => 7)
 port map (rstn, clk, ahbuarti, ahbuarto, apbi, apbo(7), ahbmi, ahbmo(5));

 -- AHB UART input data
 ahbuarti.rxd <= ahbrxd;

 -- connect AHB UART output to entity output signal
 ahbtxd <= ahbuarto.txd;

end;

TABLE 37. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER UART Signals, component AHB UART component declaration

48

11 APBREPORT - AMBA Plug&Play APB Report Module

11.1 Overview

The APB report module is provided for printing plug&play information of GRLIB devices on
standard output during simulation. It prints vendor-ids and device-ids of all APB devices and their
respective address ranges. APB bridge information is also printed. It can also assist in debugging
by checking that the index numbers returned by the devices match the signal record they are driv-
ing. There is a separate AHB report unit which prints information of AHB devices.

11.2 Operation

GRLIB APB devices contain a number of plug&play information words which are included in the
APB records they drive on the bus (see the GRLIB user’s manual for more information). These
records are combined into an array which is connected to the APB controller unit. The APB report
module is also connected to this array and prints out all the plug & play information found.

The report module starts by scanning the array from 0 to NAPBSLV - 1 (defined in the grlib.amba
package). It checks each entry in the array for a valid vendor-id (all nonzero ids are considered
valid) and if one is found, it also retrieves the device-id. The descriptions for these ids are obtained
from the iptable in the global devices file and are then printed on standard out together with the
slave number. If the index check is enabled (done with a VHDL generic), the report module also
checks if the pindex number returned in the record matches the array number of the record cur-
rently checked (the array index). If they do not match, the simulation is aborted and an error mes-
sage is printed.

The address range and memory type is also checked and printed. The address information includes
type, address and mask. The address ranges currently defined are AHB memory, AHB I/O and
APB I/O. All APB devices are in the APB I/O range so the type does not have to be checked.
From this information, the report module calculates the start address of the device and the size of
the range. The information finally printed is start address and size.

11.3 Configuration options

The APB report module has the following configuration options (VHDL generics):

TABLE 38. APB report module options (generics)

Generic Function Allowed range Default

haddr The MSB address of the I/O area. Sets the 12 most
significant bits in the 32-bit AHB address.

0 - 16#FFF# 0

hmask The I/O area address mask. Sets the size of the I/O
area and the start address together with the ioaddr.

0 - 16#FFF# 16#FFF#

icheck If asserted (1), the pindex and bus index of each
device are checked for equality.

0 - 1 1

nslaves Maximum number of APB slaves 1 - NAPBSLV NAPBSLV

49

11.4 Signal descriptions

The APB report module signals are described in Table 39.

11.5 Library dependencies

Table 40 shows libraries that should be used when instantiating the APB report module.

11.6 Component declaration

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

component apbreport
 generic (
 haddr : integer := 0;
 hmask : integer := 16#fff#;
 icheck : integer := 1;
 nslaves : integer := NAPBSLV -- Number of slaves
);
 port (
 apbo : in apb_slv_out_vector
);
end component;

11.7 APB report module instantiation

This examples shows how an APB report module can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use work.debug.all;

entity apbreport_ex is
 port (

rst : std_ulogic;
clk : std_ulogic;

);
end;

architecture rtl of apbreport_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;

 signal apbo : apb_slv_out_vector := (others => apb_none);

begin

TABLE 39. APB report module signals

Signal name Field Type Function Active

APBO* - Input AMBA APB slave interface record array -

*1) see AMBA specification

TABLE 40. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

WORK DEBUG Component Component definition

50

 -- AMBA Components are instantiated here
 ...

--pragma translate off
 -- APB Report
 apbrep : apbreport
 generic map (haddr => 16#FFF#, icheck => 1)
 port map(apbo => apbo);

--pragma translate on
end;

51

52

12 1APBUART - UART with APB interface

12.1 Overview

The APBUART is provided for serial communications. The UART supports data frames with 8
data bits, one optional parity bit and one stop bit. To generate the bit-rate, each UART has a pro-
grammable 12-bit clock divider. Hardware flow-control is supported through the RTSN/CTSN
hand-shake signals. Two configurable FIFOs are used for the data transfers between the bus and
UART. Figure 20 shows a block diagram of the APB UART.

12.2 Operation

12.2.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. Data that is to be trans-
ferred is stored in the FIFO by writing to the data register (see section 5). This FIFO is config-
urable to different sizes (see table 1). When the size is 1, only a single holding register is used but
in the following discussion both will be referred to as FIFOs. When ready to transmit, data is
transferred from the transmitter FIFO to the transmitter shift register and converted to a serial
stream on the transmitter serial output pin (TXD). It automatically sends a start bit followed by
eight data bits, an optional parity bit, and one stop bit (figure 21). The least significant bit of the
data is sent first.

1.

Figure 20. APB UART block diagram

RXD TXD

CTSN

RTSN

Receiver shift register Transmitter shift register

APB

Serial port
Controller8*bitclkBaud-rate

generator

Transmitter FIFO or
holding register

Receiver FIFO or
holding register

53

Following the transmission of the stop bit, if a new character is not available in the transmitter
FIFO, the transmitter serial data output remains high and the transmitter shift register empty
bit (TS) will be set in the UART status register (see section 5). Transmission resumes and the
TS is cleared when a new character is loaded into the transmitter FIFO. When the FIFO is
empty the TE bit is set in the status register. If the transmitter is disabled, it will immediately
stop any active transmissions including the character currently being shifted out from the
transmitter shift register. The transmitter holding register may not be loaded when the trans-
mitter is disabled or when the FIFO (or holding register) is full. If this is done, data might be
overwritten and one or more frames are lost.

The discussion above applies to any FIFO configurations including the special case with a
holding register (fifosize = 1). If FIFOs are used (fifosize > 1) some additional status and con-
trol bits are available. The TF status bit (not to be confused with the TF control bit) is set if the
transmitter FIFO is currently full and the TH bit is set as long as the FIFO is less than half-full
(less than half of entries in the FIFO contain data). The TF control bit enables FIFO interrupts
when set. The status register also contains a counter (TCNT) showing the current number of
data entries in the FIFO.

If flow control is enabled, the CTSN input must be low in order for the character to be trans-
mitted. If it is deasserted in the middle of a transmission, the character in the shift register is
transmitted and the transmitter serial output then remains inactive until CTSN is asserted
again. If the CTSN is connected to a receivers RTSN, overrun can effectively be prevented.

12.2.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the UART
control register. The receiver looks for a high to low transition of a start bit on the receiver
serial data input pin. If a transition is detected, the state of the serial input is sampled a half bit
clocks later. If the serial input is sampled high the start bit is invalid and the search for a valid
start bit continues. If the serial input is still low, a valid start bit is assumed and the receiver
continues to sample the serial input at one bit time intervals (at the theoretical centre of the bit)
until the proper number of data bits and the parity bit have been assembled and one stop bit has
been detected. The serial input is shifted through an 8-bit shift register where all bits have to
have the same value before the new value is taken into account, effectively forming a low-pass
filter with a cut-off frequency of 1/8 system clock.

The receiver also has a configurable FIFO which is identical to the one in the transmitter. As
mentioned in the transmitter part, both the holding register and FIFO will be referred to as
FIFO.

During reception, the least significant bit is received first. The data is then transferred to the
receiver FIFO and the data ready (DR) bit is set in the UART status register as soon as the
FIFO contains at least one data frame. The parity, framing and overrun error bits are set at the
received byte boundary, at the same time as the receiver ready bit is set. The data frame is not
stored in the FIFO if an error is detected. Also, the new error status bits are or:ed with the old
values before they are stored into the status register. Thus, they are not cleared until written to
with zeros from the APB bus. If both the receiver FIFO and shift registers are full when a new
start bit is detected, then the character held in the receiver shift register will be lost and the
overrun bit will be set in the UART status register. If flow control is enabled, then the RTSN

Figure 21. UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:

54

will be negated (high) when a valid start bit is detected and the receiver FIFO is full. When the
holding register is read, the RTSN will automatically be reasserted again.

When fifosize > 1, which means that holding registers are not considered here, some additional
status and control bits are available. The RF status bit (not to be confused with the RF control bit)
is set when the receiver FIFO is full. The RH status bit is set when the receiver FIFO is half-full (at
least half of the entries in the FIFO contain data frames). The RF control bit enables receiver FIFO
interrupts when set. A RCNT field is also available showing the current number of data frames in
the FIFO.

12.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The scaler is
clocked by the system clock and generates a UART tick each time it underflows. It is reloaded with
the value of the UART scaler reload register after each underflow. The resulting UART tick fre-
quency should be 8 times the desired baud-rate. If the EC bit is set, the scaler will be clocked by
the UARTI.EXTCLK input rather than the system clock. In this case, the frequency of
UARTI.EXTCL must be less than half the frequency of the system clock.

12.3.1 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this
mode, the transmitter output is internally connected to the receiver input and the RTSN is con-
nected to the CTSN. It is then possible to perform loop back tests to verify operation of receiver,
transmitter and associated software routines. In this mode, the outputs remain in the inactive state,
in order to avoid sending out data.

12.3.2 Interrupt generation

Interrupts are generated differently when a holding register is used (fifosize = 1) and when FIFOs
are used (fifosize > 1). When holding registers are used, the UART will generate an interrupt under
the following conditions: when the transmitter is enabled, the transmitter interrupt is enabled and
the transmitter holding register moves from full to empty; when the receiver is enabled, the
receiver interrupt is enabled and the receiver holding register moves from empty to full; when the
receiver is enabled, the receiver interrupt is enabled and a character with either parity, framing or
overrun error is received.

For FIFOs two different kinds of interrupts are available: normal interrupts and FIFO interrupts.
For the transmitter, normal interrupts are generated when transmitter interrupts are enabled (TI),
the transmitter is enabled and the transmitter FIFO goes from containing data to being empty.
FIFO interrupts are generated when the FIFO interrupts are enabled (TF), transmissions are
enabled (TE) and the UART is less than half-full (that is, whenever the TH status bit is set). This is
a level interrupt and the interrupt signal is continuously driven high as long as the condition pre-
vails. The receiver interrupts work in the same way. Normal interrupts are generated in the same
manner as for the holding register. FIFO interrupts are generated when receiver FIFO interrupts
are enabled, the receiver is enabled and the FIFO is half-full. The interrupt signal is continuously
driven high as long as the receiver FIFO is half-full (at least half of the entries contain data
frames).

55

12.4 Configuration options

The APB UART has the following configuration options (VHDL generics):

12.5 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x00C. For a description of
vendor and device ids see GRLIB IP Library User’s Manual.

12.6 UART registers

The APB UART is controlled through four registers mapped into APB address space.

12.6.1 UART Data Register

[7:0]: Receiver holding register or FIFO (read access)
[7:0]: Transmitter holding register or FIFO (write access)

TABLE 41. APB UART configuration options (VHDL generics)

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR field of the APB BAR. 0 - 16#FFF# 0

pmask MASK field of the APB BAR. 0 - 16#FFF# 16#FFF#

console Prints output from the UART on console during
VHDL simulation and speeds up simulation by
always returning ‘1’ for Data Ready bit of UART Sta-
tus register. Does not effect synthesis.

0 - 1 0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

parity Enables parity 0 - 1 1

flow Enables flow control 0 - 1 1

fifosize Selects the size of the Receiver and Transmitter FIFOs 1, 2, 4, 8, 16, 32 1

TABLE 42. APB Uart registers

Register APB Address offset

UART Data register 0x0

UART Status register 0x4

UART Control register 0x8

UART Scaler register 0xC

Figure 22.UART data register

07831

RESERVED DATA

56

12.6.2 UART Status Register

0: Data ready (DR) - indicates that new data is available in the receiver holding register.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
2: Transmitter FIFO empty (TE) - indicates that the transmitter FIFO is empty.
3: Break received (BR) - indicates that a BREAK has been received.
4: Overrun (OV) - indicates that one or more character have been lost due to overrun.
5: Parity error (PE) - indicates that a parity error was detected.
6: Framing error (FE) - indicates that a framing error was detected.
7: Transmitter FIFO half-full (TH) - indicates that the FIFO is less than half-full.
8: Receiver FIFO half-full (RH) -indicates that at least half of the FIFO is holding data.
9: Transmitter FIFO full (TF) - indicates that the Transmitter FIFO is full.
10: Receiver FIFO full (RF) - indicates that the Receiver FIFO is full.
[25:20] : Transmitter FIFO count - shows the number of data frames in the transmitter FIFO.
[31:26] : Receiver FIFO count (RCNT) - shows the number of data frames in the receiver FIFO.

12.6.3 UART Control Register

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Receiver interrupt enable (RI) - if set, interrupts are generated when a frame is received
3: Transmitter interrupt enable (TI) - if set, interrupts are generated when a frame is transmitted
4: Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)
5: Parity enable (PE) - if set, enables parity generation and checking.
6: Flow control (FL) - if set, enables flow control using CTS/RTS.
7: Loop back (LB) - if set, loop back mode will be enabled.
8: External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK
9: Transmitter FIFO interrupt enable (TF) - when set, Transmitter FIFO level interrupts are enabled.
10: Receiver FIFO interrupt enable (RF) - when set, Receiver FIFO level interrupts are enabled.

Figure 23. UART status register

0123456731

RESERVED DRTSTEBROVPEFERCNT TCNT

26 25 20 19 891011

THRHTFRF

Figure 24. UART control register

0123456731

RESERVED RETERITIPSPEFLLB

8

EC

9

TFRF

10

57

12.6.4 UART Scaler Register

12.6.5 Signal descriptions

APB UART signals are described in table 43.

12.7 Library dependencies

Table 44 shows libraries that should be used when instantiating an APB UART.

12.8 APB UART instantiation

This examples shows how an APB UART can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;

entity apbuart_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- UART signals
 rxd : in std_ulogic;
 txd : out std_ulogic
);
end;

TABLE 43. APB UART signal descriptions.

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

UARTI RXD Input UART receiver data -

CTSN Input UART clear-to-send Low

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send Low

TXD Output UART transmit data -

* see GRLIB IP Library User’s Manual

TABLE 44. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals APB signal definitions

GAISLER UART Signals, component UART signal and component declaration

Figure 25. UART scaler reload register

0111231

RESERVED SCALER RELOAD VALUE

58

architecture rtl of apbuart_ex is

 -- APB signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- UART signals
 signal uarti : uart_in_type;
 signal uarto : uart_out_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- APB UART
 uart0 : apbuart
 generic map (pindex => 1, paddr => 1, pirq => 2,
console => 1, fifosize => 1)

 port map (rstn, clk, apbi, apbo(1), uarti, uarto);

 -- UART input data
 uarti.rxd <= rxd;

 -- APB UART inputs not used in this configuration
 uarti.ctsn <= ’0’; uarti.extclk <= ’0’;

 -- connect APB UART output to entity output signal
 txd <= uarto.txd;

end;

59

60

13 CAN_OC - GRLIB wrapper f or Opencore CAN core

13.1 Overview

CAN_OC is GRLIB wrapper for the CAN core from Opencores. It provides a bridge between
AMBA AHB and the Wishbone bus, which is used to access the CAN MAC registers. The AHB
slave interface is mapped in the AHB I/O space using the GRLIB plug&play functionality. The
CAN core interrupt is routed to the AHB interrupt bus, and the interrupt number is selected
through the irq generic. The FIFO RAM in the CAN core is implemented using the GRLIB
parametrizable SYNCRAM_2P memories, assuring portability to all supported technologies.

13.2 Configuration options

The CAN_OC wrapper has the following configuration options (VHDL generics):

13.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x019. For description of vendor
and device ids see GRLIB IP Library User’s Manual.

TABLE 45. VHDL Generics

Generic Function Allowed range Default

slvndx AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The MSB address of the I/O area. Sets the 12 most
significant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O
area and the start address together with ioaddr.

0 - 16#FFF# 16#FF0#

irq Interrupt number 0 - NAHBIRQ-1 0

memtech Technology to implement on-chip RAM 0 0 - NTECH

Figure 26. CAN_OC wrapper block diagram

AHB slave interface

AMBA AHB

Syncram_2pCAN Core
CAN_RXI

CAN_TXO

CAN_OC Wrapper

IRQ

61

13.4 Signal descriptions

The CAN_OC signals are described in Table 46.

13.5 Library dependencies

Table 47 shows libraries that should be used when instantiating the CAN_OC.

13.6 Component declaration

library grlib;
use grlib.amba.all;
use work.grcomp.all;

component can_oc
 generic (
 slvndx : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#FF0#;
 irq : integer := 0;
 memtech : integer := 0);
 port (
 resetn : in std_logic;
 clk : in std_logic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 can_rxi : in std_logic;
 can_txo : out std_logic

);
 end component;

TABLE 46. CAN_OC signals

Signal name Field Type Function Active

CLK Input AHB clock

RESETN Input Reset Low

AHBSI * Input AMBA AHB slave inputs -

AHBSO * Input AMBA AHB slave outputs

CAN_RXI Input CAN receiver input High

CAN_TXO Output CAN transmitter output High

*1) see AMBA specification

TABLE 47. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

WORK GRCOMP Component Component declaration

62

14 DIV32 - Signed/unsigned 64/32 divider module

14.1 Overview

The divider module performs signed/unsigned 64-bit by 32-bit division. It implements the radix-2
non-restoring iterative division algorithm. The division operation takes 36 clock cycles. The
divider leaves no remainder. The result is rounded towards zero. Negative result, zero result and
overflow (according to the overflow detection method B of SPARC V8 Architecture manual) are
detected.

14.2 Operation

The division is started when ‘1’ is samples on DIVI.START on positive clock edge. Operands are
latched externally and provided on inputs DIVI.Y, DIVI.OP1 and DIVI.OP2 during the whole
operation. The result appears on the outputs during the clock cycle following the clock cycle after
the DIVO.READY was asserted. Asserting the HOLD input at any time will freeze the operation,
until HOLDN is de-asserted.

14.3 Signal description

The divider module signals are described in table 48.

TABLE 48. Divider module signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

HOLDN N/A Input Hold Low

DIVI Y[32:0] Input Dividend - MSB part

Y[32] - Sign bit

Y[31:0] - Dividend MSB part in 2’s comple-
ment format

High

OP1[32:0] Dividend - LSB part

OP1[32] - Sign bit

OP1[31:0] - Dividend LSB part in 2’s comple-
ment format

High

FLUSH Flush current operation High

SIGNED Signed division High

START Start division High

DIVO READY Output The result is available one clock after the ready
signal is asserted.

High

NREADY Not used -

ICC[3:0] Condition codes

ICC[3] - Negative result

ICC[2] - Zero result

ICC[1] - Overflow

ICC[0] - Not used. Always ‘0’.

High

RESULT[31:0] Result High

63

14.4 Library dependencies

Table 49 shows libraries required when instantiating the divider module.

14.5 Model interface

The divider unit has the following component declaration.
component div32
port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 holdn : in std_ulogic;
 divi : in div32_in_type;
 divo : out div32_out_type
);
end component;

14.6 Example instantiation

The VHDL-code below shows how the divider module can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal divi : div32_in_type;
signal divo : div32_out_type;

begin

div0 : div32 port map (rst, clk, holdn, divi, divo);

end;

TABLE 49. Library dependencies

Library Package Imported unit(s) Description

GAISLER ARITH Signals, component Divider module signals, component
declaration

64

15 DSU3 - LEON3 Hardware debug support unit

15.1 Introduction

To simplify debuggingon targethardware,theLEON3 processorimplementsa debug modedur-
ing whichthepipelineis idle andtheprocessoris controlledthroughaspecialdebug interface.The
LEON3DebugSupportUnit (DSU) is usedto controltheprocessorduringdebugmode.TheDSU
actsasanAHB slave andcanbeaccessedby any AHB master. An externaldebug hostcanthere-
fore accessthe DSU throughseveral differentinterfaces,suchasa serialUART (RS232),JTAG,
PCI or ethernet. The DSU supports multi-processor systems and can handle up to 16 processors.

15.2 Operation

ThroughtheDSUAHB slave interface,any AHB mastercanaccesstheprocessorregistersandthe
contentsof the instructiontracebuffer. The DSU control registerscanbe accessedat any time,
while theprocessorregisters,cachesandtracebuffer canonly beaccessedwhentheprocessorhas
entereddebug mode.In debug mode,theprocessorpipelineis heldandtheprocessorstatecanbe
accessed by the DSU. Entering the debug mode can occur on the following events:

• executing a breakpoint instruction (ta 1)
• integer unit hardware breakpoint/watchpoint hit (trap 0xb)
• rising edge of the external break signal (DSUBRE)
• setting the break-now (BN) bit in the DSU control register
• a trap that would cause the processor to enter error mode
• occurrence of any, or a selection of traps as defined in the DSU control register
• after a single-step operation
• one of the processors in a multiprocessor system has entered the debug mode
• DSU breakpoint hit

Processor(s)
LEON3Processor(s)

LEON3
Unit

AMBA AHB BUS

Debug Support

AHB Slave I/F

Debug I/F

AHB Master I/F

Figure 27. LEON3/DSU Connection

Ethernet

DEBUG HOST

Processor
LEON3Processor(s)

LEON3

JTAGPCIRS232

1
-

The debug mode can only be entered when the debug support unit is enabled through an external
pin (DSUEN). When the debug mode is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)
• an output signal (DSUACT) is asserted to indicate the debug state
• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog
The instruction that caused the processor to enter debug mode is not executed, and the processor
state is kept unmodified. Execution is resumed by clearing the BN bit in the DSU control register
or by de-asserting DSUEN. The timer unit will be re-enabled and execution will continue from the
saved PC and nPC. Debug mode can also be entered after the processor has entered error mode,
for instance when an application has terminated and halted the processor. The error mode can be
reset and the processor restarted at any address.

When a processor is in the debug mode, an access to ASI diagnostic area is forwarded to the IU
which performs access with ASI equal to value in the DSU ASI register and address consisting of
20 LSB bits of the original address.

15.3 AHB Trace Buffer

The AHB trace buffer consists of a circular buffer that stores AHB data transfers. The address,
data and various control signals of the AHB bus are stored and can be read out for later analysis.
The trace buffer is 128 bits wide, the information stored is indicated in the table below:

In addition to the AHB signals, the DSU time tag counter is also stored in the trace.

The trace buffer is enabled by setting the enable bit (EN) in the trace control register. Each AHB
transfer is then stored in the buffer in a circular manner. The address to which the next transfer is
written is held in the trace buffer index register, and is automatically incremented after each trans-
fer. Tracing is stopped when the EN bit is reset, or when a AHB breakpoint is hit. Tracing is tem-
porarily suspended when the processor enters debug mode. Note that neither the trace buffer
memory nor the breakpoint registers (see below) can be read/written by software when the trace
buffer is enabled.

TABLE 50. AHB Trace buffer data allocation

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Not used

125:96 Time tag DSU time tag counter

95 - Not used

94:80 Hirq AHB HIRQ[15:1]

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR

66

15.4 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The
instruction trace buffer is located in the processor, and read out via the DSU. The trace buffer is
128 bits wide, the information stored is indicated in the table below:

During tracing, one instruction is stored per line in the trace buffer with the exception of multi-
cycle instructions. Multi-cycle instructions are entered two or three times in the trace buffer. For
store instructions, bits [63:32] correspond to the store address on the first entry and to the stored
data on the second entry (and third in case of STD). Bit 126 is set on the second and third entry to
indicate this. A double load (LDD) is entered twice in the trace buffer, with bits [63:32] containing
the loaded data. Multiply and divide instructions are entered twice, but only the last entry contains
the result. Bit 126 is set for the second entry. For FPU operation producing a double-precision
result, the first entry puts the MSB 32 bits of the results in bit [63:32] while the second entry puts
the LSB 32 bits in this field.

When the processor enters debug mode, tracing is suspended. The trace buffer and the trace buffer
control register can be read and written while the processor is in the debug mode. During the
instruction tracing (processor in normal mode) the trace buffer and the trace buffer control register
can not be accessed.

TABLE 51. Instruction trace buffer data allocation

Bits Name Definition

127 - Unused

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-
cycle instruction (LDD, ST or FPOP)

125:96 Time tag The value of the DSU time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are
always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error
mode

31:0 Opcode Instruction opcode

1
-

15.5 DSU memory map

The DSU memory map can be seen in table 52 below. In a multiprocessor systems, the register
map is duplicated and address bits 27 - 24 are used to index the processor.

The addresses of the IU registers depends on how many register windows has been implemented:

• %on : 0x300000 + (((psr.cwp * 64) + 32 + n*4) mod (NWINDOWS*64))
• %ln : 0x300000 + (((psr.cwp * 64) + 64 + n*4) mod (NWINDOWS*64))
• %in : 0x300000 + (((psr.cwp * 64) + 96 + n*4) mod (NWINDOWS*64))
• %gn : 0x300000 + (NWINDOWS*64)
• %fn : 0x301000 + n*4

TABLE 52. DSU memory map

Address offset Register

0x000000 DSU control register

0x000008 Time tag counter

0x000020 Break and Single Step register

0x000024 Debug Mode Mask register

0x000040 AHB trace buffer control register

0x000044 AHB trace buffer index register

0x000050 AHB breakpoint address 1

0x000054 AHB mask register 1

0x000058 AHB breakpoint address 2

0x00005c AHB mask register 2

0x100000 - 0x110000 Instruction trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x110000 Intruction Trace buffer control register

0x200000 - 0x210000 AHB trace buffer (..0: Trace bits 127 - 96, ..4: Trace bits 95 - 64,
..8: Trace bits 63 - 32, ..C : Trace bits 31 - 0)

0x300000 - 0x300FFC IU register file

0x301000 - 0x30107C FPU register file

0x400000 - 0x4FFFFC IU special purpose registers

0x400000 Y register

0x400004 PSR register

0x400008 WIM register

0x40000C TBR register

0x400010 PC register

0x400014 NPC register

0x400018 FSR register

0x40001C CPSR register

0x400020 DSU trap register

0x400024 DSU ASI register

0x400040 - 0x40007C ASR16 - ASR31 (when implemented)

0x700000 - 0x7FFFFC ASI diagnostic access (ASI = value in DSU ASI register, address = address[19:0])
ASI = 0x9 : Local instruction RAM
ASI = 0xB : Local data RAM
ASI = 0xC : Instruction cache tags
ASI = 0xD : Instruction cache data
ASI = 0xE : Data cache tags
ASI = 0xF : Instruction cache data

68

15.6 DSU registers

15.6.1 DSU control register

The DSU is controlled by the DSU control register:

.

[0]: Trace enable (TE). Enables instruction tracing. If set the instructions will be stored in the
trace buffer. Remains set when then processor enters debug or error mode.

[1]: Break on error (BE) - if set, will force the processor to debug mode when the processor
would have entered error condition (trap in trap).

[2]: Break on IU watchpoint (BW)- if set, debug mode will be forced on a IU watchpoint (trap
0xb).

[3]: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint
instruction (ta 1) is executed.

[4]: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
[5]: Break on error traps (BZ) - if set, will force the processor into debug mode on all except the

following traps: priviledged_instruction, fpu_disabled, window_overflow,
window_underflow, asynchronous_interrupt, ticc_trap.

[6]: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).
[7]: EB - value of the external DSUBRE signal (read-only)
[8]: EE - value of the external DSUEN signal (read-only)
[9]: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. If

written with ‘1’, it will clear the error and halt mode.
[10]: Processor halt (HL). Returns ‘1’ on read when processor is halted. If the processor is in

debug mode, setting this bit will put the processor in halt mode.

15.6.2 DSU Break and Single Step register

This register is used to break or single step the processor(s). This register controls all processors in
a multi-processor system, and is only accessible in the DSU memory map of processor 0.

[15:0] : Break now (BNx) -Force processor x into debug mode if the Break on S/W breakpoint (BS)
bit in the processors DSU control register is set. If cleared, the processor x will resume
execution.

[31:16] : Single step (SSx) - if set, the processor x will execute one instruction and return to debug
mode. The bit remains set after the processor goes into the debug mode.

Figure 28. DSU control register

012345731

TE

8910

BEBWBSBXBZEBEEPE

6

DMHL

Figure 29. DSU Break and Single Step register

031

BN0

1

BN1

2

BN2

15

BN15

16

SS0

17

SS1

18

SS2SS15

1
-

15.6.3 DSU Debug Mode Mask Register

When one of the processors in a multiprocessor LEON3 system enters the debug mode the value
of the DSU Debug Mode Mask register determines if the other processors are forced in the debug
mode. This register controls all processors in a multi-processor system, and is only accessible in
the DSU memory map of processor 0.

[15:0] : Enter debug mode (EDx) - Force processor x into debug mode if any of processors in a
multiprocessor system enters the debug mode. If 0, the processor x will not enter the debug
mode.

[31:16]: Debug mode mask. If set, the corresponding processor will not be able to force running
processors into debug mode even if it enters debug mode.

15.6.4 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that caused the
processor to enter debug mode. When debug mode is force by setting the BN bit in the DSU con-
trol register, the trap type will be 0xb (hardware watchpoint trap).

[11:4]: 8-bit SPARC trap type
[12]: Error mode (EM). Set if the trap would have cause the processor to enter error mode.

15.6.5 Trace buffer time tag counter

The trace buffer time tag counter is incremented each clock as long as the processor is running.
The counter is stopped when the processor enters debug mode, and restarted when execution is
resumed. The value is used as time tag in the instruction and AHB trace buffer.

The width of the timer (up to 30 bits) is configurable through the DSU generic port.

15.6.6 DSU ASI register

The DSU can perform diagnostic accesses to different ASI areas. The value in the ASI diagnostic
access register is used as ASI while the address is supplied from the DSU.

Figure 30. DSU Debug Mode Mask register

031

ED0

1

ED1

2

ED2

15

ED15 . . .

1617

DM1

18

DM2 DM0. . .DM15

Figure 31. DSU trap register

03431

RESERVED 0000

11

TRAP TYPE

12

EM

13

Figure 32. Trace buffer time tag counter

031

DSU TIME TAG VALUE

29

00

Figure 33. ASI diagnostic access register

031 7

ASI

70

[7:0]: ASI to be used on diagnostic ASI access

15.6.7 AHB Trace buffer control register

The AHB trace buffer is controlled by the AHB trace buffer control register:

[0]: Trace enable (EN). Enables the trace buffer.
[1]: Delay counter mode (DM). Indicates that the trace buffer is in delay counter mode.
[31:16] Trace buffer delay counter (DCNT). Note that the number of bits actually implemented

depends on the size of the trace buffer.

15.6.8 AHB trace buffer index register

The AHB trace buffer index register contains the address of the next trace line to be written.

31:4 Trace buffer index counter (INDEX). Note that the number of bits actually implemented
depends on the size of the trace buffer.

15.6.9 AHB trace buffer breakpoint registers

The DSU contains two breakpoint registers for matching AHB addresses. A breakpoint hit is used
to freeze the trace buffer by automatically clearing the enable bit. Freezing can be delayed by pro-
gramming the DCNT field in the trace buffer control register to a non-zero value. In this case, the
DCNT value will be decremented for each additional trace until it reaches zero, after which the
trace buffer is frozen. A mask register is associated with each breakpoint, allowing breaking on a
block of addresses. Only address bits with the corresponding mask bit set to ‘1’ are compared dur-
ing breakpoint detection. To break on AHB load or store accesses, the LD and/or ST bits should be
set.

[31:2]: Breakpoint address (bits 31:2)
[31:2]: Breakpoint mask (see text)
[1]: LD - break on data load address
[0]: ST - beak on data store address

Figure 34. AHB trace buffer control register

0131

DCNT ENRESERVED

16

DM

Figure 35. AHB trace buffer index register

0331

INDEX

4

0000

01231

LD

BADDR[31:2]
Break address reg.

0231

STBMASK[31:2]
Break mask reg.

Figure 36. Trace buffer breakpoint registers

0

1

0

1
-

15.6.10 Instruction trace control register

The instruction trace control register contains a pointer that indicates the next line of the instruc-
tion trace buffer to be written.

[15:0] Instruction trace pointer. Note that the number of bits actually implemented depends on the
size of the trace buffer.

15.7 Configuration and synthesis

15.7.1 Plug&play configuration

The LEON3 DSU is identified with the following vendor and device ID’s:

15.7.2 Configuration options

The table below describes the generic parameters:

TABLE 53. LEON3 DSU plug&play ID

Vendor ID Device ID

0x01 (GAISLER) 0x017

TABLE 54. DSU Generic parameters

Generic Description Range Default

hindex AHB slave index 0 - AHBSLVMAX-1 0

haddr AHB slave address (AHB[31:20]) 0 - 16#FFF# 16#900#

hmask AHB slave address mask 0 - 16#FFF# 16#F00#

ncpu Number of attached processors 1 - 16 1

tbits Number of bits in the time tag counter 2 - 30 30

tech Memory technology for trace buffer RAM 0 - TECHMAX-1 0 (inferred)

kbytes Size of trace buffer memory in Kbytes. A
value of 0 will disable the trace buffer func-
tion.

0 - 64 0 (disabled)

Figure 37. Instruction trace control register

031

RESERVED IT POINTER

16

72

15.7.3 Signal description

15.7.4 Library dependencies

Table shows libraries that the DSU module depends on.

15.7.5 Model interface

The DSU has the following component declaration:
component dsu
 generic (
 hindex : integer := 0;
 haddr : integer := 16#900#;
 hmask : integer := 16#f00#;
 ncpu : integer := 1;
 tbits : integer := 30;
 tech : integer := 0;
 irq : integer := 0;
 kbytes : integer := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbmi : in ahb_mst_in_type;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 dbgi : in l3_debug_out_vector(0 to NCPU-1);
 dbgo : out l3_debug_in_vector(0 to NCPU-1);
 dsui : in dsu_in_type;
 dsuo : out dsu_out_type
);
 end component;

TABLE 55. Signal description

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBMI * Input AHB master input signals -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

DBGI - Input Debug signals from LEON3 -

DBGO - Output Debug signals to LEON3 -

DSUI ENABLE Input DSU enable High

BREAK Input DSU break High

DSUO ACTIVE Output Debug mode High

* see GRLIB IP Library User’s Manual

TABLE 56. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER LEON3 Component, signals DSU3 component declaration, signals declaration

1
-

15.7.6 Example instantiation

The DSU is always instantiated with at least one LEON3 processor. It is suitable to use a generate
loop for the instantiation of the processors and DSU and showed below:

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

.

.
constant NCPU : integer := 1; -- select number of processors

signal leon3i : l3_in_vector(0 to NCPU-1);
signal leon3o : l3_out_vector(0 to NCPU-1);
signal irqi : irq_in_vector(0 to NCPU-1);
signal irqo : irq_out_vector(0 to NCPU-1);

signal dbgi : l3_debug_in_vector(0 to NCPU-1);
signal dbgo : l3_debug_out_vector(0 to NCPU-1);

signal dsui : dsu_in_type;
signal dsuo : dsu_out_type;

.

.

begin

cpu : for i in 0 to NCPU-1 generate
 u0 : leon3s -- LEON3 processor
 generic map (ahbndx => i, fabtech => FABTECH, memtech => MEMTECH)
 port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, ahbsi, ahbso,

 irqi(i), irqo(i), dbgi(i), dbgo(i));
 irqi(i) <= leon3o(i).irq; leon3i(i).irq <= irqo(i);
end generate;

dsu0 : dsu -- LEON3 Debug Support Unit
 generic map (ahbndx => 2, ncpu => NCPU, tech => memtech, kbytes => 2)
 port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), dbgo, dbgi, dsui, dsuo);

dsui.enable <= dsuen; dsui.break <= dsubre; dsuact <= dsuo.active;

74

16 EDCL - Ethernet Debug communication Link

16.1 Overview

The Ethernet Debug Communication Link provides access to an on-chip AHB bus through Ether-
net. It uses the UDP, IP and ARP protocols for the transmissions. A custom application layer pro-
tocol is also used, implementing an ARQ algorithm and the AHB instructions. Through this link, a
read or write transfer can be generated to any address on the AHB bus. A block diagram of the
hardware module is found in figure 38.

16.2 Operation

16.2.1 Hardware module

The EDCL has external AHB and MII interfaces. The MII interface should be connected to a PHY
which handles the physical signaling on the Ethernet medium. Packets arriving on the Ethernet
conforming to the EDCL protocol are converted to AHB transfers. The transfers are performed as
incremental bursts of unspecified length with word size (32-bit). The EDCL can insert busy cycles
in the middle of bursts.

Internally, the EDCL consists of a control-unit, an AHB-bridge, an on-chip RAM and an Ethernet
MAC. The Ethernet MAC is from Opencores and handles the Ethernet communication. It reads
and writes frames from the on-chip RAM which is used as a temporary buffer. The control-unit
initiates transmissions and receptions in the MAC and processes all packets. It checks packet
types, IP-addresses, UDP ports and handles the ARQ protocol. Finally, it performs the AHB trans-
fers on the external AHB bus when a correct EDCL packet has been received.

16.2.2 Transmission protocol

The EDCL accepts Ethernet frames containing IP or ARP data. ARP is handled according to the
protocol specification with no exceptions.

IP packets carry the actual AHB transfer commands. The EDCL expects an Ethernet frame con-
taining IP, UDP and the EDCL specific application layer parts. Table 57 shows the IP packet
required by the EDCL. The contents of the different protocol headers can be found in most text
about TCP/IP.

The following is required for successful communication: A correct destination MAC address as
set by the generics. This is checked by the Ethernet MAC. The control-unit then checks that either

TABLE 57. The IP packet expected by the EDCL.

Ethernet

Header

IP

Header

UDP

Header

2 B

Offset

4 B

Control word

4 B

Address

Data 0 - 242

4B Words

Ethernet

CRC

Figure 38. EDCL block diagram

AHB Control-unit
and

 AHB-bridge

EDCL

Ethernet
 MAC

On-chip
RAM

Internal AHB MII

75

an ARP or an IP packet is received by checking that the Ethernet type field is 0x0806 or
0x0800. The IP-address is then compared with the value determined by the generics for a
match. The IP-header checksum and identification fields are not checked but the transmitted
identification field is incremented for each frame. There are a few restrictions on the IP-header
fields. The version must be four and the header size must be 5 B (no options). Type-of-service,
fragment-offset and flags fields must be set to zero. The protocol field must always be 0x11
indicating a UDP packet.

The EDCL only provides one service at the moment and it is therefore not required to check
the UDP port number. It should still be specified (generics) for compatibility reasons. UDP
checksums are not used and the checksum field is set to zero in the replies.

The UDP data field contains the EDCL application protocol fields. Table 58 shows the appli-
cation protocol fields (data field excluded) in packets received by the EDCL. The 16-bit offset
is used to align the rest of the application layer data to word boundaries in memory and can
thus be set to any value. The R/W field determines whether a read (0) or a write(1) should be

performed. The length field contains the number of bytes to be read or written. If R/W is one
the data field shown in Table 57 contains the data to be written. If R/W is zero the data field is
empty in the received packets. Table 59 shows the application layer fields of the replies from
the EDCL. The length field is always zero for replies to write requests. For read requests it
contains the number of bytes of data contained in the data field.

The EDCL implements a Go-Back-N algorithm providing reliable transfers. The 14-bit
sequence number in received packets are checked against an internal counter for a match. If
they do not match, no operation is performed and the ACK/NAK field is set to 1 in the reply
frame. The reply frame contains the internal counter value in the sequence number field. If the
sequence number matches, the operation is performed, the internal counter is incremented, the
internal counter value is stored in the sequence number field and the ACK/NAK field is set to
0 in the reply. The length field is always set to 0 for ACK/NAK=1 frames. The unused field is
not checked and is copied to the reply. It can thus be set to hold for example some extra id bits
if needed.

TABLE 58. The EDCL application layer fields in received frames.

16-bit Offset 14-bit Sequence number 1-bit R/W 10-bit Length 7-bit Unused

TABLE 59. The EDCL application layer fields in transmitted frames.

16-bit Offset 14-bit sequence number 1-bit ACK/NAK 10-bit Length 7-bit Unused

76

16.3 Configuration options

The EDCL module has the following configuration options (VHDL generics):

*) Not all addresses are allowed and most NICs and protocol implementations will discard frames
with illegal addresses silently. Consult network literature if unsure about the addresses.

**) Some port numbers (< 5000) are used by well known services and can cause problems when
connected from a host PC.

TABLE 60. EDCL configuration options (VHDL generics)

Generic Function Allowed range Default

mstndx AHB master index 0 - NAHBMST-1 0

macaddrh Most significant 3 B of the MAC address 0 - 16#FFFFFF#* 16#0000
5E#

macaddrl Least significant 3 B of the MAC address. 0 - 16#FFFFFF#* 16#0000
00#

ipaddrh Most significant 2 B of the IP address. 0 - 16#FFFF#* 16#C0A
8#

ipaddrl Least significant 2 B of the IP address. 0 - 16#FFFF#* 16#0035
#

udpport UDP port number. 0 - 16#FFFF#** 8000

extip Use the value of the edcli.lsbip signal to determine
the lowest four bits of the ip address. The upper 28
bits are taken from the generics.

0 - 1 0

fullduplex Use full-duplex mode for Ethernet transmissions
(also affected by mdioenabled and autoneg).

0 - 1 0

memtech Memory technology for on-chip RAM and FIFOs. 0 - NTECH 0

bufsize Select the size of the on-chip RAM in kbytes.
Only power of 2 values are allowed.

0 - 64 4

autoneg Let the PHY negotiate the operating mode auto-
matically instead of forcing it to the mode selected
by the generics.

0 - 1 0

speed Enable 100 Mbit mode. Only used when autoneg
is set to 0.

0 - 1 0

mdioen-
abled

Determines whether the fullduplex generic or the
value read from the PHY status reg should be used
to set the duplex mode. 0 : use generic. 1: use read
value. This generic is only used when autoneg is
set to 1.

0 - 1 0

phyadr Address of the PHY chip on the MDIO interface. 0 - 31 0

phyrstcls Number of clock cycles required for the PHY to
become operational after rst.

0 - (232-1) 100000

sim Use simulation mode. Skips waitstate for phy
reset, ignores interframe gaps, initializes ARQ
protocol counter. This simplifies and increases
speed in simulations. This generic does not affect
synthesis.

0 - 1 0

77

16.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x005. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

16.5 Registers

The EDCL module does not implement any registers mapped in AHB address space.

16.6 Signal description

EDCL signals are described in Table 61.

*) See AMBA-AHB part in the GRLIB manual.

**) See the ETH_AHB section in the GRLIB manual.

16.7 Library dependencies

Table 62 shows libraries that should be used when instantiating an EDCL.

16.8 EDCL instantiation

This examples shows how an EDCL can be instantiated.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler.net.all;

entity edcl_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- Ethernet signals
 ethi : in std_ulogic;

 etho : out std_ulogic
);

TABLE 61. EDCL link signals

Signal name Field Type Function Active

RSTN N/A Input Reset Low

CLK N/A Input System clock -

EDCLI LSBIP[3:0] Input Used as the least significant bits in the IP-
address if the extip generic is set to 1.

-

AHBMIM * Input AHB master in signals -

AHBMOM * Input AHB master out signals -

ETHI ** Input Ethernet input signals -

ETHO ** Output Ethernet output signals -

TABLE 62. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER NET Signals, component Ethernet signals and EDCL component

78

end;

architecture rtl of eth_arb_ex is
 signal edcli : edcl_in_type;

-- AMBA signals
signal ahbmi : ahb_mst_in_type;

 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
begin

 -- AMBA Components are instantiated here
 ...

-- EDCL
e0 : edcl generic map (mstndx => 2, macaddrh => 16#00005E#, macaddrl => #000001#,
 ipaddrh => 16#C0A8#, ipaddrl => 16#0033#, udpport => 8000, memtech => inferred,
 speed => 0)
 port map (rstn, clk, edcli, ahbmi, ahbmo(2), ethi, etho);
edcli.lsbip <= "0000";

end;

79

80

17 ETH_ARB - Ethernet PHY arbiter

17.1 Overview

The Ethernet PHY arbiter provides access to a single physical Ethernet medium for two Media
Access Controllers (MACs). It handles both half- and full-duplex modes. The MACs are con-
nected to separate MII interfaces which the ETH_ARB the arbitrates to a single MII interface. A
block diagram is shown in figure 39.

17.2 Operation

17.2.1 Arbitration method

The ETH_ARB provides two MII interfaces to which Ethernet MACs can be connected. These
interfaces are identical to the one provided directly from a PHY. There are two different arbitration
algorithms: one for full-duplex mode and one for half-duplex. The mode is selected with a VHDL
generic and must correspond to the operating mode on the physical medium. In half-duplex mode,
both MACs have equal priority and the arbiter uses the normal CSMA-CD protocol for selecting
which MAC gains access to the medium.

In full-duplex mode, one MAC has priority (master) over the other (slave). When the master unit
wants to transmit, the arbiter stops any ongoing transmissions from the slave MAC and inserts an
interframe gap. Since the last 4 B of the interrupted frame will be interpreted as the CRC value, it
will be incorrect (with a high probability) and therefore discarded at the receiving end. The master
is allowed to transmit after the interframe gap and cannot be interrupted by the slave. The reason
for this solution is that there should be no contention of the medium on a full-duplex network link
and therefore Ethernet does not provide any signals for delaying a MAC transmission in this
mode.

Since the arbiter will cause lost frames due to higher contention of the medium in half-duplex and
due to the arbitration protocol in full-duplex, the higher level protocols must provide reliable
transmissions (for example ARQ) with long enough time-outs. Normally, this will not be a prob-
lem and the standard protocols such as TCP can be used. Half-duplex normally works fine without
any special care, but full-duplex can cause problems for the slave since its transmissions can
always be interrupted. If the master transmits for a long period without pauses the slave can time-
out. This has not yet been seen in normal operation but must be considered.

The MDIO interface is not arbitrated and one MAC has constant access to it. The mdiomaster
generic selects which of the MACs has access.

Figure 39. Ethernet PHY arbiter block diagram.

PHY

MACMAC

ETH_ARB

MII

MII MII

Ethernet Medium

81

17.3 Configuration options

ETH_ARB has the following configuration options (VHDL generics):

17.4 Registers

ETH_ARB does not implement any user programmable registers.

17.5 Signal description

ETH_ARB signals are described in table 64.

*) See ETHI and ETHO definitions

TABLE 63. ETH_ARB configuration options (VHDL generics)

Generic Function Allowed range Default

fullduplex Select full-duplex mode arbitration. 0 - 1 0

mdiomas-
ter

Select which of the MACs that has access to the
MDIO interface. 0 selects the MAC connected to
dethi/detho and 1 selects the MAC connected to
methi/metho.

0 - 1 0

TABLE 64. ETH_ARB signals

Signal name Field Type Function Active

RST N/A Input Reset Low

ETHI TX_CLK Input Transmit clock -

RX_CLK Input Receive clock -

RXD[3:0] Input Receive data -

RX_DV Input Receive data valid High

RX_ER Input Receive data error High

RX_COL Input Collision detect High

RX_CRS Input Carrier sense High

MDIO_I Input MDIO input data -

ETHO RESET Output Ethernet Reset High

TXD[3:0] Output Transmit data -

TX_EN Output Transmit enable High

TX_ER Output Transmit error High

MDC Output MDIO clock -

MDIO_O Output MDIO output data -

MDIO_OE Output MDIO output enable High

METHI N/A* Input MII output signals from master MAC -

METHO N/A* Output MII input signals to master MAC -

DETHI N/A* Input MII output signals from slave MAC -

DETHO N/A* Output MII input signals to slave MAC -

82

17.6 Library dependencies

Table 65 shows libraries that should be used when instantiating an ETH_ARB.

17.7 ETH_ARB instantiation

This examples shows how an Ethernet PHY arbiter can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;

library gaisler;
use gaisler.net.all;

entity eth_arb_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- Ethernet signals
 ethi : in std_ulogic;

 etho : out std_ulogic
);
end;

architecture rtl of eth_arb_ex is
 signal edcli : edcl_in_type;

 -- MII signals
 signal ethi1, ethi2 : eth_in_type;
 signal etho1, etho2 : eth_out_type;

-- AMBA signals
signal ahbsi : ahb_slv_in_type;

 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
begin

 -- AMBA Components are instantiated here
 ...

 -- Ethernet MAC
 e0 : eth_oc generic map(mstndx => 1, slvndx => 1, ioaddr => 16#B00#,
 irq => 12, memtech => inferred)
port map(rstn, clk, ahbsi, ahbso(1), ahbmi, ahbmo(1), ethi1, etho1);

-- EDCL
e1 : edcl generic map (mstndx => 2, macaddrh => 16#00005E#, macaddrl => #000000#,
 ipaddrh => 16#C0A8#, ipaddrl => 16#0033#, udpport => 8000, memtech => inferred,
 speed => 0)

TABLE 65. Library dependencies

Library Package Imported unit(s) Description

GAISLER NET Signals, component Ethernet signals and component declaration

83

 port map (rstn, clk, edcli, ahbmi, ahbmo(2), ethi2, etho2);
edcli.lsbip <= "0000";

-- ETH_ARB
 ea0 : eth_arb generic map(fullduplex => 0, mdiomaster => 1)
 port map(rstn, ethi, etho, etho1, ethi1, etho2, ethi2);

end;

84

18 ETH_OC - GRLIB wrapper for Opencore 10/100 Mbit Ethernet core

18.1 Overview

ETH_OC is GRLIB wrapper for the Ethernet MAC from Opencores. It provides a bridge between
AMBA AHB and the Wishbone bus, providing both AHB master and slave interfaces. The AHB
slave interface is mapped in the AHB I/O space using the GRLIB plug&play functionality, and
used to access the Ethernet MAC registers. The AHB master interface is used by the Ethernet
MAC to read and write ethernet packets to buffer memory. The ethernet core interrupt is routed to
the AHB interrupt bus, and the interrupt number is selected through the irq generic.

The ETH_OC wrapper uses a parametrizable SYNCRAM core to implement the RAM used for
RX/TX descriptors. The implementation of the RAM is set by the memtech generic, and assures
portability between any supported technology.

Limitations: when using the ETH_OC, be aware of the following limitations in the Opencores eth-
ernet MAC:

• Full-duplex is not working correctly, the core and PHY should be programmed for half-duplex

• The AHB frequency must be larger than twice the PHY frequency. This means that the AHB frequency
must be higher than 5 MHz for 10 Mbit operation, and 50 MHz for 100 Mbit operation.

The data sheet for the Ethernet MAC can be found in lib/work/opencores/doc/ethernet.pdf.

18.2 Configuration options

The ETH_OC wrapper has the following configuration options (VHDL generics):

TABLE 66. VHDL Generics

Generic Function Allowed range Default

mstndx AHB master bus index 0 - NAHBMST-1 0

slvndx AHB slave bus index 0 - NAHBSLV-1 0

ioaddr The MSB address of the I/O area. Sets the 12 most
significant bits in the 32-bit AHB address.

0 - 16#FFF# 16#FFF#

iomask The I/O area address mask. Sets the size of the I/O
area and the start address together with ioaddr.

0 - 16#FFF# 16#FF0#

irq Interrupt number 0 - NAHBIRQ-1 0

memtech Technology to implement on-chip RAM 0 0 - NTECH

Figure 40. ETH_OC wrapper block diagram

AHB slave I/F

AMBA AHB

Opencores Ethernet MAC

MMI

ETH_OC Wrapper

AHB master I/F

IRQ

SyncramPHY

85

18.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x005. For description of
vendor and device ids, see GRLIB IP Library User’s Manual.

18.4 Signal descriptions

18.5 Library dependencies

Table 68 shows libraries that should be used when instantiating the CAN AHB interface.

18.6 Component declaration

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.net.all;
use work.grcomp.all;

 component eth_oc
 generic (
 mstndx : integer := 0;
 slvndx : integer := 0;
 ioaddr : integer := 16#000#;
 iomask : integer := 16#FF0#;
 irq : integer := 0;
 memtech : integer := inferred);
 port (
 rst : in std_logic;
 clk : in std_logic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 ahbmi : in ahb_mst_in_type;
 ahbmo : out ahb_mst_out_type;
 ethi : in eth_in_type;
 etho : out eth_out_type);
 end component;

TABLE 67. ETH_OC signals

Signal name Type Function Active

CLK Input AHB clock

RST Input Reset Low

AHBSI Input AMBA AHB slave inputs -

AHBSO Output AMBA AHB slave outputs

AHBSI Input AMBA AHB master inputs

AHBSO Output AMBA AHB master outputs

ETHI Input Ethernet MMI inputs

ETHO Output Ethernet MMI outputs

*1) see AMBA specification

TABLE 68. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types AMBA signal type definitions

GAISLER NET Types MMI interface types

WORK GRCOMP Component Component declaration

86

-- types
type eth_in_type is record
 tx_clk : std_ulogic;
 rx_clk : std_ulogic;
 rxd : std_logic_vector(3 downto 0);
 rx_dv : std_ulogic;
 rx_er : std_ulogic;
 rx_col : std_ulogic;
 rx_crs : std_ulogic;
 mdio_i : std_ulogic;
 end record;

 type eth_out_type is record
 reset : std_ulogic;
 txd : std_logic_vector(3 downto 0);
 tx_en : std_ulogic;
 tx_er : std_ulogic;
 mdc : std_ulogic;
 mdio_o : std_ulogic;
 mdio_oe : std_ulogic;
 end record;

18.7 Instantiation example

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.net.all;
use work.grcomp.all;
use gaisler.pads.all;

signal ethi : eth_in_type;
signal etho : eth_out_type;
.
.

-- Ethernet core

e1 : eth_oc generic map (mstndx => 1, slvndx => 5,
ioaddr => CFG_ETHIO, irq => 12, memtech => memtech)
 port map (rst => rstn, clk => clkm, ahbsi => ahbsi, ahbso => ahbso(5),
 ahbmi => ahbmi, ahbmo => ahbmo(1), ethi => ethi, etho => etho);

-- PADS for external PHY

emdio_pad : iopad generic map (tech => padtech)
 port map (emdio, etho.mdio_o, etho.mdio_oe, ethi.mdio_i);
 etxc_pad : inpad generic map (tech => padtech)
port map (etx_clk, ethi.tx_clk);
 erxc_pad : inpad generic map (tech => padtech)
port map (erx_clk, ethi.rx_clk);
 erxd_pad : inpadv generic map (tech => padtech, width => 4)
port map (erxd, ethi.rxd);
 erxdv_pad : inpad generic map (tech => padtech)
port map (erx_dv, ethi.rx_dv);
 erxer_pad : inpad generic map (tech => padtech)
port map (erx_er, ethi.rx_er);
 erxco_pad : inpad generic map (tech => padtech)

87

port map (erx_col, ethi.rx_col);
 erxcr_pad : inpad generic map (tech => padtech)
port map (erx_crs, ethi.rx_crs);

 etxd_pad : outpadv generic map (tech => padtech, width => 4)
port map (etxd, etho.txd);
 etxen_pad : outpad generic map (tech => padtech)
port map (etx_en, etho.tx_en);
 etxer_pad : outpad generic map (tech => padtech)
port map (etx_er, etho.tx_er);
 emdc_pad : outpad generic map (tech => padtech)
port map (emdc, etho.mdc);

88

19 FTAHBRAM - On-chip SRAM with EDAC and AHB interface

19.1 Overview

The FTAHBRAM is a version of the normal AHBRAM core with added Error Detection And
Correction (EDAC). One error is corrected and two errors are detected, which is done by using a
(32, 7) BCH code. Configuration is possible through an APB interface. Some of the features avail-
able are: single error counter, diagnostic reads and writes and autoscrubbing (automatic correction
of single errors during reads). Figure 1 shows a block diagram of the internals of the RAM.

19.2 Operation

The on-chip fault tolerant RAM is accessed through an AHB slave interface and the memory
address range is configurable with VHDL generics (see section 4). As for the standard AHB
RAM, the memory technology and size is configurable through the tech and kbytes generics. The
minimum size is 1 kb and the maximum is technology dependent but the values can only be
increased in binary steps.

Run-time configuration is done by writing to a configuration register accessed through an APB
interface. The address of the interface and the available options are configured with VHDL gener-
ics. The fields of the configuration register are shown in detail in section 6. The EDAC functional-
ity can be completely removed by setting the edacen generic to zero during synthesis. The APB
interface is also removed since it is redundant without EDAC.

The following can be configured during run-time: EDAC can be enabled and disabled. When it is
disabled, reads and writes will behave the same as on the standard AHB RAM. Read and write
diagnostics can be controlled through separate bits. The single error counter can be reset.

If EDAC is disabled (EN bit in configuration register set to 0) write data is passed directly to the
RAM area and read data will appear on the AHB bus immediately after it arrives from memory. If
EDAC is enabled write data is passed to an encoder which outputs a 7 - bit checksum. The check-
sum is stored together with the data in memory and the whole operation is performed without any
added waitstates. This applies to word stores (32 - bit). If a byte or halfword store is performed,
the whole word to which the byte or halfword belongs must first be read from memory (read -
modify - write). A new checksum is calculated when the new data is placed in the word and both

AHB/APB
Bridge

AHB Bus

APB Bus

AHB SRAM

AHB Slave
Interface

Syncram

Encoding

cbdata

Decoding

data

error

Mux

Configuration Register

Config bits TCB

cb

Mux

Figure 41. The FT AHB RAM block
diagram

Mux

89

data and checksum are stored in memory. This is done with 1 - 2 additional waitstates com-
pared to the non EDAC case.

Reads with EDAC disabled are performed with 0 or 1 waitstates while there could also be 2
waitstates when EDAC is enabled. There is no difference between word and subword reads.
Table 69 shows a summary of the number of waitstates for the different operations with and
without EDAC.

When EDAC is used, the data is decoded the first cycle after it arrives from the memory and
appears on the bus the next cycle if no uncorrectable error is detected. The decoding is done by
comparing the stored checksum with a new one which is calculated from the stored data. This
decoding is also done during the read phase for a subword write. A so-called syndrome is gen-
erated from the comparison between the checksum and it determines the number of errors that
occured. One error is automatically corrected and this situation is not visible on the bus. Two
or more detected errors cannot be corrected so the operation is aborted and the required two
cycle error response is given on the AHB bus (see the AMBA manual for more details). If no
errors are detected data is passed through the decoder unaltered.

As mentioned earlier the AHB RAM provides read and write diagnostics when EDAC is
enabled. When write diagnostics are enabled, the calculated checksum is not stored in memory
during the write phase. Instead, the TCB field from the configuration register is used. In the
same manner, if read diagnostics are enabled, the stored checksum from memory is stored in
the TCB field during a read (and also during a subword write). This way, the EDAC function-
ality can be tested during run-time. Note that checkbits are stored in TCB during reads and
subword writes even if a multiple error is detected.

An additional feature is the single error counter which can be enabled with the errcnten
generic. If it is asserted a single error counter (SEC) field will be present in the configuration
register. It is incremented each time a single databit error is encountered (reads or subword
writes). The number of bits of this counter is set with the cntbits generic. It is accessed from
bits 14 up to cntbits + 13 in the configuration register. Each bit can be reset to zero by writing
a one to it. The counter saturates at the value 2cntbits - 1. Each time a single error is detected the
aramo.ce signal will be driven high for one cycle. This signal should be connected to an AHB
status register which stores information and generates interrupts (see the AHB Status register
documentation for more information).

Autoscrubbing is an error handling feature which is enabled with the autoscrub generic and
cannot be controlled through the configuration register. If enabled, every single error encoun-
tered during a read results in the word being written back with the error corrected and new
checkbits generated. It is not visible externally except for that it can generate an extra wait-
state. This happens if the read is followed by an odd numbered read in a burst sequence of
reads or if a subword write follows. These situations are very rare during normal operation so
the total timing impact is negligible. The aramo.ce signal is normally used to generate inter-
rupts which starts an interrupt routine that corrects errors. Since this is not necessary when
autoscrubbing is enabled, aramo.ce should not be connected to an AHB status register or the
interrupt should be disabled in the interrupt controller.

TABLE 69. Summary of the number of waitstates for the different operations for the AHB RAM.

Operation
Waitstates with EDAC
Disabled

Waitstates with EDAC
Enabled

Read 0 - 1 0 - 2

Word write 0 0

Subword write 0 1 - 2

90

19.3 Configuration options

Table 70 shows the configuration options (VHDL generics) of the FT AHB SRAM.

19.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x050. For description of vendor
and device ids see GRLIB IP Library User’s Manual.

19.5 Registers

Table 71 shows the FTAHBRAM registers.

Figure 42 below shows the register bit fields. All fields except TCB are initialised at reset. The
EDAC is initally disabled (EN = 0), which also applies to diagnostics (RB and WB are zero).
Additionally, if the single error counter is enabled, the error counter (SEC) is set to zero and inter-
rupts are disabled (IE = 0).

TABLE 70. FTAHBRAM Configuration options (generics)

Generic Function Allowed range Default

hindex Selects which AHB select signal (HSEL) will be used
to access the memory.

0 to NAHBMAX-1 0

haddr ADDR field of the AHB BAR 0 to 16#FFF# 0

hmask MASK field of the AHB BAR 0 to 16#FFF# 16#FFF#

tech Memory technology 0 to NTECH 0

kbytes SRAM size in kbytes 1 to targetdep. 1

pindex Selects which APB select signal (PSEL) will be used
to access the memory configuration registers

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

edacen Enable (1)/Disable (0) on-chip EDAC 0 to 1 0

autoscrub Automatically store back corrected data with new
checkbits during a read when a single error is
detected. Is ignored when edacen is deasserted.

0 to 1 0

errcnten Enables a single error counter 0 to 1 0

cntbits number of bits in the single error counter 1 to 8 1

TABLE 71. FT AHB RAM unit registers

Register APB Address offset

Configuration Register 0x0

91

[31: cntbits + 14] - Reserved.
[cntbits + 12: 13] - Single error counter. Incremented each time a single error is corrected (

includes errors on checkbits). Each bit can be set to zero by writing a one to it. This feature is
only available if the errcnten generic is set.

[12 : 10] - Log2 of the current memory size
[9] - Write Bypass (WB) : When set, the TCB field is stored as check bits when a write is

performed to the memory.
[8] - Read Bypass (RB) : When set during a read or subword write, the check bits loaded from

memory are stored in the TCB field.
[7] - EDAC Enable : When set, the EDAC is used otherwise it is bypassed during read and write

operations.
[6:0] - Test Check Bits (TCB) : Used as checkbits when the WB bit is set during writes and loaded

with the check bits during a read operation when the RB bit is set.

19.6 Signal description

FT AHB RAM signals are described in table 72.

19.7 Library dependencies

Table Table 73 shows libraries that should be used when instantiating a FT AHB RAM.

TABLE 72. FT AHB RAM signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

ARAMO CE Output Single error detected High

* see GRLIB IP Library User’s Manual

TABLE 73. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Component Component declaration, Signal
definition

Figure 42. Configuration register bit fields

31

TCBENWB RB

6 078910

RESERVED

12
SEC

cntbits + 12

MEMSIZE

13

92

19.8 FTAHBRAM instantiation

This examples shows how a RAM can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
library gaisler;

use grlib.amba.all;
use gaisler.misc.all;

entity ftram_ex is
 port(

 rst : std_ulogic;
 clk : std_ulogic;

 --others signals
);

end;

architecture rtl of ftram_ex is

--AMBA signals
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_type;
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector;

--other needed signals here
signal stati : ahbstat_in_type;
signal aramo : ahbram_out_type;

begin

--other component instantiations here
...

-- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,

 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbso, stati, apbi, apbo(13));

stati.cerror(1 to NAHBSLV-1) <= (others => ‘0’);

--FT AHB RAM
a0 : ftahbram generic map(hindex => 1, haddr => 1, tech => inferred,

 kbytes => 64, pindex => 4, paddr => 4, edacen => 1, autoscrub => 0,
 errcnt => 1, cntbits => 4)
 port map(rst, clk, ahbsi, ahbso(1), apbi, apbo(4), aramo);

stati.cerror(0) <= aramo.ce;

end architecture;

93

94

20 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC

20.1 Overview

The FTSDCTRL SDRAM controller handles PC133 SDRAM compatible memory devices
attached to 32 or 64 bit wide data bus. The controller acts as a slave on the AHB bus where it
occupies configurable amount of address space for SDRAM access. It also contains EDAC logic
(only for the 32 - bit bus) which corrects one error and detects two errors. The SDRAM controller
function is programmed by writing to a pair of configuration registers mapped into AHB I/O
address space.

Chip-select decoding is done for two SDRAM banks.

20.2 Operation

20.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 com-
patible devices. The controller supports 64M, 256M and 512M devices with 8 - 12 column-
address bits, up to 13 row-address bits, and 4 banks. The size of each of the two banks can be pro-
grammed in binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM control-
ler is controlled through the configuration register SDCFG (see section 20.5). A second register,
ECFG, is also available for configuring the EDAC functions. SDRAM banks data bus width is
configurable between 32 and 64 bits.

20.2.2 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 8x AUTO-REFRESH and LOAD-MODE-REG on both banks simul-
taneously. The controller programs the SDRAM to use page burst on read and single location
access on write.

Figure 43. FT SDRAM Memory controller connected to AMBA bus and SDRAM

A D

FT SDRAM

SDO.ADDRESS[16:2]

SDI.D[63:0]/

RAS
CAS
WE

BA

D

SDRAMSDO.SDRASN
SDO.SDCASN
SDO.SDWEN

A[16:15]

DQMSDO.SDDQM[7:0]

CLK
CSN

SDO.SDCLK
SDO.SDCSN[1:0]

A
A[14:2]

CONTROLLER

AHB

SDO.D[31:0]

SDO.SDCLK CKE

CB[6:0]

CB

CB

95

20.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequen-
cies), some SDRAM parameters can be programmed through SDRAM configuration register
(SDCFG) The programmable SDRAM parameters can be seen in table below:

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

20.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-
REFRESH command to both SDRAM banks. The period between the commands (in clock
periods) is programmed in the refresh counter reload field in the SDCFG register. Depending
on SDRAM type, the required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560
clocks at 100 MHz). The generated refresh period is calculated as (reload value+1)/sysclk. The
refresh function is enabled by setting bit 31 in SDCFG register.

20.2.5 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field
in SDCFG: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR
command is issued, the CAS delay as programmed in SDCFG will be used, remaining fields
are fixed: page read burst, single location write, sequential burst. The command field will be
cleared after a command has been executed. Note that when changing the value of the CAS
delay, a LOAD-MODE-REGISTER command should be generated at the same time.

20.2.6 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row,
followed by a READ command after the programmed CAS delay. A read burst is performed if
a burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-
CHARGE command, no banks are left open between two accesses. Note that only word bursts
are supported by the SDRAM controller. The AHB bus supports bursts of different sizes such
as bytes and halfwords but they cannot be used.

20.2.7 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE com-
mands are issued after activation. A write burst on the AHB bus will generate a burst of write
commands without idle cycles in-between. As in the read case, only word bursts are supported.

20.2.8 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13],
and the data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

20.2.9 Data bus

Data bus width is configurable to 32 or 64 bits. 64-bit data bus allows the 64-bit SDRAM
devices to be connected using the full data capacity of the devices. 64-bit SDRAM devices can
be connected to 32-bit data bus if 64-bit data bus is not available but in this case only half the
full data capacity will be used. SDRAM bus signals are described in chapter 20.6, for configu-
ration options refer to chapter 20.3.

TABLE 74. SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks

96

20.2.10 Clocking

The SDRAM clock typically requires special synchronisation at layout level. For Virtex targets,
GR Clock Generator can be configured to produce a properly synchronised SDRAM clock. For
other FPGA targets, the GR Clock Generator can produce an inverted clock.

20.2.11 EDAC

The controller also contains Error Detection And Correction (EDAC) logic, as mentioned in sec-
tion 1, using a BCH(32, 7) code. It is capable of correcting one error and detecting two errors. The
EDAC logic does not add any additional waitstates during normal operation. Detected errors will
cause additional waitstates for correction (single errors) or error reporting (multiple errors). Single
errors are automatically corrected and generally not visible externally unless explicitly checked.
This checking is done by monitoring the ce signal (section 6) and single error counter (section 5).
This counter holds the number of detected single errors. The ce signal is asserted one clock cycle
when a single error is detected and should be connected to the AHB status register. This module
stores the AHB status of the instruction causing the single error and generates interrupts (see the
AHB status register documentation for more information).

The EDAC functionality can be enabled/disabled during run-time from the ECFG register and the
logic can also be completely removed during synthesis with VHDL generics. The ECFG register
also contains control bits and checkbit fields for diagnostic reads. These diagnostic functions are
used for testing the EDAC functions on-chip and allows one to store arbitrary checkbits with each
written word. Checkbits read from memory can also be controlled. See section 5 for more informa-
tion on the available options in the ECFG register.

64-bit bus support is not provided when EDAC is enabled. Thus, the sd64 and edacen generics
should never be set to one at the same time.

97

20.3 Configuration options

The FT SDRAM controller has the following configuration options (VHDL generics):

20.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x009. For a description of
vendor and device ids see GRLIB IP Library User’s Manual.

20.5 Registers

The memory controller is programmed through the FT SDRAM controller configuration regis-
ter mapped into AHB I/O space defined by the controllers AHB BAR1. If EDAC is enabled,
an EDAC configuration register will also be available.

TABLE 75. FT SDRAM controller configuration options (VHDL generics)

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR filed of the AHB BAR0 defining SDRAM
area. Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK filed of the AHB BAR0 defining SDRAM
area.

0 - 16#FFF# 16#F00#

ioaddr ADDR filed of the AHB BAR1 defining I/O address
space where SDCFG register is mapped.

0 - 16#FFF# 16#000#

iomask MASK filed of the AHB BAR1 defining I/O address
space.

0 - 16#FFF# 16#FFF
#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

pwron Enable SDRAM at power-on. 0 - 1 0

sdbits 32 or 64 -bit data bus width. 32, 64 32

edacen EDAC enable. If set to one, EDAC logic will be
included in the synthesized design. An EDAC config-
uration register will also be available.

0 - 1 0

errcnt Include an single error counter which is accessible
from the EDAC configuration register.

0 - 1 0

cntbits Number of bits used in the single error counter 1 - 8 1

TABLE 76. FT SDRAM controller registers

Register AHB Address offset

SDRAM Configuration register 0x0

EDAC Configuration register 0x4

98

0.0.1 SDRAM configuration register (SDCFG)

SDRAM configuration register is used to control the timing of the SDRAM.

[14:0]: The period between each AUTO-REFRESH command - Calculated as follows:tREFRESH =
((reload value) + 1) / SYSCLK

[15]: 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus,
otherwise ‘0’. Read-only.

[20:19]: SDRAM command. Writing a non-zero value will generate an SDRAM command:
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The
field is reset after command has been executed.

[22:21]: SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]=
“111”, 2048 otherwise.

[25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000”=4 Mbyte,
“001”=8 Mbyte, “010”=16 Mbyte “111”=512 Mbyte.

[26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay
(tRCD).

[29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
[30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

20.5.1 EDAC Configuration register (ECFG)

The EDAC configuration register controls the EDAC functions of the SDRAM controller during
run time.

[6:0] TCB : Test checkbits. These bits are written as checkbits into memory during a write operation
when the WB bit in the ECFG register is set. Checkbits read from memory during a read operation
are written to this field when the RB bit is set.

031

Figure 44. SDRAM configuration register

1419202122252629 23

SDRAM command

SDRAM Col. size

SDRAM Bank size

CAS delay, tRCD

tRFC

tRP

Refresh enable

SDRAM refresh reload value

2730 15

D64

031

Figure 45. EDAC configuration register

68910cnbits + 9cntbits + 10

TCB

7

ENRBWBSECRESERVED

30

EAV

99

[7] EN : EDAC enable. Run time enable/disable of the EDAC functions. If EDAC is disabled no
error detection will be done during reads and subword writes. Checkbits will still be written
to memory during write operations.

[8] RB : Read bypass. Store the checkbits read from memory during a read operation into the TCB
field.

[9] WB : Write bypass. Write the TCB field as checkbits into memory for all write operations.
[cntbits + 9:10] SEC : Single error counter. This field is available when the errcnt generic is set

to one during synthesis. It increments each time a single error is detected. It saturates when
the maximum value is reached. The maximum value is the largest number representable in
the number of bits used, which in turn is determined by the cntbits generic. Each bit in the
counter can be reset by writing a one to it.

[30:cntbits + 10] Reserved.
[31] EAV : EDAC available. This bit is always one if the SDRAM controller contains EDAC.

20.6 Signal description

FT SDRAM controller signals are described in table 4.

TABLE 77. FT SDRAM Controller signals.

20.7 Library dependencies

Table 5 shows libraries that the memory controller module depends on.

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data -

CB[7:0] Input Checkbits -

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask Low

BDRIVE Output Drive SDRAM data bus Low

ADDRESS[16:2] Output SDRAM address -

DATA[31:0] Output SDRAM data -

CB[7:0] Output Checkbits -

CE N/A Output Correctable Error High

* see GRLIB IP Library User’s Manual

TABLE 78. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, com-
ponent declaration

100

20.8 Memory controller instantiation

This example shows how the SDRAM controller can be instantiated. The example design contains
an AMBA bus with a number of AHB components connected to it including the FT SDRAM con-
troller. The external SDRAM bus is defined in the example designs port map and connected to the
SDRAM controller. System clock and reset are generated by GR Clock Generator and Reset Gen-
erator. It is also shown how the correctable error (CE) signal is connected to the ahb status register.
It is not mandatory to connect this signal. In this example, 3 units can be connected to the status
register.

The SDRAM controller decodes SDRAM area: 0x60000000 - 0x6FFFFFFF. SDRAM Configura-
tion and EDAC configuration registers are mapped into AHB I/O space on address (AHB I/O base
address + 0x100).
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;
 ... -- other signals

-- sdram memory bus
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0); -- optional sdram data

 cb : inout std_logic_vector(7 downto 0) --EDAC checkbits
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect SDRAM controller and SDRAM memory bus
 signal sdi : sdctrl_in_type;
 signal sdo : sdctrl_out_type;

 signal clkm, rstn : std_ulogic; -- system clock and reset
signal ce : std_logic_vector(0 to 2); --correctable error signal vector

-- signals used by clock and reset generators

101

 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- AMBA Components are defined here ...
 ...

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
 nftslv => 3)
 port map(rstn, clkm, ahbmi, ahbsi, ce, apbi, apbo(13));

 -- SDRAM controller
 sdc : ftsdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,
 ioaddr => 1, fast => 0, pwron => 1, invclk => 0, edacen => 1, errcnt => 1,

 cntbits => 4)
 port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo, ce(0));

 -- input signals
 sdi.data(31 downto 0) <= sd(31 downto 0);

 -- connect SDRAM controller outputs to entity output signals
 sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;
 sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
 sddqm <= sdo.dqm;

 -- I/O pads driving data bus signals
 sd_pad : iopadv generic map (width => 32)
 port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));

 -- I/O pads driving checkbit signals
 cb_pad : iopadv generic map (width => 8)

 port map (cb, sdo.cb, sdo.bdrive, sdi.cb);

end;

102

21 FTSRCTL - Fault Tolerant 32-bit PROM/SRAM/IO Controller

21.1 Overview

The Fault Tolerant 32-bit PROM/SRAM Controller uses a common 32-bit memory bus to inter-
face PROM, SRAM and I/O devices. In addition it also provides an Error Detection And Correc-
tion Unit (EDAC), correcting one and detecting two errors. Configuration of the memory
controller functions is performed through the APB bus interface. Figure 1 shows a block diagram
of the controller.

21.2 Operation

The controller is configured through VHDL-generics to decode three address ranges: PROM,
SRAM and I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF, the
SRAM area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped
to 0x20000000 - 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to four and two
select signals respectively. The controller generates both a common write-enable signal
(WRITEN) as well as four byte-write enable signals (WREN). If the SRAM uses a common write
enable signal the controller can be configured to perform read-modify-write cycles for byte and
half-word write accesses. Number of waitstates is separately configurable for the three address
ranges.

The EDAC function is optional, and can be enabled through the edacen generic. The configuration
of the EDAC is done through a configuration register accessed from the APB bus (see section
21.7). During nominal operation, the EDAC checksum is generated and checked automatically.

Figure 46. 32-bit FT PROM/SRAM/IO controller

CS

OE
WE

A

DPROM

CS
OE
WE

A

DSRAM
SRO.RAMSN

SRO.RAMOEN
SRO.RWEN[3:0]

SRO.ROMSN
SRO.OEN

SRO.WRITEN

A D

MEMORY

SRI.A[27:0]

SRI.D[31:0]

CONTROLLER

AHB

AHB/APB

Bridge

APB

CB

CB

CB

CB[7:0]

SRO.D[31:0]

CS
OE
WE

A

DIO
SRO.IOSN

103

Single errors are corrected without generating any indication of this condition in the bus
response. If a multiple error is detected, a two cycle error response is given on the AHB bus.

Single errors can be monitored in two ways:

• by monitoring the CE signal which is asserted for one cycle each time a single error is
detected.

• by checking the single error counter which is accessed from the configuration register.

The CE signal can be connected to the AHB status register which stores information of the
AHB instruction causing the error and it also generates interrupts. See the AHB status register
documentation for more information. When the EDAC is enabled, one extra waitstate is gener-
ated during reads and subword writes.

21.3 PROM/SRAM/IO waveforms

Read accesses to 32-bit PROM and RAM with EDAC disabled has the same timing, see figure
47.

The write access for 32-bit PROM and RAM with EDAC disabled can be seen below.

If waitstates are configured through the VHDL generics, one extra data cycle will be inserted
for each waitstate in both read and write cycles. The timing for writes is not affected when
EDAC is enabled while one extra waitstate is added during reads for decoding.

Figure 47. 32-bit PROM/SRAM read cycle

data1 data2

D1

lead-out

A1

CLK

A

ROMSN

D

OEN

RAMSN

Figure 48. 32-bit PROM/SRAM write cycle

lead-in data lead-out

D1

A1

CLK

A

RAMSN

D

RWEN

104

Figure 49 shows read timing when EDAC is enabled. D and CB denotes data and checkbits on the
external memory bus. The cycle following the arrival of data from memory is used for decoding
and corrected data appears on the AHB-bus the next cycle (HRDATA).

21.4 Component declaration

component ftsrctrl is
 generic (
 hindex : integer := 0;
 romaddr : integer := 0;
 rommask : integer := 16#ff0#;
 ramaddr : integer := 16#400#;
 rammask : integer := 16#ff0#;
 ioaddr : integer := 16#200#;
 iomask : integer := 16#ff0#;
 ramws : integer := 0;
 romws : integer := 2;
 iows : integer := 2;
 rmw : integer := 0;
 srbanks : integer range 1 to 4 := 1;
 banksz : integer range 0 to 13 := 13;
 romasel : integer range 0 to 28 := 19;
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 edacen : integer range 0 to 1 := 0;
 errcnt : integer range 0 to 1 := 0;
 cntbits : integer range 1 to 8 := 1;
 wsreg : integer := 0
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 sri : in memory_in_type;
 sro : out memory_out_type;
 sdo : out sdctrl_out_type
);
end component;

lead-in data lead-out

D1

A1

CLK

A

RAMSN

D

RWEN

CB1CB

HRDATA1HRDATA

Figure 49. 32-bit PROM/SRAM read cycle with EDAC enabled.

105

21.5 Configuration options

The Memory controller has the following configuration options (VHDL generics):

21.6 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x051. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

21.7 Registers

The FT PROM/SRAM controller has from one to three configurations registers available
through the APB bus. The exact number depends on the values assigned to the VHDL gener-
ics. The figures below show the existing configuration options and under which conditions
they are available.

TABLE 79. FT 32-bit PROM/SRAM controller configuration options (VHDL generics)

Generic Function Allowed range Default

hindex AHB slave index. 1 - NAHBSLV-1 0

romaddr ADDR field of the AHB BAR0 defining PROM address
space. Default PROM area is 0x0 - 0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK field of the AHB BAR0 defining PROM address
space.

0 - 16#FFF# 16#FF0#

ramaddr ADDR field of the AHB BAR1 defining RAM address
space. Default RAM area is 0x40000000-0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK field of the AHB BAR1 defining RAM address
space.

0 -16#FFF# 16#FF0#

ioaddr ADDR field of the AHB BAR2 defining IO address space.
Default RAM area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK field of the AHB BAR2 defining IO address space. 0 - 16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area. 0 - 15 0

romws Number of waitstates during access to PROM area. 0 - 15 2

iows Number of waitstates during access to IO area. 0 - 15 2

rmw Enable read-modify-write cycles. 0 - 1 0

srbanks Set the number of RAM banks. 1 - 4 1

banksz Set the size of bank 1 - 4. 1 = 16 Kbyte, ... , 13 = 64Mbyte.
If set to zero, the bank size is set with the rambsz field in
the MCFG2 register.

0 - 13 13

romasel address bit used for ROM chip select. 0 - 28 19

pindex APB slave index. 1 - NAPBSLV-1 0

paddr APB address. 1 - 16#FFF# 0

pmask APB address mask. 1 - 16#FFF# 16#FFF
#

edacen EDAC enable. If set to one, EDAC logic is synthesized. 0 - 1 0

errcnt If one, a single error counter is added. 0 - 1 0

cntbits Number of bits in the single error counter. 1 - 8 1

wsreg Enable programmable waitstate generation. 0 - 1 0

106

[3:0] ROMWS: Sets the number of waitstates for accesses to the ROM area. Only available if the
wsreg generic is set to one.

[23:20] IOWS: Sets the number of waitstates for accesses to the IO area. Only available if the wsreg
generic is set to one.

[26] BRDYEN: Enables the BRDYN signal. Always available.

[1:0] RAMWS: Sets the number of waitstates for accesses to the RAM area. Only available if the
wsreg generic is set to one.

[6] RMW: If set, read-modify-write cycles are used for write accesses. Only available if the rmw
generic is set to one.

[12:9] RAMBSZ: Sets the SRAM bank size. Only available if the banksz generic is set to zero.
Otherwise the banksz generic sets the bank size.

[7:0] TCB: Used as checkbits in write operations when WB is one and checkbits from read operations
are stored here when RB is one.

[8] PEN: PROM EDAC enable. If set, EDAC will be active for the PROM area.
[9] SEN: SRAM EDAC enable. If set, EDAC will be active for the SRAM area.
[10] RB: Read bypass. If set, checkbits read from memory in all read operations will be stored in the

TCB field.
[11] WB: Write bypass. If set, the TCB field will be used as checkbits in all write operations.
[cntbits + 11 :12] SEC. Single error counter. This field increments each time a single error is detected.

It saturates at the maximum value that can be stored in this field. Each bit can be reset by writing
a one to it.

[31:cntbits + 11] Reserved.

All the fields in MCFG3 register are available if the edacen generic is set to one except SEC field
which also requires that the errcnt generic is set to one.

031

Figure 50. MCFG1 register.

3

ROMWS

4

IOWSRESERVED

19

RESERVED

23 2025 24

RESERVED

2627

BRDYEN

031

Figure 51. MCFG2 register.

16781213

RAMWS

5

RESERVEDRESERVEDRAMBSZRESERVED RMW

9 2

031

Figure 52. MCFG3 register (EDAC configuration).

791011cnbits + 10cntbits + 11

TCB

8

PENRBWBSECRESERVED SEN

11

107

21.8 Signal description

Memory controller signals are described in table 80.

TABLE 80. Memory controller signal description.

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready. Extends accesses to the IO area. Low

BEXCN Input Not used -

WRN[3:0] Input Not used -

BWIDTH[1:0] Input Not used -

SD[31:0] Input Not used -

CB[7:0] Input Checkbits -

PROM-
DATA[31:0]

Input Not used -

MEMO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data High

RAMSN[4] Output Not used. Driven to ‘1’. Low

RAMSN[3:0] Output SRAM chip-select. Low

RAMOEN[4] Output Not used. Driven to ‘1’. Low

RAMOEN[3:0] Output SRAM output enable. Low

IOSN Output IO area chip select Low

ROMSN[1:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus.

Controls I/O-pads connected to external

memory bus.

Low

READ Output Read strobe High

SA[14:0] Output Not used -

CB[7:0] Output Checkbits -

PSEL Output Not used -

CE Output Single error detected. High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

SDO SDCASN Output Not used. All signals are drive to inactive
state.

Low

* see GRLIB IP Library User’s Manual

108

21.9 Library dependencies

Table shows libraries that the memory controller module depends on.

21.10 Memory controller instantiation

This example shows how a memory controller can be instantiated. The example design contains an
AMBA bus with a number of AHB components connected to it including the memory controller.
The external memory bus is defined in the example designs port map and connected to the memory
controller. System clock and reset are generated by GR Clock Generator and Reset Generator. The
CE signal of the memory controller is also connected to the AHB status register.

Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and RAM area
is 0x40000000 - 0x40FFFFF.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;
library esa;
use esa.memoryctrl.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(1 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask

TABLE 81. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, compo-
nent

Memory bus signals definitions, com-
ponent declaration

109

 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0); -- optional sdram data

 cb : inout std_logic_vector(7 downto 0); --checkbits
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdctrl_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

 signal stati : ahbstat_in_type; --correctable error vector

begin

 -- AMBA Components are defined here ...

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- AHB Status Register
 astat0 : ahbstat generic map(pindex => 13, paddr => 13, pirq => 11,
 nftslv => 1)
 port map(rstn, clkm, ahbmi, ahbsi, stati, apbi, apbo(13));

stati.cerror(0) <= memo.ce;

 -- Memory controller
 mctrl0 : ftsrctrl generic map (rmw => 1, pindex => 10, paddr => 10,

edacen => 1, errcnt => 1, cntbits => 4)
port map (rstn, clkm, ahbsi, ahbso(0), apbi, apbo(10), memi, memo,

 sdo);

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

110

 --I/O pads driving checkbit signals
cb_pad : iopadv generic map (width => 8)

 port map (pad => cb,
 o => memi.cb,
 en => memo.bdrive(0),
 i => memo.cb;

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;

111

112

22 GRGPIO - General Purpose I/O Port

22.1 Overview

The GRGPIO Unit implements a scalable I/O port with interrupt support. The port width can be
set to 2 - 32 bits through the nbits generic. Each bit in the port can be individually set to input or
output, and can optionally generate an interrupt. For interrupt generation, the input can be filtered
for polarity and level/edge detection. The figure below shows a diagram for one I/O line.

22.2 Operation

The I/O ports are implemented as bi-directional buffers with programmable output enable. The
input from each buffer is synchronized by two flip-flops in series to remove potential meta-stabil-
ity. The synchronized values can be read-out from the I/O port data register. The output enable is
controlled by the I/O port direction register. A ‘1’ in a bit position will enable the output buffer for
the corresponding I/O line. The output value driven is taken from the I/O port output register.

Each I/O port can drive a separate interrupt line on the APB interrupt bus. The interrupt number is
equal to the I/O line index (PIO[1] = interrupt 1, etc.). The interrupt generation is controlled by
three registers: interrupt mask, polarity and edge registers. To enable an interrupt, the correspond-
ing bit in the interrupt mask register must be set. If the edge register is ‘0’, the interrupt is treated
as level sensitive. If the polarity register is ‘0’, the interrupt is active low. If the polarity register is
‘1’, the interrupt is active high. If the edge register is ‘1’, the interrupt is edge-triggered. The
polarity register then selects between rising edge (‘1’) or falling edge (‘0’).

Interrupt generation and shaping is only available for those I/O lines where the corresponding bit
in the imask generic has been set to 1.

Figure 53. General Purpose I/O port diagram

Q

Q

Q

D

D

D PAD

Direction

Output
Value

Input
Value
Q D

Input
Value

113

22.3 Component declaration

library gaisler;
use gaisler.misc.all;

entity grgpio is
 generic (
 pindex : integer := 0;
 paddr : integer := 0;
 pmask : integer := 16#fff#;
 imask : integer := 16#0000#;
 nbits : integer := 16-- GPIO bits
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 apbi : in apb_slv_in_type;
 apbo : out apb_slv_out_type;
 gpioi : in gpio_in_type;
 gpioo : out gpio_out_type
);
end;

22.4 Configuration options

The I/O port has the following configuration options (VHDL generics):

22.5 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x01A. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

22.6 Registers

Table 83 shows the timer unit registers. The number of implemented registers depend on num-
ber of implemented timers.

TABLE 82. General Purpose I/O port options (generics)

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be
used to access the GPIO unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 16#FFF# 0

pmask The APB address mask 0 to 16#FFF# 16#FFF#

nbits Defines the number of bits in the I/O port 1 to 32 8

imask Defines which I/O lines are provided with interrupt
generation and shaping

0 - 16#FFFF# 0

oepol Select polarity of output enable signals. 0 = active
low, 1 = active high.

0 - 1 0

TABLE 83. I/O port registers

Register APB Address offset

I/O port data register 0x00

I/O port output register 0x04

I/O port direction register 0x08

Interrupt mask register 0x0C

114

Figures 54 to 58 shows the layout of the I/O port registers.

Interrupt polarity register 0x10

Interrupt edge register 0x14

TABLE 83. I/O port registers

Register APB Address offset

Figure 54. I/O port data register

0nbits-1nbits31

“000...0” I/O port value

Figure 55. I/O port data register

0nbits-1nbits31

“000...0” I/O port output register

Figure 56. I/O port direction register

0nbits-1nbits31

“000...0” I/O port direction register

Figure 57. Interrupt mask register

0nbits-1nbits31

“000...0” Interrupt mask register

Figure 58. Interrupt polarity register

0nbits-1nbits31

“000...0” Interrupt polarity register

115

22.7 Signal description

The I/O port signals are described in table 84.

22.8 Library dependencies

Table 85 shows libraries that should be used when instantiating an I/O port.

22.9 I/O port instantiation

This examples shows how an I/O port can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

-- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- GP Timer Unit input signals
 signal gpti : gptimer_in_type;

begin

gpio0 : if CFG_GRGPIO_EN /= 0 generate -- GR GPIO unit

TABLE 84. GP Timer Unit signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPIOO OEN[[31:0] Output I/O port output enable High

DOUT[[31:0] Output I/O port outputs -

GPIOI DIN[[31:0] Input I/O port inputs -

* see GRLIB IP Library User’s Manual

TABLE 85. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component GP Timer Unit component declaration

Figure 59. Interrupt edge register

0nbits-1nbits31

“000...0” Interrupt edge register

116

 grgpio0: grgpio
 generic map(pindex => 11, paddr => 11, imask => CFG_GRGPIO_IMASK, nbits => 8)
 port map(rstn, clkm, apbi, apbo(11), gpioi, gpioo);

 pio_pads : for i in 0 to 7 generate
 pio_pad : iopad generic map (tech => padtech)
 port map (gpio(i), gpioo.dout(i), gpioo.oen(i), gpioi.din(i));
 end generate;
end generate;

117

118

23 GPTIMER - General Purpose Timer Unit

23.1 Overview

The Modular Timer Unit implements one prescaler and one to seven decrementing timers. Num-
ber of timers is configurable through a VHDL-generic. The timer unit acts a slave on APB bus.
The unit is capable of asserting interrupt on when timer(s) underflow. Interrupt is configurable to
be common for the whole unit or separate for each timer.

23.2 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When the
prescaler underflows, it is reloaded from the prescaler reload register and a timer tick is generated.
Timers share the decrementer to save area. On the next timer tick next timer is decremented giving
effective division rate equal to (prescaler reload register value + 1).

The operation of each timers is controlled through its control register. A timer is enabled by set-
ting the enable bit in the control register. The timer value is then decremented on each n prescaler
tick where n is the number of timers. When a timer underflows, it will automatically be reloaded
with the value of the corresponding timer reload register if the restart bit in the control register is
set, otherwise it will stop at -1 and reset the enable bit.

The timer unit can be configured to generate common interrupt through a VHDL-generic. The
shared interrupt will be signalled when any of the timers with interrupt enable bit underflows. If
configured to signal interrupt for each timer the timer unit will signal an interrupt on appropriate
line when a timer underflows (if the interrupt enable bit for the current timer is set). The interrupt
pending bit in the control register of the underflown timer will be set and remain set until cleared
by writing ‘0’.

To minimize complexity, timers share the same decrementer. This means that the minimum
allowed prescaler division factor is ntimers+1 (reload register = ntimers) where ntimers is the
number of implemented timers.

By setting the chain bit in the control register timer n can be chained with preceding timer n-1.
Decrementing timer n will start when timer n-1 underflows.

Each timer can be reloaded with the value in its reload register at any time by writing a ‘one’ to the
load bit in the control register.

timer n reload

Figure 60. General Purpose Timer Unit block diagram

prescaler reload

-1

prescaler value timer 1 value

timer 2 value

timer n value

timer 1 reload

timer 2 reload

-1

tick

pirq

pirq+1

pirq+2

119

23.3 Configuration options

The timer unit has the following configuration options (VHDL generics):

23.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x011. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

23.5 Registers

Table 87 shows the timer unit registers. The number of implemented registers depend on num-
ber of implemented timers.

Figures 61 to 66 shows the layout of the timer unit registers.

TABLE 86. General Purpose Timer Unit Configuration options (generics)

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be used
to access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

nbits Defines the number of bits in the timers 1 to 32 32

ntimers Defines the number of timers in the unit 1 to 7 1

pirq Defines which APB interrupt the timers will generate 0 to MAXIRQ-1 0

sepirq If set to 1, each timer will drive an individual inter-
rupt line, starting with interrupt irq. If set to 0, all
timers will drive the same interrupt line (irq).

0 to MAXIRQ-1

(note: ntimers + irq
must be less than
MAXIRQ)

0

sbits Defines the number of bits in the scaler 1 to 32 16

TABLE 87. GP Timer unit registers

Register APB Address offset

Scaler value 0x00

Scaler reload value 0x04

Configuration register 0x08

Unused 0x0C

Timer 1 counter value register 0x10

Timer 1 reload value register 0x14

Timer 1 control register 0x18

Unused 0x1C

Timer n counter value register 0xn0

Timer n reload value register 0xn4

Timer n control register 0xn8

120

[31:10] - Reserved.
[9] - Disable timer freeze (DF). If set the timer unit can not be freezed, otherwise signal GPTI.DHALT

freezes the timer unit.
[8] - Separate interrupts (SI). Reads ‘1’ if the timer unit generates separate interrupts for each timer,

otherwise ‘0’. Read-only.
[7:3] - APB Interrupt: If configured to use common interrupt all timers will drive APB interrupt nr.

IRQ, otherwise timer nwill drive APB Interrupt IRQ+n (has to be less the MAXIRQ). Read-
only.

[2:0] - Number of implemented timers. Read-only.

[31:nbits] - Reserved. Always reads as ‘000...0’
[nbits-1:0] - Timer Counter value. Decremented by 1 for each n prescaler tick where n is number of

implemented timers.

Figure 61. Scaler value

0sbits-1sbits31

“000...0” SCALER Value

Figure 62. Scaler reload value

0sbits-1sbits31

“000...0” SCALER Reload Value

Figure 63. GP Timer Unit Configuration register

031

“000...0” IRQ

2378

TIMERS

9

SIDF

Figure 64. Timer counter value registers

0nbits-1nbits31

“000...0” TIMER COUNTER VALUE

121

[31:nbits] - Reserved. Always reads as ‘000...0’
[nbits-1:0] - Timer Reload value. This value is loaded into the timer counter value register when

‘1’ is written to load bit in the timers control register.

[31:7] - Reserved. Always reads as ‘000...0’
[6] - Debug Halt (DH): Value of GPTI.DHALT signal which is used to freeze counters (e.g. when

a system is in debug mode). Read-only.
[5] - Chain (CH): Chain with preceding timer. If set for timer n, decrementing timer n begins when

timer (n-1) underflows.
[4] - Interrupt Pending (IP): Sets when an interrupt is signalled. Remains ‘1’ until cleared by

writing ‘0’ to this bit.
[3] - Interrupt Enable (IE): If set the timer signals interrupt when it underflows.
[2] - Load (LD): Load value from the timer reload register to the timer counter value register.
[1] - Restart (RS): If set the value from the timer reload register is loaded to the timer counter

value register and decrementing the timer is restarted.
[0] - Enable (EN): Enable the timer.

23.6 Signal description

GP Timer signals are described in table 88.

TABLE 88. GP Timer Unit signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

GPTI DHALT Input Freeze timers High

EXTCLK Input Use as alternative clock -

GPTO TICK[1:7] Output Timer ticks High

* see GRLIB IP Library User’s Manual

Figure 65. Timer reload value registers

0nbits-1nbits31

“000...0” TIMER RELOAD VALUE

Figure 66. Timer control registers

031

“000...0” EN

1

RS

2

LD

3

IE

4

IP

5

CH

6

DH

7

122

23.7 Library dependencies

Table 89 shows libraries that should be used when instantiating an GP Timer.

23.8 GP Timer instantiation

This examples shows how an GP Timer Unit can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.misc.all;

entity gptimer_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of gptimer_ex is

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- GP Timer Unit input signals
 signal gpti : gptimer_in_type;

begin

 -- AMBA Components are instantiated here
 ...

 -- General Purpose Timer Unit
 timer0 : gptimer
 generic map (pindex => 3, paddr => 3, pirq => 8, sepirq => 1)
 port map (rstn, clk, apbi, apbo(3), gpti, open);

 gpti.dhalt <= ’0’; gpti.extclk <= ’0’; -- unused inputs

end;

TABLE 89. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER MISC Signals, component GP Timer Unit component declaration

123

124

24 GRFPU - High-performance IEEE-754 Floating-point unit

24.1 Overview

GRFPU is a high-performance FPU implementing floating-point operations as defined in IEEE
Standard for Binary Floating-Point Arithmetic (IEEE-754) and SPARC V8 standard (IEEE-1754).
Supported formats are single and double precision floating-point numbers. The advanced design
combines two execution units, a fully pipelined unit for execution of the most common FP opera-
tions and a non-blocking unit for execution of divide and square-root operations. The logical view
of the GRFPU is shown in figure 67.

Figure 67. 1: GRFPU Logical View

This document describes GRFPU from functional point of view. Chapter “Functional description”
gives details about GRFPU implementation of the IEEE-754 standard including FP formats, oper-
ations, opcodes, operation timing, rounding and exceptions. “Signals and timing” describes the
GRFPU interface and its signals. “GRFPU Control Unit” describes the software aspects of the
GRFPU integration into a LEON processor through the GRFPU Control Unit - GRFPC. For
implementation details refer to the white paper, “GRFPU - High Performance IEEE-754 Floating-
Point Unit” (available at www.gaisler.com).

24.2 Functional Description

24.2.1 Floating-point number formats

GRFPU handles floating-point numbers in single or double precision format as defined in IEEE-
754 standard with exception for denormalized numbers. See “Denormalized numbers” on
page 126 for more information on denormalized numbers.

24.2.2 FP operations

GRFPU supports four types of floating-point operations: arithmetic, compare, convert and move.
The operations implement all FP instructions specified by SPARC V8 instruction set, and most of
the operations defined in IEEE-754. All operations are summarized in “: GRFPU operations” on

operand1

opid

opcode

operand2

start

 9

 6

64

64

round

flushid

 2

 6

flush

result

resid

allow

except

ready

 3

 6

64

 6

cc 2

nonstd

Pipelined execution
unit

Iteration unit

GRFPU
clk

reset

125

page 125, with their opcodes, operands, results and exception codes. Throughputs and laten-
cies and are shown in Table 90.

Arithmetic operations include addition, subtraction, multiplication, division and square-root.
Each arithmetic operation can be performed in single or double precision formats. Arithmetic
operations have one clock cycle throughput and latency of three clock cycles, except for divide
and square-root operations, which have a throughput of 14 - 23 clock cycles and latency of 15
- 25 clock cycles (see Table 91). Add, sub and multiply can be started on every clock cycle
providing very high throughput for these common operations. Divide and square-root opera-
tions have lower throughput and higher latency due to complexity of the algorithms, but are
executed parallelly with all other FP operations in a non-blocking iteration unit. Out-of-order
execution of operations with different latencies is easily handled through the GRFPU interface
by assigning an id to every operation which appears with the result on the output once the
operation is completed (see section 3.2).

Operation OpCode[8:0] Op1 Op2 Result Exceptions Description

Arithmetic operations

FADDS
FADDD

001000001

001000010

SP
DP

SP
 DP

SP
DP

UNF, NV, OF, UF, NX Addition

FSUBS
FSUBD

001000101

001000110

SP
DP

SP
DP

SP
DP

UNF, NV, OF, UF, NX Subtraction

FMULS
FMULD
FSMULD

001001001

001001010

001101001

SP
DP
SP

SP
DP
SP

SP
DP
DP

UNF, NV, OF, UF, NX

UNF, NV, OF, UF, NX
UNF, NV, OF, UF

Multiplication, FSMULD gives exact double-
precision product of two single-precision
operands.

FDIVS
FDIVD

001001101

001001110

SP
DP

SP
DP

SP
DP

UNF, NV, OF, UF, NX Division

FSQRTS
FSQRTD

000101001

000101010

-
-

SP
DP

SP
DP

UNF, NV, NX Square-root

Conversion operations

FITOS
FITOD

011000100

011001000

- INT SP
DP

NX
-

Integer to floating-point conversion

FSTOI
FDTOI

011010001

011010010

- SP
DP

INT UNF, NV, NX Floating-point to integer conversion. The
result is rounded in round-to-zero mode.

FSTOI_RND
FDTOI_RND

111010001

111010010

- SP
DP

INT UNF, NV, NX Floating-point to integer conversion. Round-
ing according to RND input.

FSTOD
FDTOS

011001001

011000110

- SP
DP

DP
SP

UNF, NV
UNF, NV, OF, UF, NX

Conversion between floating-point formats

Comparison operations

FCMPS
FCMPD

001010001

001010010

SP
DP

SP
DP

CC NV Floating-point compare. Invalid exception is
generated if either operand is a signaling
NaN.

FCMPES
FCMPED

001010101

001010110

SP
DP

SP
DP

CC NV Floating point compare. Invalid exception is
generated if either operand is a NaN (quiet or
signaling).

Negate, Absolute value and Move

FABSS 000001001 - SP SP - Absolute value.

FNEGS 000000101 - SP SP - Negate.

FMOVS 000000001 SP SP - Move. Copies operand to result output.

SP - single precision floating-point number

DP - double precision floating-point number

INT - 32 bit integer

CC - condition codes, see “GRFPU input and output signals are described in “: Signal
description” on page 128. All signals are active high except for RST which is active low.”
on page 128

UNF, NV, OF, UF, NX - floating-point exceptions, see “Exceptions” on page 126

TABLE 90. : GRFPU operations

126

Conversion operations execute in a pipelined execution unit and have throughput of one clock cycle
and latency of three clock cycles. Conversion operations provide conversion between different float-
ing-point numbers and between floating-point numbers and integers.

Comparison functions offering two different types of quiet Not-a-numbers (QNaNs) handling are pro-
vided. Move, negate and absolute value are also provided. These operations do not ever generate unfin-
ished exception (unfinished exception is never signaled since compare, negate, absolute value and
move handle denormalized numbers).

24.2.3 Exceptions

GRFPU detects all exceptions defined by the IEEE-754 standard. This includes detection of Invalid
Operation (NV), Overflow (OF), Underflow (UF), Division-by-Zero (DZ) and Inexact (NX) exception
conditions. Generation of special results such as NaNs and infinity is also implemented. Overflow
(OF) and underflow (UF) are detected before rounding. When an underflow is signaled the result is
rounded (flushed) to zero (this variation is allowed by the IEEE-754 standard and is implementation-
dependent). A special Unfinished exception (UNF) is signaled when one of the operands is a denor-
malized number which are not handled by the arithmetic and conversion operations.

24.2.4 Rounding

All four rounding modes defined in the IEEE-754 standard are supported: round-to-nearest, round-to-
+inf, round-to--inf and round-to-zero.

24.2.5 Denormalized numbers

Denormalized numbers are not handled by the GRFPU arithmetic and conversion operations. A system
(microprocessor) with the GRFPU could emulate rare cases of operations on denormals in software
using non-FPU operations. A special Unfinished exception (UNF) is used to signal an arithmetic or
conversion operation on the denormalized numbers. Compare, move, negate and absolute value opera-
tions can handle denormalized numbers and don’t raise unfinished exception. GRFPU does not gener-
ate any denormalized numbers during arithmetic and conversion operations on normalized numbers
since the result of an underflowed operation is flushed (rounded) to zero (see “Exceptions” on
page 126).

Operation Throughput Latency

FADDS, FADDD, FSUBS, FSUBD, FMULS, FMULD, FSMULD 1 3

FITOS, FITOD, FSTOI, FSTOI_RND, FDTOI, FDTOI_RND, FSTOD, FDTOS 1 3

FCMPS, FCMPD, FCMPES, FCMPED 1 3

FDIVS 15 15

FDIVD 16.5 (15/18)* 16.5 (15/18)*

FSQRTS 23 23

FSQRTD 24.5 (23/26)* 24.5 (23/26)*

* Throughput and latency are data dependant with two possible cases with equal statistical possibility.

TABLE 91. : Throughput and latency

127

24.2.6 Non-standard Mode

GRFPU can operate in a non-standard mode where all denormalized operands to arithmetic
and conversion operations are treated as (correctly signed) zeroes. Calculations are performed
on zero operands instead of the denormalized numbers obeying all rules of the floating-point
arithmetics including rounding of the results and detecting exceptions.

24.2.7 NaNs

GRFPU supports handling of Not-a-Numbers (NaNs) as defined in the IEEE-754 standard.
Operations on signaling NaNs (SNaNs) and invalid operations (e.g. inf/inf) generate Invalid
exception and deliver QNaN_GEN as result. Operations on Quiet NaNs (QNaNs), except for
FCMPES and FCMPED, do not raise any exceptions and propagate QNaNs through the FP
operations by delivering NaN-results according to “: Operations on NaNs” on page 127.
QNaN_GEN is 0x7fffe00000000000 for double precision results and 0x7fff0000 for single
precision results.

Operand 2

Operand 1

FP QNaN2 SNaN2

none FP QNaN2 QNaN_GEN

FP FP QNaN2 QNaN_GEN

QNaN1 QNaN1 QNaN2 QNaN_GEN

SNaN1 QNaN_GEN QNaN_GEN QNaN_GEN

TABLE 92. : Operations on NaNs

128

24.3 Signals and Timing

24.3.1 Signal Description

GRFPU input and output signals are described in “: Signal description” on page 128. All signals
are active high except for RST which is active low.

24.3.2 Signal Timing

An FP operation is started by providing the operands, opcode, rounding mode and id before rising
edge. The operands need to be provided a small set-up time before a rising edge while all other
signals are latched on rising edge.

The FPU is fully pipelined and a new operation can be started every clock cycle. The only excep-
tions are divide and square-root operations which require 15 to 26 clock cycles to complete, and
which are not pipelined. Division and square-root are implemented through iterative series expan-
sion algorithm. Since the algorithms basic step is multiplication the floating-point multiplier is
shared between multiplication, division and square-root. Division and square-root do not occupy
multiplier during the whole operation and allow multiplication to be interleaved and executed par-
allelly with division or square-root.

Signal I/O Description

CLK I Clock

RST I Reset

START I Start an FP operation on the next rising clock edge

NONSTD I Nonstandard mode. Denormalized operands are converted to zero.

OPCODE[8:0] I FP operation. For codes see “: GRFPU operations” on page 125.

OPID[5:0] I FP operation id. Every operation is associated with an id which will appear on the RESID output when the FP oper-
ation is completed. This value shall be incremented by 1 (with wrap-around) for every started FP operation.

OPERAND1[63:0]

OPERAND2[63:0]

I FP operation operands are provided on these one or both of these inputs. All 64 bits are used for IEEE-754 double
precision floating-point numbers, bits [63:32] are used for IEEE-754 single precision floating-point numbers and 32-
bit integers.

ROUND[1:0] I Rounding mode. 00 - rounding-to-nearest, 01 - round-to-zero, 10 - round-to-+inf, 11 - round-to--inf.

FLUSH I Flush FP operation with FLUSHID.

FLUSHID[5:0] I Id of the FP operation to be flushed.

READY O The result of a FP operation will be available at the end of the next clock cycle.

ALLOW[2:0] O Indicates allowed FP operations during the next clock cycle.
ALLOW[0] - FDIVS, FDIVD, FSQRTS and FSQRTD allowed

ALLOW[1] - FMULS, FMULD, FSMULD allowed

ALLOW[2] - all other FP operations allowed

RESID[5:0] O Id of the FP operation whose result appears at the end of the next clock cycle.

RESULT[63:0] O Result of an FP operation. If the result is double precision floating-point number all 64 bits are used, otherwise sin-
gle precision or integer result appears on RESULT[63:32].

EXCEPT[5:0] O Floating-point exceptions generated by an FP operation.

EXC[5] - Unfinished FP operation. Generated by an arithmetic or conversion operation with denormalized input(s).

EXC[4] - Invalid exception.

EXC[3] - Overflow.

EXC[2] - Underflow.

EXC[1] - Division by zero.

EXC[0] - Inexact.

CC[1:0] O Result (condition code) of an FP compare operation.
00 - equal,
01 - operand1 < operand2
10 - operand1 > operand2
11 - unordered

TABLE 93. : Signal description

129

One clock cycle before an operation is completed, the output signal RDY is asserted to indi-
cate that the result of an FPU operation will appear on the output signals at the end of the next
cycle. The id of the operation to be completed and allowed operations are reported on signals
RESID and ALLOW. During the next clock cycle the result appears on RES, EXCEPT and CC
outputs.

“2: Signal timing” on page 129 2 shows signal timing during four arithmetic operations on
GRFPU.

Fig. 2: Signal timing

CLK

START

OPID

READY

RESULT

RESID

ALLOW[2]

ALLOW[1]

ALLOW[0]

1

FADDS FDIVS FSUBS

2 3

1 3 2

0

0

OPERAND1,

OPCODE FADDS

OPERAND2

130

25 GRFPC - GRFPU Control Unit

GRFPU Control Unit (GRFPC) is used to attach the GRFPU to the LEON integer unit (IU).
GRFPC performs scheduling, decoding and dispatching of the FP operations to the GRFPU as
well as managing the floating-point register file, the floating-point state register (FSR) and the
floating-point deferred-trap queue (FQ). Floating-point operations are executed in parallel with
other integer instructions, the LEON integer pipeline is only stalled in case of operand or resource
conflicts.

In the FT-version, all registers are protected with TMR and the floating-point register file is pro-
tected using (39,7) BCH coding. Correctable errors in the register file are detected and corrected
using the instruction restart function in the IU.

25.1 Floating-Point register file

GRFPU floating-point register file contains 32 32-bit floating-point registers (%f0-%f31). The reg-
ister file is accessed by floating-point load and store instructions (LDF, LDDF, STD, STDF) and
floating-point operate instructions (FPop).

25.2 Floating-Point State Register (FSR)

GRFPC manages the floating-point state register (FSR) containing FPU mode and status informa-
tion. All fields of the FSR register as defined in SPARC V8 specification are implemented and
managed by the GRFPU conforming to SPARC V8 specification and IEEE-754 standard. Imple-
mentation-specific parts of the FSR managing are the NS (non-standard) bit and ftt field.

If the NS (non-standard) bit of the FSR register is set, all floating-point operation will be per-
formed in non-standard mode as described in “Non-standard Mode” on page 127. When NS bit is
cleared all operations are performed in standard IEEE-compliant mode.

Following floating-point trap types never occur and are therefore never set in the ftt field:
- unimplemented_FPop: all FPop operations are implemented
- hardware_error: non-resumable hardware error
- invalid_fp_register: no check that double-precision register is 0 mod 2 is performed

GRFPU implements the qne bit of the FSR register which reads 0 if the floating-point deferred-
queue (FQ) is empty and 1 otherwise.

The FSR is accessed using LDFSR and STFSR instructions.

25.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

GRFPU implements SPARC deferred trap model for floating-point exceptions (fp_exception). A
floating-point exception is caused by a floating-point instruction performing an operation resulting
in one of following conditions:

• an operation raises IEEE floating-point exception (ftt = IEEE_754_exception) e.g. executing invalid oper-
ation such as 0/0 while the NVM bit of the TEM field id set (invalid exception enabled).

• an operation on denormalized floating-point numbers (in standard IEEE-mode) raises unfinished_FPop
floating-point exception

• sequence error: abnormal error condition in the FPU due to the erroneous use of the floating-point instruc-
tions in the supervisor software.

The trap is deferred to one of the floating-point instruction (FPop, FP load/store, FP branch) fol-
lowing the trap-inducing instruction (note that this may not be next floating-point instruction in the
program order due to exception-detecting mechanism and out-of-order instruction execution in the
GRFPC). When the trap is taken the floating-point deferred-queue (FQ) contains trap-inducing
instruction and up to two FPop instructions that where dispatched in the GRFPC but did not com-
plete.

131

After the trap is taken the qne bit of the FSR is set and remains set until the FQ is emptied.
STDFQ instruction reads a double-word from the floating-point deferred queue, the first word
is the address of the instruction and the second word is the instruction code. All instructions in
the FQ are FPop type instructions. First access to the FQ gives double-word with trap-inducing
instruction, following double-words contain pending floating-point instructions. Supervisor
software should emulate FPops from the FQ in the same order as they were read from the FQ.

Note that instructions in the FQ may not appear in the same order as the program order since
GRFPU executes floating-point instructions out-of-order. A floating-point trap is never
deferred past an instruction specifying source registers, destination registers or condition
codes that could be modified by the trap-inducing instruction. Execution or emulation of
instructions in the FQ by the supervisor software gives therefore the same FPU state as if the
instructions where executed in the program order.

132

26 GRPCI - PCI Target / Master Unit

26.1 Overview

The PCI Target/Master Unit is a bridge between PCI bus and AMB AHB bus. The unit is con-
nected to the PCI bus through two interfaces PCI Target and PCI Master. PCI Master interface is
optional and can be disabled in the VHDL model. Two interfaces connect the core to the AHB
bus: AHB Slave and AHB Master Interface. PCI Configuration / Status register is attached to
AMBA APB bus.

The PCI and AMBA interfaces belong to two different clock domains. Synchronization is per-
formed inside the core through FIFOs with configurable depth.

26.2 Operation

A connection between the PCI bus and the AMBA bus is provided by the units PCI target interface
and AHB master. The PCI target is capable of handling configuration and single or burst memory
cycles on the PCI bus. Configuration cycles are used to access Targets Configuration Space
Header while the memory cycles are translated to AHB accesses. The PCI target interface can be
programmed to occupy two areas in the PCI address space. Mapping to AHB address space is
defined by a pair of map registers accessible from PCI and AHB address space.

The Master interface occupies 256 MB in the AHB address space. An access to this area is trans-
lated to PCI configuration, memory or I/O cycles. Generation of PCI cycles and mapping to the
PCI address space is controlled through the AMBA Configuration / Space register.

Both target and master interface are capable of burst transactions. Data is buffered internally in
FIFOs with configurable size.

Figure 68. PCI Master/Target Unit

PCI Master PCI Target

AHB Slave AHB Master

Cfg/Stat

AMBA bus

PCI Off-chip bus

PCI Bridge

MTx FIFO MRx FIFO TTx FIFO TRx FIFO

133

26.3 Configuration options

The PCI Target / Master unit has the following configuration options (VHDL generics):

26.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x014. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

26.5 PCI Target Interface

PCI target interface occupies two memory areas in the PCI address space. Memory mapping is
determined by BAR0 and BAR1 registers of the units Configuration Space Header. The size of
the PCI memory areas is determined by number of bits actually implemented by BAR registers
(configurable through abits and dmaabits VHDL-generics).

TABLE 94. PCI Target/Master options (generics)

Generic Function Allowed range Default

memtech The memory technology used for the FIFO instantia-
tion

- 0

mstndx The AMBA master index for the target backend
AHB master interface.

0 - NAHBMST-1 0

dmamst The AMBA master index for the DMA controller, if
present. This value is used by the PCI core to detect
when the DMA controller accesses the AHB slave
interface.

0 - NAHBMS NAHBMST
(= disabled)

readpref Prefetch data for the ‘memory read’ command. If
set, the target prefetches a cache line, otherwise the
target will give a single word response.

0 -1 0

abits Least significant implemented bit of BAR0 and
PAGE0 registers. Defines PCI address space size.

16 - 28 21

dmaabits Least significant implemented bit of BAR1 and
PAGE1 registers. Defines PCI address space size.

16 - 28 26

fifodepth Size of each FIFO is 2^fifodepth 32-bit words. >= 3 5

device_id PCI device ID number 0 -16#FFE# 0

vendor_id PCI vendor ID number 0 - 16#FFF# 0

master Disables/enables PCI master interface. 0 - 1 0

slvndx The AHB index of the master backend AHB slave
interface.

0 - NAHBSLV-1 0

apbndx The AMBA APB index for the configuration/status
APB interface

0 - NAPBMAX-1 0

apbaddr APB interface base address 0 - 16#FFF# 0

apbmask APB interface address mask 0 - 16#FFF# 16#FFF#

memaddr AHB slave base address 0 - 16#FFF# 16#F00#

memmask AHB address mask 0 - 16#FFF# 16#F00#

ioaddr AHB I/O area base address 0 - 16#FFF# 0

nsync The number of clock registers used by each signal
that

crosses the clock regions.

1 - 2 1

oepol Polarity of pad output enable signals. 0=active low,
1=active high

0 - 1 0

134

PCI Target interface handles following PCI commands:

• Configuration Read/Write: Single access to Configuration Space Header. No AHB access is
performed.

• Memory Read: If prefetching is enabled, the units AHB master interface fetches a cache line,
otherwise a single AHB access is performed.

• Memory Read Line: The unit prefetches data according to the value of the cache line size register.
• Memory Read Multiple: The unit performs maximum prefetching. This can cause long response

time, depending of the user defined FIFO depth.
• Memory Write, Memory Write and Invalidate: Handled similarly.

The target interface supports incremental bursts for PCI memory cycles.

The target interface can finish a PCI transaction with one of the following abnormal responses:

• Retry: This response indicates that the master should perform the same request later, while the
target is temporarily busy. This response is always given at least one time for read accesses, but
can also occur for write accesses.

• Disconnect with data: Indicates that the target will accept one more data transaction, but no more.
This occurs if the master tries to read more data than the target has prefetched.

• Disconnect without data: Indicates that the target is unable to accept more data. This occurs if the
master tries to write more data than the target can buffer.

• Target-Abort: Indicates that the current access caused an internal error, and the target never will
be able to finish it.

Targets AHB master interface is capable of burst transactions. Burst transactions are performed on
the AHB when supported by the destination unit (AHB slave), otherwise multiple single access are
performed. A PCI burst crossing 1 kB address boundary will be performed as multiple AHB bursts
by the AHB master interface. The AHB master interface will insert an idle-cycle before requesting
a new AHB burst to allow re-arbitration on the AHB. AHB transactions with ‘retry’ response are
repeated by the AHB master until ‘okey’ or ‘error’ response is received. The ‘error’ response on
AHB bus will result in ‘target abort’ response for the PCI memory read cycle. In case of PCI mem-
ory write cycle, AHB access will not be finished with error response since write data is posted to
the destination unit. Instead the WE bit will be set in the units AMBA Configuration/Status regis-
ter.

26.5.1 PCI Target - Configuration Space Header Registers

Following registers are implemented in PCI Configuration Space Header:

TABLE 95. Configuration Space Header registers

Address Register

0x00 Device ID & Vendor ID

0x04 Status & Command

0x08 Class Code & Revision ID

0x0C BIST & Header Type & Latency Timer & Cache Line Size

0x10 BAR0

0x14 BAR1

135

[31:16]: Device ID (read-only). Returns value of device_id VHDL-generic.
[15:0]: Vendor ID (read-only). Returns value of vendor_id VHDL-generic.

[31:16]: Status Register - Writing one to a bit 31 - 16 clears the bit. Writes can not set a bit.
[31]: Detected parity Error (DPE).
[30]: Signalled System Error (SSE) - Not implemented. Always reads 0.
[29]: Received Master Abort (RMA) - Set by the PCI Master interface when its transaction is

terminated with Master-Abort.
[28]: Received Target Abort (RTA) - Set by the PCI Master interface when its transaction is

terminated with Target-Abort.
[27]: Signalled Target Abort (STA) - Set by the PCI Target Interface when the target terminates

transaction with Target-Abort.
[26:25]: DEVSEL timing (DST) -Always reads “10” - medium DEVSEL timing.
[24]: Data Parity Error Detected (DPD).
[23]: Fast Back-to-Back Capable - The Target interface is not capable of fast back-to-back

transactions. Always reads ‘0’.
[22]: UDF Supported - Not supported. Always reads ‘0’,
[21]: 66 Mhz Capable - Not supported. Always reads ‘0’.
[20:16]: Reserved. Always reads ‘00..0’.
[15:0]: Command Register - Writing one to a bit 15 - 0 sets the bit. Writing zero clears the bit.
[15:10]: Reserved - Always reads as ‘00..0’.
[9]: Fast back-to-Back Enable - Not implemented. Always reads ‘0’.
[8]: SERR# enable - Not implemented. Always reads ‘0’.
[7]: Wait cycle control - Not implemented. Always reads ‘0’.
[6]: Parity Error Response (PER) - Controls units response on parity error.
[5]: VGA Palette Snoop - Not implemented. Always reads ‘0’.
[4]: Memory Write and Invalidate Enable (MIE) - Enables the PCI Master interface to generate

Memory Write and Invalidate Command.
[3]: Special Cycles - Not implemented. Always reads ‘0’.
[2]: Bus Master (BM) - Enbales the Master Interface to generate PCI cycles.
[1]: Memory Space (MS) - Allows the unit to respond to Memory space accesses.
[0]: I/O Space (IOS) - The unit never responds to I/O cycles. Always reads as ‘0’.

Figure 69. Device ID & Vendor ID register

031

DEVICE_ID VENDOR_ID

16 15

Figure 70. Status & Command register

031 20212223242627282930 25 16

‘0’

1

MS

2

BM

3

‘0’

4

MIE

5

‘0’

6

PER

7

‘0’

8

‘0’

9

‘0’

10

RESERVED

15

DPE ‘0’ RMA RTA STA ‘10’ DPD ‘0’ ‘0’ RESERVED‘0’

136

[31:8]: Class Code - Processor device class code: 0x0B4000 (Read-only).
[7:0]: Revision ID - 0x00 (Read-only).

[31:24]: BIST - Not supported. Reads always as ‘00..0’.
[23:16]: Header Type (HEADER)- Header Type 0. Reads always as ‘00..0’.
[15:8]: Latency Timer (LTIM) - Maximum number of PCI clock cycles that Master can own the bus.
[7:0]: Cache Line Size (CLS) - System cache line size. Defines the prefetch length for ‘Memory Read’

and ‘Memory Read Line’ commands.

[31:abits]: PCI Base Address - PCI Targets interface Base Address 0. The number of implemented
bits depend on the VHDL-generic abits. Memory area of size 2^abits bytes at Base Address is
occupied through this Base Address register. Register PAGE0 is accessed through upper half of
this area. PCI memory accesses to the lower half of this area is translated to AHB accesses using
PAGE0 map register.

[abits-1:4]: These bits are read-only and always read as ‘00..0’. This field can be used to determine
devices memory requirement by writing value of all ones to this register and reading the value
back. The device will return zeroes in unimplemented bits positions effectively defining memory
area requested.

[3]: Prefetchable: Not supported. Always reads ‘0’.
[2:1]: Base Address Type - Mapping can be done anywhere in the 32-bit memory space. Reads always

as ‘00’.
[0]: Memory Space Indicator - Register maps into Memory space. Read always as ‘0’.

PAGE0 register is mapped into upper half of the PCI address space defined by BAR0 register.

Figure 71. Class Code & revision ID

07831

CLASS CODE REVISION ID

Figure 72. BIST, Header Type, Latency Timer and Cache Line Size register

07831

BIST CLSLTMHEADER

24 23 16 15

Figure 73. BAR0 register

0abits31

BASE ADDRESS ‘00..0’

1

‘00’

234abits-1

‘0’‘0’

137

[31:dmaabits]: PCI Base Address - PCI Targets interface Base Address 1. The number of
implemented bits depends on the VHDL-generic dmaabits. Memory area of size 2^dmaabits
bytes at Base Address is occupied through this Base Address register. PCI memory accesses
to this memory space are translated to AHB accesses using PAGE1 map register.

[dmaabits-1:4]: These bits are read-only and always read as ‘00..0’. This field can be used to
determine devices memory requirement by writing value of all ones to this register and
reading the value back. The device will return zeroes in unimplemented bits positions
effectively defining memory area requested.

[3]: Prefetchable: Not supported. Always reads as ‘0’.
[2:1]: Base Address Type - Mapping can be done anywhere in the 32-bit memory space. Reads

always as ‘00’.
[0]: Memory Space Indicator - Register maps in Memory space. Read always as ‘0’.

0.0.2 PCI Target Map Registers

PAGE0 and PAGE1 registers map PCI access to AHB address space.

[31:dmaabits-1]: AHB Map Address - Maps PCI accesses to PCI BAR0 address space to AHB
address space. AHB address is formed by concatenating AHB MAP with LSB of the PCI
address.

[dmaabits-2:0]: Reserved. Reads always as ‘00..0’.

[31:dmaabits]: AHB Map Address (AHB MAP) - Maps PCI accesses to PCI BAR1 address space
to AHB address space. AHB address is formed by concatenating AHB MAP with LSB of the
PCI address.

[dmaabits-1:0]: Reserved. Reads always as ‘00..0’.

Address Space Address Register

PCI Upper half of PCI address space defined by BAR0 register PAGE0

AMBA APB APB base address + 0x10 PAGE1

Figure 74. BAR1 register

0dmaabits31

BASE ADDRESS ‘00..0’

1

‘00’

234dmaabits-1

‘0’‘0’

Figure 75. PAGE0 register

031

AHB MAP ‘00..0’

dmaabits-1 dmaabits-2

Figure 76. PAGE1 register

031

AHB MAP ‘00..0’

dmaabits dmaabits-1

138

26.6 PCI Master Interface

PCI Master interface occupies 256 MB of AHB memory address space and 128 kB of AHB I/O
address space. PCI Master interface handles AHB accesses to its back-end AHB Slave interface
and translates them to PCI configuration, memory or I/O cycles.

Mapping of PCI masters AHB address space is configurable through VHDL-generics (see
Table 94). PCI cycles performed on the PCI bus are directly dependable on AHB access and value
in Configuration/Status register.

The PCI Master interface is capable of performing following PCI cycles:

• PCI ConfigurationCycles: Single PCI Configuration cycles are performed by accessing upper 64
kB of AHB I/O address space allocated by the PCI Masters AHB Slave. Type 0 Configuration
cycles are supported. Figure below shows mapping of LSB of AHB I/O address.

[31:16]: AHB Address MSB - Not used for Configuration cycle address mapping.
[15:11]: IDSEL - This field is decoded to drive PCI AD[IDSEL+10]. AD[31:11] signal
lines are supposed to drive IDSEL lines during Configuration Cycles.
[10:8]: Function Number (FUNC) - Selects function on multi-function device.
[7:2]: Register Number (REGISTER) - Used to index a PCI DWORD in Configuration
Space.
[1:0]: Should always be driven to ‘00’ to generate Type 0 Configuration cycle.

• I/O cycles: Single PCI I/O cycles are supported. Lower 64 kB of the AHB I/O address space
occupied by masters AHB slave interface are translated into PCI I/O cycles. Mapping is
determined by value of I/O Map register (see. 26.7).

• PCI memorycyclesare performed by accessing 256 MB AHB address space occupied by masters
AHB slave. Mapping and PCI command generation are determined by value of AMBA
Configuration/Status register (see 26.7). Burst operation is supported for PCI memory cycles.

The PCI commands generated by the master are directly dependant of the AMBA transfer type
and the value of Configuration/Status register. The Configuration/Status register can be
programmed to issue Memory Read, Memory Read Line, Memory Read Multiple, Memory
Write or Memory Write and Invalidate.

If a burst AHB access is made to PCI Masters AHB memory space it is translated to burst PCI
memory cycle. When the PCI Master interface is busy performing the transaction on the PCI bus,
its AHB slave interface will not be able to accept new requests. ‘Retry’ response will be given to
all accesses to its AHB slave interface. Requesting AHB Master should repeat its request until
‘OK’ or ‘Error’ response is given by the PCI Masters AHB slave interface.

Note that ‘RETRY’ responses on the PCI bus are not transparent, and will automatically be
retried by the master PCI interface until the transfer is either finished or aborted.

For burst accesses, only linear-incremental mode is supported and is directly translated from the
AMBA commands. The byte-enables on the PCI bus are translated from the HSIZE control AHB
signal. Note that only WORD, HALF-WORD and BYTE values of HSIZE are valid. The data is
aligned towards the LSB end of the bus, that is, a request with HZISE = "00" will be forwarded
to the PCI bus with valid data on data lines 7:0.

Figure 77.Mapping of AHB I/O addresses to PCI address for PCI
Configuration cycles

031

AHB ADDRESS MSB FUNC

127

‘00’REGISTER

8101115

IDSEL

16

139

26.7 PCI AMBA Registers

Following registers mapped into AMBA address space:

[31:28]: Memory Space Map register - Defines mapping between PCI Masters AHB memory
address space and PCI address space when performing PCI memory cycles. Value of this filed
is used as 4 MSB of the PCI address. LSB bits are taken from the AHB address.

[27-23]: Reserved
[22-15]: Latency Timer (LTIMER) - Value of Latency Timer Register in Configuration Space

Header. (Read-only)
[14]: Write Error (WE) - Target Write Error. Write access to units target interface resulted in error.

(Read-only)
[13]: System Host (SH) - Set if the unit is system host. (Read-only)
[12]: Bus Master (BM) - Value of BM field in Command register in Configuration Space Header.

(Read-only)
[11]: Memory Space (MS) - Value of MS field in Command register in Configuration Space

Header. (Read-only)
[10]: Write Burst Command (WB) - Defines PCI command used for PCI write bursts.

‘0’ - ‘Memory Write’
‘1’ - ‘Memory Write and Invalidate’

[9]: Read Burst Command (RB) - Defines PCI command used for PCI read bursts.
‘0’ - Memory Read Multiple’
‘1’ - Memory Read Line’

TABLE 96. AMBA registers

Address offset
(from APB base address) Register Note

0x00 Configuration/Status regis-
ter

-

0x04 BAR0 register Read-only access from AMBA,
write/read access from PCI (see
26.5.1).

0x08 PAGE0 register Read-only access from AMBA,
write/read access from PCI (see
0.0.2).

0x0C BAR1 register Read-only access from AMBA,
write/read access from PCI (see
26.5.1).

0x10 PAGE1 register -

0x14 IO Map register -

0x18 Status & Command register
(PCI Configuration Space
Header)

Read-only access from AMBA,
write/read access from PCI (see
26.5.1).

Figure 78. Configuration/Status register

031

MMAP

7

CTO

89

CLSRB

10
WB

11

MS

12
BM

13

SH

14

WE

22

LTIMER

1528

RESERVED

27 23

140

[8]: Configuration Timeout (CTO) - Received timeout when performing Configuration cycle. (Read-
only)

[7:0]: Cache Line Size (CLS) - Value of Cache Line Size register in Configuration Space Header.
(Read-only)

[31:16]: I/O Map (IOMAP) - Most significant bits of PCI address when performing PCI I/O cycle.
Concatenated with low bits of AHB address to from PCI address.

[15:0]: Reserved.

26.8 Signal description

PCI Target/Master unit signals are described in table 97.

The PCIO record contains an additional output enable signal VADEN. It is has the same value as
aden at each index but they are all driven from separate registers. A directive is placed on this vec-
tor so that the registers will not be removed during synthesis. This output enable vector can be
used instead of aden if output delay is an issue in the design.

TABLE 97. PCI Target/Master unit signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AMBA system clock -

PCICLK N/A Input PCI clock -

PCII *1 Input PCI input signals -

PCIO *1 Output PCI output signals -

APBI *2 Input APB slave input signals -

APBO *2 Output APB slave output signals -

AHBMI *2 Input AHB master input signals -

AHBMO *2 Output AHB master output signals -

AHBSI *2 Input AHB slave input signals -

AHBSO *2 Output AHB slave output signals -

*1) see PCI specification
*2) see GRLIB IP Library User’s Manual

Figure 79. I/O Map register

031

IOMAP

16 15

RESERVED

141

26.9 Library dependencies

Table 98 shows libraries that should be used when instantiating the PCI Target/Master unit.

26.10 Example instantiation

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.stdlib.all;
use grlib.tech.all;
library gaisler;
use gaisler.pci.all;
use gaisler.pads.all;

.

.
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal pcii : pci_in_type;
signal pcio : pci_out_type;

begin

pci0 : pci_mtf generic map (memtech => memtech,
hmstndx => 1,
fifodepth => log2(CFG_PCIDEPTH), device_id => CFG_PCIDID, vendor_id => CFG_PCIVID,
hslvndx => 4, pindex => 4, paddr => 4, haddr => 16#E00#,
ioaddr => 16#400#, nsync => 2)

port map (rstn, clkm, pciclk, pcii, pcio, apbi, apbo(4), ahbmi,
ahbmo(1), ahbsi, ahbso(4));

pcipads0 : pcipads generic map (padtech => padtech)-- PCI pads
 port map (pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
 pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_perr,
 pci_par, pci_req, pci_serr, pci_host, pci_66, pcii, pcio);

TABLE 98. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component PCI signals and component declaration

GAISLER PADS Components PCI pads

142

27 IRQMP - Multiprocessor Interrupt Controller

27.1 Overview

AMBA system in GRLIB provides an interrupt scheme where interrupt lines are routed together
with the remaining AHB/APB bus signals. Interrupts from AHB and APB units are routed through
the bus, combined together, and propagated back to all units. The multi-processor interrupt con-
troller core (IRQMP) is attached to AMBA bus as an APB slave, and monitors the combined inter-
rupt signals. The IRQMP core prioritizes, masks and propagates interrupts to one or more LEON3
processors.

27.2 Operation

27.2.1 Interrupt prioritization

IRQMP monitors interrupt 1 - 15 of the AMBA interrupt bus. Each interrupt can be assigned to
one of two levels (0 or 1) as programmed in the interrupt level register. Level 1 has higher priority
than level 0. The interrupts are prioritised within each level, with interrupt 15 having the highest
priority and interrupt 1 the lowest. The highest interrupt from level 1 will be forwarded to the pro-
cessor. If no unmasked pending interrupt exists on level 1, then the highest unmasked interrupt
from level 0 will be forwarded.

Interrupts are prioritised at system level, while masking and forwarding of interrupts in done for
each processor separately. Each processor in an MP system has separate interrupt mask and force
registers. When an interrupt is signalled on the AMBA bus, the interrupt controller will prioritize
interrupts, perform interrupt masking for each processor according to the mask in the correspond-
ing mask register and forward the interrupts to the processors.

MP IRQ
Processor 0 Processor 1

BUS
CONTROL

SLAVE 1 SLAVE 2

Processor n
CTRL

Interrupt level

Interrupt acknowledge

Figure 80. LEON3 Multiprocessor system with MP Interrupt controller

AHB BUS

143

When one of the processors acknowledges the interrupt, the corresponding pending bit will
automatically be cleared. Interrupt can also be forced by setting a bit in the interrupt force reg-
ister. In this case, the processor acknowledgement will clear the force bit rather than the pend-
ing bit. After reset, the interrupt mask register is set to all zeros while the remaining control
registers are undefined. Note that interrupt 15 cannot be maskable by the LEON3 processor
and should be used with care - most operating systems do not safely handle this interrupt.

27.2.2 Processor status monitoring

The processor status can be monitored through the MP Status Register. The STATUS field in
this register indicates if a processor is halted (‘1’) or running (‘0’). A halted processor can be
reset and restarted by writing a ‘1’ to its status field. After reset, all processors except proces-
sor 0 are halted. When the system is properly initialized. processor 0 can start the remaining
processors by writing to their STATUS bits.

27.3 Configuration options

The MP Interrupt Controller has the following configuration options (VHDL generics):

TABLE 99. IRQMP Configuration options (generics)

Generic Function Allowed range Default

pindex Selects which APB select signal (PSEL) will be
used to access the timer unit

0 to NAPBMAX-1 0

paddr The 12-bit MSB APB address 0 to 4095 0

pmask The APB address mask 0 to 4095 4095

ncpu Number of processors in MP system. 1 to 16 1

Figure 81. IRQMP Interrupt controller block diagram

IRQ
Pending

15 4
IRQO[0].IRL[3:0]

Priority
select

IRQ
mask[0]

IRQ
Force[0]

Priority
encoder

4
IRQO[n].IRL[3:0]

Priority
encoder

APBI.PIRQ[15:1]

IRQ
mask[n]

IRQ
Force[n]

144

27.4 Vendor and device id

The module has Vendor ID 0x01 (Gaisler Research) and Device ID 0x00D. For description of ven-
dor and device ids see GRLIB IP Library User’s Manual.

27.5 Registers

Table 100 shows the MP Interrupt Controller registers. The number of implemented registers
depend on number of processor in the MP system.

27.5.1 Interrupt level register

[31:16] - Reserved.
[15:1] - Interrupt Level n (IL[n]): Interrupt level for interrupt n.
[0] - Reserved.

TABLE 100. MP IRQ Controller registers

Register APB Address offset

Interrupt level register 0x00

Interrupt pending register 0x04

Interrupt force register (NCPU = 0) 0x08

Interrupt clear register 0x0C

Multi-processor status register 0x10

Processor 0 interrupt mask register 0x40

Processor 1 interrupt mask register 0x44

Processor n interrupt mask register 0x40 + 4 * n

Processor 0 interrupt force register 0x80

Processor 1 interrupt force register 0x84

Processor n interrupt force register 0x80 + 4 * n

Figure 82. Interrupt level register

31 1617

IL[15:1]“000..0”

0

0

1

145

27.5.2 Interrupt pending register

[31:17] - Reserved.
[16:1] - Interrupt Pending n (IP[n]): Interrupt pending for interrupt n.
[0] - Reserved

27.5.3 Interrupt force register (NCPU = 0)

[31:16] - Reserved.
[15:1] - Interrupt Force n (IF[n]): Force interrupt nr n.
[0] - Reserved.

27.5.4 Interrupt clear register

[31:16] - Reserved.
[15:1] - Interrupt Clear n (IC[n]): Writing ‘1’ to ICn will clear interrupt n.
[0] - Reserved.

27.5.5 Interrupt mask register

[31:16] - Reserved.
[15:1] - Interrupt Mask n (IM[n]): If IMn = 0 the interrupt n is masked, otherwise it is enabled.
[0] - Reserved.

Figure 83. Interrupt pending register

031

“000...0” 0

15

IP[15:1]

16 1

Figure 84. Interrupt force register

031

“000...0” 0

11516

IF[15:1]

Figure 85. Interrupt clear register

031

“000...0” 0

11516

IC[15:1]

Figure 86. Interrupt mask register

031

“000...0” 0

11516

IM[15:1]

146

27.5.6 Multi-processor status register

[31:28] - NCPU. Number of CPU’s in the system -1 .
[27:16] - Reserved.
[15:1] - Power-down status of CPU [n]: ‘1’ = power-down, ‘0’ = running. Write with ‘1’ to force

processor n out of power-down.

27.5.7 Interrupt force register (NCPU > 1)

[31:17] - Interrupt force clear n (IFC[n]).
[15:1] - Interrupt Force n (IF[n]): Force interrupt nr n.
[0] - Reserved.

27.6 Signal description

The interrupt controller signals are described in table 101.

TABLE 101. MP Interrupt Controller signals

Signal name Type Function Active

RST Input Reset Low

CLK Input Clock -

APBI Input APB slave input signals -

APBO Output APB slave output signals -

IRQI.INTACK Input Interrupt acknowledge High

IRQI.IRL[3:0] Input Processor interrupt level High

IRQO.IRL[3:0] Output Input interrupt level High

* see GRLIB IP Library User’s Manual

Figure 87. Multi-processor status register

031

“000...0”

15

STATUS[15:0]

1628

NCPU

Figure 88. Interrupt force register

031

IFC[15:1] 0

11516

IF[15:1]

17

0

147

27.7 Library dependencies

Table 102 shows libraries that should be used when instantiating the interrupt controller.

27.8 MP IRQ controller instantiation example

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.leon3.all;

entity irqmp_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 ... -- other signals
);
end;

architecture rtl of irqmp_ex is
 constant NCPU : integer := 4;

 -- AMBA signals
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);
 signal ahbsi : ahb_slv_in_type;

 -- GP Timer Unit input signals
 signal irqi : irq_in_vector(0 to NCPU-1);
 signal irqo : irq_out_vector(0 to NCPU-1);

 -- LEON3 signals
 signal leon3i : l3_in_vector(0 to NCPU-1);
 signal leon3o : l3_out_vector(0 to NCPU-1);

begin

 -- 4 LEON3 processors are instantiated here
 cpu : for i in 0 to NCPU-1 generate
 u0 : leon3s generic map (hindex => i)
 port map (clk, rstn, ahbmi, ahbmo(i), ahbsi,
irqi(i), irqo(i), dbgi(i), dbgo(i));
 end generate;

 -- MP IRQ controller
 irqctrl0 : irqmp
 generic map (pindex => 2, paddr => 2, ncpu => NCPU)
 port map (rstn, clk, apbi, apbo(2), irqi, irqo);

end;

TABLE 102. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER LEON3 Signals, component Leon3 signals and component declaration

148

28 LEON3 - High-performance SPARC V8 32-bit Processor

28.1 Overview

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) architecture. It is
designed for embedded applications, combining high performance with low complexity and low
power consumption.

The LEON3 core has the following main features: 7-stage pipeline with Harvard architecture, sep-
arate instruction and data caches, hardware multiplier and divider, on-chip debug support and
multi-processor extensions.

A block diagram of the LEON3 core can be seen below:

Note: this manual describes the full functionality of the LEON3 core. Through the use of VHDL
generics, parts of the described functionality can be suppressed or modified to generate a smaller
or faster implementation.

28.1.1 Integer unit

The LEON3 integer unit implements the full SPARC V8 standard, including hardware multiply
and divide instructions. The number of register windows is configurable within the limit of the
SPARC standard (2 - 32), with a default setting of 8. The pipeline consists of 7 stages with a sepa-
rate instruction and data cache interface (Harvard architecture).

28.1.2 Cache sub-system

LEON3 has a highly configurable cache system, consisting of a separate instruction and data
cache. Both caches can be configured with 1 - 4 sets, 1 - 256 kbyte/set, 16 or 32 bytes per line.
Sub-blocking is implemented with one valid bit per 32-bit word. The instruction cache uses
streaming during line-refill to minimize refill latency. The data cache uses write-through policy
and implements a double-word write-buffer. The data cache can also perform bus-snooping on the
AHB bus. A local scratch pad ram can be added to both the instruction and data cache controllers
to allow 0-waitstates access memory without data write back.

Integer pipeline

I-Cache D-Cache

3-Port Register File

AMBA AHB Master (32-bit)

AHB I/F

7-Stage

Interrupt controller

Co-Processor

HW MUL/DIV

IEEE-754 FPU Trace Buffer

Debug port

Interrupt port

Debug support unit

Local RAMLocal RAM

Figure 89. LEON3 processor core block diagram

149

28.1.3 Floating-point unit and co-processor

The LEON3 integer unit provides interfaces for a floating-point unit (FPU), and a custom co-pro-
cessor. Two FPU controllers are available, one for the high-performance GRFPU (available from
Gaisler Research) and one for the Meiko FPU core (available from Sun Microsystems). The float-
ing-point processors and co-processor execute in parallel with the integer unit, and does not block
the operation unless a data or resource dependency exists.

28.1.4 On-chip debug support

The LEON3 pipeline includes functionality to allow non-intrusive debugging on target hardware.
To aid software debugging, up to four watchpoint registers can be enabled. Each register can cause
a breakpoint trap on an arbitrary instruction or data address range. When the (optional) debug sup-
port unit is attached, the watchpoints can be used to enter debug mode. Through a debug support
interface, full access to all processor registers and caches is provided. The debug interfaces also
allows single stepping, instruction tracing and hardware breakpoint/watchpoint control. An inter-
nal trace buffer can monitor and store executed instructions, which can later be read out over the
debug interface.

28.1.5 Interrupt interface

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous interrupts. The
interrupt interface provides functionality to both generate and acknowledge interrupts.

28.1.6 AMBA interface

The cache system implements an AMBA AHB master to load and store data to/from the caches.
The interface is compliant with the AMBA-2.0 standard. During line refill, incremental burst are
generated to optimise the data transfer.

28.1.7 Power-down mode

The LEON3 processor core implements a power-down mode, which halts the pipeline and caches
until the next interrupt. This is an efficient way to minimize power-consumption when the applica-
tion is idle, and does not require tool-specific support in form of clock gating.

28.1.8 Multi-processor support

LEON3 is designed to be use in multi-processor systems. Each processor has a unique index to
allow processor enumeration. The write-through caches and snooping mechanism guarantees
memory coherency in shared-memory systems.

28.1.9 Performance

Using 8K + 8K caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1,600 itera-
tion/s/MHz using the gcc-2.95.2 compiler (-O2). This translates to 0.91 dhrystone MIPS/MHz
using the VAX 11/780 value a reference for one MIPS.

150

28.2 LEON3 integer unit

28.2.1 Overview

The LEON3 integer unit implements the integer part of the SPARC V8 instruction set. The imple-
mentation is focused on high performance and low complexity. The LEON3 integer unit has the
following main features:

• 7-stage instruction pipeline
• Separate instruction and data cache interface
• Support for 2 - 32 register windows
• Hardware multiplier with optional 16x16 bit MAC and 40-bit accumulator
• Radix-2 divider (non-restoring)
• Single-vector trapping for reduced code size

Figure 90 shows a block diagram of the integer unit.

Figure 90. LEON3 integer unit datapath diagram

alu/shift mul/div
y

register file

D-cache
address/dataout
datain

32
32

operand2rs1

imm

Ywres

result m_y

Decode

Execute

Memory

Writeback

rs2rs1

rd

tbr, wim, psr

30 jmpl address

e pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Register Access

x_yxres

Exception

x_pcx_inst

r_pcr_inst

y, tbr, wim, psr

r_imm

151

28.2.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 7 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from the
instruction cache. Otherwise, the fetch is forwarded to the memory controller. The instruction is
valid at the end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the CALL and Branch target addresses are
generated.

3. RA (Register access): Operands are read from the register file or from internal data bypasses.

4. EX (Execute): ALU, logical, and shift operations are performed. For memory operations (e.g.,
LD) and for JMPL/RETT, the address is generated.

5. ME (Memory): Data cache is accessed. Store data read out in the execution stage is written to the
data cache at this time.

6. XC (Exception) Traps and interrupts are resolved. For cache reads, the data is aligned as
appropriate.

7. WR (Write): The result of any ALU, logical, shift, or cache operations are written back to the
register file.

Table 103 lists the cycles per instruction (assuming cache hit and no icc or load interlock):

* Multiplication cycle count is 5 clocks when the multiplier is configured to be pipelined.

28.2.3 SPARC Implementor’ s ID

Gaisler Research is assigned number 15 (0xF) as SPARC implementor’s identification. This value
is hard-coded into bits 31:28 in the %psr register. The version number for LEON3 is 3, which is
hard-coded in to bits 27:24 of the %psr.

28.2.4 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL
UMULCC and SMULCC. These instructions perform a 32x32-bit integer multiply, producing a
64-bit result. SMUL and SMULCC performs signed multiply while UMUL and UMULCC per-
forms unsigned multiply. UMULCC and SMULCC also set the condition codes to reflect the

TABLE 103. Instruction timing

Instruction Cycles

JMPL, RETT 3

Double load 2

Single store 2

Double store 3

SMUL/UMUL 4*

SDIV/UDIV 35

Taken Trap 5

Atomic load/store 3

All other instructions 1

152

result. The multiply instructions are performed using a 16x16 signed hardware multiplier, which is
iterated four times. To improve the timing, the 16x16 multiplier can optionally be provided with a
pipeline stage.

28.2.5 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: UMAC
and SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit result, and adds
the result to a 40-bit accumulator made up by the 8 lsb bits from the %y register and the %asr18
register. The least significant 32 bits are also written to the destination register. SMAC works sim-
ilarly but performs signed multiply and accumulate. The MAC instructions execute in one clock
but have two clocks latency, meaning that one pipeline stall cycle will be inserted if the following
instruction uses the destination register of the MAC as a source operand.

Assembler syntax:

umac rs1, reg_imm, rd
smac rs1, reg_imm, rd

Operation:
prod[31:0] = rs1[15:0] * reg_imm[15:0]
result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]
(Y[7:0] & %asr18[31:0]) = result[39:0]
rd = result[31:0]

%asr18 can be read and written using the RDASR and WRASR instructions.

28.2.6 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV, UDIV, SDIVCC & UDIVCC).
The divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. Rounding and
overflow detection is performed as defined in the SPARC V8 standard.

28.2.7 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each breakpoint
consists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/30 and %asr30/
31) registers; one with the break address and one with a mask:

Any binary aligned address range can be watched - the range is defined by the WADDR field,
masked by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, trap
0x0B is generated. By setting the IF, DL and DS bits, a hit can be generated on instruction fetch,
data load or data store. Clearing these three bits will effectively disable the breakpoint function.

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 91. Watch-point registers

IF

153

28.2.8 Instruction trace buffer

The instruction trace buffer consists of a circular buffer that stores executed instructions. The trace
buffer operation is controlled through the debug support interface, and does not affect processor
operation (see the DSU description). The size of the trace buffer is configurable from 1 to 64 kB
through a VHDL generic. The trace buffer is 128 bits wide, and stores the following information:

• Instruction address and opcode
• Instruction result
• Load/store data and address
• Trap information
• 30-bit time tag

The operation and control of the trace buffer is further described in “Instruction trace buffer” on
page 66. Note that in multi-processor systems, each processor has its own trace buffer allowing
simultaneous tracing of all instruction streams.

28.2.9 Processor configuration register

The application specific register 17 (%asr17) provides information on how various configuration
options were set during synthesis. This can be used to enhance the performance of software, or to
support enumeration in multi-processor systems. The register can be accessed through the
RDASR instruction, and has the following layout:

Field Definitions:

[31:28]: Processor index. In multi-processor systems, each LEON core gets a unique index to
support enumeration. The value in this field is identical to the hindex generic parameter in
the VHDL model.

[13]: Single-vector trapping (SVT) enable. If set, will enable single-vector trapping. Fixed to zero
if SVT is not implemented.

[12]: Load delay. If set, the pipeline uses a 2-cycle load delay. Otherwise, a 1-cycle load delay i
s used. Generated from the lddel generic parameter in the VHDL model.

[11:10]: FPU option. “00” = no FPU; “01” = GRFPU; “10” = Meiko FPU.
[9]: If set, the optional multiply-accumulate (MAC) instruction is available
[8]: If set, the SPARC V8 multiply and divide instructions are available.
[7:5]: Number of implemented watchpoints (0 - 7)
[4:0]: Number of implemented registers windows corresponds to NWIN+1.

04831

RESERVED%asr17

Figure 92. LEON3 configuration register (%asr17)

NWIN

28

INDEX

7 5

NWPV8

9

M

12 11 10

FPULD

13

SV

154

28.2.10 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented traps
and their individual priority.

TABLE 104. Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 0xFF 16 Software trap instruction (TA)

155

28.2.11 Single vector trapping (SVT)

Single-vector trapping (SVT) is an SPARC V8e option to reduce code size for embedded applica-
tions. When enabled, any taken trap will always jump to the reset trap handler (%tbr.tba + 0). The
trap type will be indicated in %tbr.tt, and must be decoded by the shared trap handler. SVT is
enabled by setting bit 13 in %asr17. The model must also be configured with the SVT generic = 1.

28.2.12 Address space identifiers (ASI)

In addition to the address, a SPARC processor also generates an 8-bit address space identifier
(ASI), providing up to 256 separate, 32-bit address spaces. During normal operation, the LEON3
processor accesses instructions and data using ASI 0x8 - 0xB as defined in the SPARC standard.
Using the LDA/STA instructions, alternative address spaces can be accessed. The table shows the
ASI usage for LEON. Only ASI[5:0] are used for the mapping, ASI[7:6] have no influence on
operation.

28.2.13 Power-down

The processor can be configured to include a power-down feature to minimize power consumption
during idle periods. The power-down mode is entered by performing a WRASR instruction to
%asr19:

wr %g0, %asr19

During power-down, the pipeline is halted until the next interrupt occurs. Signals inside the pro-
cessor pipeline and caches are then static, reducing power consumption from dynamic switching.

28.2.14 Processor reset operation

The processor is reset by asserting the RESET input for at least 4 clock cycles. The following
table indicates the reset values of the registers which are affected by the reset. All other registers
maintain their value (or are undefined).

TABLE 105. ASI usage

ASI Usage

0x01 Forced cache miss

0x02 System control registers (cache control register)

0x08, 0x09, 0x0A, 0x0B Normal cached access (replace if cacheable)

0x0C Instruction cache tags

0x0D Instruction cache data

0x0E Data cache tags

0x0F Data cache data

0x10 Flush instruction cache

0x11 Flush data cache

TABLE 106. Processor reset values

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1

156

By default, the execution will start from address 0. This can be overridden by setting the
RSTADDR generic in the model to a non-zero value. The reset address is however always aligned
on a 4 kbyte boundary.

28.2.15 Multi-processor support

The LEON3 processor support synchronous multi-processing (SMP) configurations, with up to 16
processors attached to the same AHB bus. In multi-processor systems, only the processor with
index 0 will start. All other processors will remain halted in power-down mode. After the system
has been initialized, the halted processors can be started by writing to the ‘MP status register’,
located in the multi-processor interrupt controller. The halted processors start executing from the
reset address (0 or RSTADDR generic).

28.2.16 Cache sub-system

The LEON3 processor implements a Harvard architecture with separate instruction and data buses,
connected to two independent cache controllers. Both instruction and data cache controllers can be
separately configured to implement a direct-mapped cache or a multi-set cache with set associativ-
ity of 2 - 4. The set size is configurable to 1 - 256 kbyte, divided into cache lines with 16 or 32
bytes of data. In multi-set configurations, one of three replacement policies can be selected: least-
recently-used (LRU), least-recently-replaced (LRR) or (pseudo-) random. If the LRR algorithm
can only be used when the cache is 2-way associative. A cache line can be locked in the instruction
or data cache preventing it from being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The LRU
algorithm needs extra flip-flops per cache line to store access history. The random replacement
algorithm is implemented through modulo-N counter that selects which line to evict on cache
miss.

Cachability for both caches is controlled through the AHB plug&play address information. The
memory mapping for each AHB slave indicates whether the area is cachable, and this information
is used to (statically) determine which access will be treated as cacheable. This approach means
that the cachability mapping is always coherent with the current AHB configuration.

The detailed operation of the instruction and data caches is described in the following sections.

157

28.3 Instruction cache

28.3.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache with
associativity of 2 - 4 implementing either LRU or random replacement policy or as 2-way associa-
tive cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided
into cache lines of 16- 32 bytes. Each line has a cache tag associated with it consisting of a tag
field, valid field with one valid bit for each 4-byte sub-block and optional LRR and lock bits. On
an instruction cache miss to a cachable location, the instruction is fetched and the corresponding
tag and data line updated. In a multi-set configuration a line to be replaced is chosen according to
the replacement policy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled from
main memory starting at the missed address and until the end of the line. At the same time, the
instructions are forwarded to the IU (streaming). If the IU cannot accept the streamed instructions
due to internal dependencies or multi-cycle instruction, the IU is halted until the line fill is com-
pleted. If the IU executes a control transfer instruction (branch/CALL/JMPL/RETT/TRAP) dur-
ing the line fill, the line fill will be terminated on the next fetch. If instruction burst fetch is
enabled, instruction streaming is enabled even when the cache is disabled. In this case, the fetched
instructions are only forwarded to the IU and the cache is not updated.

If the line fill starts at the first word in the line, 4 or 8 word fixed-length burst is generated on the
AHB bus depending on the line size. Otherwise an incremental burst starting at the address of the
missed word and ending at line end is generated.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid bit in
the cache tag will not be set. If the IU later fetches an instruction from the failed address, a cache
miss will occur, triggering a new access to the failed address. If the error remains, an instruction
access error trap (tt=0x1) will be generated.

28.3.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 93:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history, otherwise 0.
[8]: LOCK - Locks a cache line when set. 0 if cache locking not implemented.
[7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data.

These bits is set when a sub-block is filled due to a successful cache miss; a cache fill which
results in a memory error will leave the valid bit unset. A FLUSH instruction will clear all
valid bits. V[0] corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address
2 and so on.

Figure 93. Instruction cache tag layout examples

07891031

VALIDATAG LRR LOCK

03891231

VALIDATAG LRR LOCK

Tag for 1 Kbyte set, 32 bytes/line

Tag for 4 Kbyte set, 16bytes/line

00 0000

158

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache con-
figuration. As an example, a 4 kbyte cache with 16 bytes per line would only have four valid bits
and 20 tag bits. The cache rams are sized automatically by the ram generators in the model.

159

28.4 Data cache

28.4.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with associativ-
ity of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or as 2-way associa-
tive cache implementing LRR algorithm. The set size is configurable to 1 - 64 kbyte and divided
into cache lines of 16 - 32 bytes. Each line has a cache tag associated with it consisting of a tag
field, valid field with one valid bit for each 4-byte sub-block and optional lock and LRR bits. On a
data cache read-miss to a cachable location 4 bytes of data are loaded into the cache from main
memory. The write policy for stores is write-through with no-allocate on write-miss. In a multi-set
configuration a line to be replaced on read-miss is chosen according to the replacement policy. If a
memory access error occurs during a data load, the corresponding valid bit in the cache tag will
not be set. and a data access error trap (tt=0x9) will be generated.

28.4.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data until
it is sent to the destination device. For half-word or byte stores, the stored data replicated into
proper byte alignment for writing to a word-addressed device, before being loaded into one of the
WRB registers. The WRB is emptied prior to a load-miss cache-fill sequence to avoid any stale
data from being read in to the data cache.

Since the processor executes in parallel with the write buffer, a write error will not cause an excep-
tion to the store instruction. Depending on memory and cache activity, the write cycle may not
occur until several clock cycles after the store instructions has completed. If a write error occurs,
the currently executing instruction will take trap 0x2b.

Note: the 0x2b trap handler should flush the data cache, since a write hit would update the cache
while the memory would keep the old value due the write error.

28.4.3 Data cache tag

A data cache tag entry consists of several fields as shown in figure 94:

Field Definitions:

[31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
[9]: LRR - Used by LRR algorithm to store replacement history. ‘0’ if LRR is not used.
[8]: LOCK - Locks a cache line when set. ‘0’ if instruction cache locking was not enabled in the

configuration.
[3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. These

bits is set when a sub-block is filled due to a successful cache miss; a cache fill which results
in a memory error will leave the valid bit unset. V[0] corresponds to address 0 in the cache
line, V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache con-
figuration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight valid bits
and 21 tag bits. The cache rams are sized automatically by the ram generators in the model.

Figure 94. Data cache tag layout

07891031

VALIDATAG LRR LOCK

160

28.5 Additional cache functionality

28.5.1 Cache flushing

Both instruction and data cache are flushed by executing the FLUSH instruction. The instruction
cache is also flushed by setting the FI bit in the cache control register, or by writing to any location
with ASI=0x15. The data cache is also flushed by setting the FD bit in the cache control register,
or by writing to any location with ASI=0x16. Cache flushing takes one cycle per cache line, during
which the IU will not be halted, but during which the caches are disabled. When the flush opera-
tion is completed, the cache will resume the state (disabled, enabled or frozen) indicated in the
cache control register.

28.5.2 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 0xC,
0xD, 0xE and 0xF by executing LDA and STA instructions. Address bits making up the cache off-
set will be used to index the tag to be accessed while the least significant bits of the bits making up
the address tag will be used to index the cache set.

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for instruction
cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by the address bits
making up the cache offset and the least significant bits of the address bits making up the address
tag. Similarly, the data sub-blocks may be read by executing an LDA instruction with ASI=0xD
for instruction cache data and ASI=0xF for data cache data. The sub-block to be read in the
indexed cache line and set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the instruction
cache tags and ASI=0xE for the data cache tags. The cache line and set are indexed by the address
bits making up the cache offset and the least significant bits of the address bits making up the
address tag. D[31:10] is written into the ATAG filed (see above) and the valid bits are written with
the D[7:0] of the write data. Bit D[9] is written into the LRR bit (if enabled) and D[8] is written
into the lock bit (if enabled). The data sub-blocks can be directly written by executing a STA
instruction with ASI=0xD for the instruction cache data and ASI=0xF for the data cache data. The
sub-block to be read in the indexed cache line and set is selected by A[4:2].

Note that diagnostic access to the cache is not possible during a FLUSH operation and will cause a
data exception (trap=0x09) if attempted.

28.5.3 Cache line locking

In a multi-set configuration the instruction and data cache controllers can be configured with
optional lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced by the
replacement algorithm. A cache line is locked by performing a diagnostic write to the instruction
tag on the cache offset of the line to be locked setting the Address Tag field to the address tag of
the line to be locked, setting the lock bit and clearing the valid bits. The locked cache line will be
updated on a read-miss and will remain in the cache until the line is unlocked. The first cache line
on certain cache offset is locked in the set 0. If several lines on the same cache offset are to be
locked the locking is performed on the same cache offset and in sets in ascending order starting
with set 0. The last set can not be locked and is always replaceable. Unlocking is performed in
descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line lock-
ing was enabled during the LEON3 configuration: the lock bit will be set if the cache line locking
was enabled otherwise it will be 0.

28.5.4 Local instruction ram

A local instruction ram can optionally be attached to the instruction cache controller. The size of
the local instruction is configurable from 1-64 kB. The local instruction ram can be mapped to any
16 Mbyte block of the address space. When executing in the local instruction ram all instruction

161

fetches are performed from the local instruction ram and will never cause IU pipeline stall or gen-
erate an instruction fetch on the AHB bus. Local instruction ram can be accessed through load/
store integer word instructions (LD/ST). Only word accesses are allowed, byte, halfword or dou-
ble word access to the local instruction ram will generate data exception.

28.5.5 Local data ram

A local data ram can optionally be attached to the data cache controller. Data access (load and
store instructions) performed to the local data ram and will not be cached in the normal data
cache, nor appear on the AHB bus. The ram can be between 1 - 64 kbyte, and mapped on any 16
Mbyte block in the address space. See “Configuration and synthesis” on page 166 for configura-
tion details.

28.5.6 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache Control
Register (CCR) (figure 95). Each cache can be in one of three modes: disabled, enabled and fro-
zen. If disabled, no cache operation is performed and load and store requests are passed directly to
the memory controller. If enabled, the cache operates as described above. In the frozen state, the
cache is accessed and kept in sync with the main memory as if it was enabled, but no new lines are
allocated on read misses.

Field Definitions:

[23]: Data cache snoop enable [DS] - if set, will enable data cache snooping.
[22]: Flush data cache (FD). If set, will flush the instruction cache. Always reads as zero.
[21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
[16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
[15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation

is in progress.
[14]: Data cache flush pending (DP). This bit is set when an data cache flush operation

is in progress.
[5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen

when an asynchronous interrupt is taken.
[4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically

be frozen when an asynchronous interrupt is taken.
[3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following:

X0= disabled, 01 = frozen, 11 = enabled.
[1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the

following: X0= disabled, 01 = frozen, 11 = enabled.
If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous interrupt is
taken. This can be beneficial in real-time system to allow a more accurate calculation of worst-
case execution time for a code segment. The execution of the interrupt handler will not evict any
cache lines and when control is returned to the interrupted task, the cache state is identical to what
it was before the interrupt. If a cache has been frozen by an interrupt, it can only be enabled again
by enabling it in the CCR. This is typically done at the end of the interrupt handler before control
is returned to the interrupted task.

Figure 95. Cache control register

ICSDCSIFIB

01234514151631

DPIP DF

621

FIFD

2223

DS

162

28.5.7 Cache configuration registers

The configuration of the two caches if defined in two registers: the instruction and data configura-
tion registers. These registers are read-only and indicate the size and configuration of the caches.

[31]: Cache locking (CL). Set if cache locking is implemented.
[29:28]: Cache replacement policy (REPL). 00 - no replacement policy (direct-mapped cache), 01 -

least recently used (LRU), 10 - least recently replaced (LRR), 11 - random
[27]: Cache snooping (SN). Set if snooping is implemented.
[26:24]: Cache associativity (SETS). Number of sets in the cache: 000 - direct mapped, 001 - 2-way

associative, 010 - 3-way associative, 011 - 4-way associative
[23:20]: Set size (SSIZE). Indicates the size (Kbytes) of each cache set. Size = 2SIZE

[19]: Local ram (LR). Set if local scratch pad ram is implemented.
[18:16]: Line size (LSIZE). Indicated the size (words) of each cache line. Line size = 2LSZ

[15:12]: Local ram size (LRSZ). Indicates the size (Kbytes) of the implemented local scratch pad
ram. Local ram size = 2LRSZ

[11:4]: Local ram start address. Indicates the 8 most significant bits of the local ram start address.
[3]: MMU present. This bit is set to ‘1’ if an MMU is present.

All cache registers are accessed through load/store operations to the alternate address space (LDA/
STA), using ASI = 2. The table below shows the register addresses:

28.5.8 Software consideration

After reset, the caches are disabled and the cache control register (CCR) is 0. Before the caches
may be enabled, a flush operation must be performed to initialized (clear) the tags and valid bits. A
suitable assembly sequence could be:

flush
set 0x81000f, %g1
st %g1, [%g0] 2

TABLE 107. ASI 2 (system registers) address map

Address Register

0x00 Cache control register

0x04 Reserved

0x08 Instruction cache configuration register

0x0C Data cache configuration register

Figure 96. Cache configuration register

SETS LRSTART

03418 12151631 1119

LSIZELR

2023

SSIZESNREPLCL

30 29 28 27 26 25 24

LRSIZE M

163

28.6 Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can
optionally be configured. For details on operation, see the SPARC V8 manual.

28.6.1 ASI mappings

When the MMU is used, the following ASI mappings are added:

28.6.2 Cache operation

When the MMU is disabled, the caches operate as normal with physical address mapping.
When the MMU is enabled, the caches tags store the virtual address and also include an 8-bit
context field. AHB cache snooping is not available when the MMU is enabled.

28.6.3 MMU registers

The following MMU registers are implemented:

The definition of the registers can be found in the SPARC V8 manual.

28.6.4 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data.
The number of TLB entries can be set to 2 - 32 in the configuration record. The organisation of
the TLB and number of entries is not visible to the software and does thus not require any
modification to the operating system.

ASI Usage

0x10 Flush page

0x10 MMU flush page

0x13 MMU flush context

0x14 MMU diagnostic dcache context access

0x15 MMU diagnostic icache context access

0x19 MMU registers

0x1C MMU bypass

0x1D MMU diagnostic access

TABLE 108. MMU ASI usage

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

TABLE 109. MMU registers (ASI = 0x19)

164

28.7 Floating-point unit and custom co-processor interface

The SPARC V8 architecture defines two (optional) co-processors: one floating-point unit (FPU)
and one user-defined co-processor. The LEON3 pipeline provides an interface port for both of
these units. Two different FPU’s can be interfaced: Gaisler Research’s GRFPU, and the Meiko
FPU from Sun. Selection of which FPU to use is done through the VHDL model’s generic map.
The characteristics of the FPU’s are described in the next sections.

28.7.1 Gaisler Research’s floating-point unit (GRFPU)

The high-performance GRFPU operates on single- and double-precision operands, and imple-
ments all SPARC V8 FPU instructions. The FPU is interfaced to the LEON3 pipeline using a
LEON3-specific FPU controller (GRFPC) that allows FPU instructions to be executed simulta-
neously with integer instructions. Only in case of a data or resource dependency is the integer
pipeline held. The GRFPU is fully pipelined and allows the start of one instruction each clock
cycle, with the exception is FDIV and FSQRT which can only be executed one at a time. The
FDIV and FSQRT are however executed in a separate divide unit and do not block the FPU from
performing all other operations in parallel.

All instructions except FDIV and FSQRT has a latency of three cycles, but to improve timing, the
LEON3 FPU controller inserts an extra pipeline stage in the result forwarding path. This results in
a latency of four clock cycles at instruction level. The table below shows the GRFPU instruction
timing when used together with GRFPC:

When the GRFPU is enabled in the model, the version field in %fsr has the value of 1.

The GRFPC controller implements the SPARC deferred trap model, and the FPU trap queue (FQ)
can contain up to three queued instructions when an FPU exception is taken.

Note that the GRFPU/GRFPC is not distributed with the open-source LEON model, and must be
obtained separately from Gaisler Research.

28.7.2 The Meiko FPU

The Meiko floating-point core operates on both single- and double-precision operands, and imple-
ments all SPARC V8 FPU instructions. The Meiko FPU is interfaced through the Meiko FPU con-
troller (MFC), which allows one FPU instruction to execute in parallel with IU operation. The
MFC implements the SPARC deferred trap model, and the FPU trap queue (FQ) can contain up to
one queued instruction when an FPU exception is taken.

When the Meiko FPU is enabled in the model, the version field in %fsr has the value of 2.

The Meiko FPU is not distributed with the open-source LEON3 model, and must be obtained sep-
arately from Sun.

TABLE 110. GRFPU instruction timing with GRFPC

Instruction Thr oughput Latency

FADDS, FADDD, FSUBS, FSUBD,FMULS, FMULD,
FSMULD, FITOS, FITOD, FSTOI, FDTOI, FSTOD, FDTOS,
FCMPS, FCMPD, FCMPES. FCMPED

1 4

FDIVS 14 16

FDIVD 15 17

FSQRTS 22 24

FSQRTD 23 25

165

28.7.3 Generic co-processor

LEON can be configured to provide a generic interface to a user-defined co-processor. The
interface allows an execution unit to operate in parallel to increase performance. One co-pro-
cessor instruction can be started each cycle as long as there are no data dependencies. When
finished, the result is written back to the co-processor register file.

166

28.8 Configuration and synthesis

28.8.1 Plug&play configuration

The LEON3 processor is identified with the following vendor and device ID’s:

28.8.2 Configuration options

The VHDL model of the LEON3 processor can be configured through following VHDL-generics:

TABLE 111. LEON3 plug&play ID

Vendor ID Device ID

0x01 (GAISLER) 0x003

TABLE 112. LEON3 VHDL-generics

Generic Function Allowed range Default

hindex AHB master index 0 - NAHBMST-1 0

fabtech Target technology 0 - NTECH 0 (inferred)

memtech Vendor library for regfile and cache RAMs 0 - NTECH 0 (inferred)

nwindows Number of SPARC register windows. Choose 8 win-
dows to be compatible with Bare-C and RTEMS
cross-compilers.

2 - 32 8

dsu Enable Debug Support Unit interface 0 - 1 0

fpu Floating-point Unit.

0 - no FPU, 1 - GRFPU, 2 - Meiko.

0 - 2 0

v8 Generate SPARC V8 MUL and DIV instructions 0 - 2 0

cp Generate co-processor interface 0 -1 0

mac Generate SPARC V8e SMAC/UMAC instruction 0 - 1 0

pclow Least significant bit of PC (Program Counter) that is
actually generated. PC[1:0] are always zero and are
normally not generated. Generating PC[1:0] makes
VHDL-debugging easier.

0, 2 2

notag Currently not used - -

nwp Number of watchpoints 0 - 4 0

irepl Instruction cache replacement policy.

0 - least recently used (LRU), 1 - least recently
replaced (LRR), 2 - random

0 - 1 0

isets Number of instruction cache sets 1 - 4 1

ilinesize Instruction cache line size in number of words 4, 8 4

isetsize Size of each instruction cache set in kByte 1 - 64 1

isetlock Enable instruction cache line locking 0 - 1 0

drepl Data cache replacement policy.

0 - least recently used (LRU), 1 - least recently
replaced (LRR), 2 - random

0 - 1 0

167

dsets Number of data cache sets 1 - 4 1

dlinesize Data cache line size in number of words 4, 8 4

dsetsize Size of each data cache set in kByte 1 - 64 1

dsetlock Enable instruction cache line locking 0 - 1 0

dsnoop Enable data cache snooping

0: disable, 1: slow, 2: fast (see text)

0 - 2 0

ilram Enable local instruction RAM 0 - 1 0

ilramsize Local instruction RAM size in kB 1 - 64 1

ilramstart 8 MSB bits used to decode local instruction RAM
area

0 - 255 16#8E#

dlram Enable local data RAM (scratch-pad RAM) 0 - 1 0

dlramsize Local data RAM size in kB 1 - 64 1

dlramstart 8 MSB bits used to decode local data RAM area 0 - 255 16#8F#

mmuen Enable memory management unit (MMU) 0 - 1 0

itlbnum Number of instruction TLB entries 2 - 64 8

dtlbnum Number of data TLB entries 2 - 64 8

tlb_type Separate (0) or shared TLB (1) 0 - 1 1

tlb_rep Random (0) or LRU (1) TLB replacement 0 - 1 0

lddel Load delay. One cycle gives best performance, but
might create a critical path on targets with slow
(data) cache memories. A 2-cycle delay can improve
timing but will reduce performance with about 5%.

1 - 2 2

disas Print instruction disassembly in VHDL simulator
console.

0 - 1 0

tbuf Size of instruction trace buffer in kB (0 - instruction
trace disabled)

0 - 64 0

pwd Power-down. 0 - disabled, 1 - area efficient, 2 - tim-
ing efficient.

0 - 2 1

svt Enable single-vector trapping 0 - 1 0

rstaddr Default reset start address 0 - (2**20-1) 0

TABLE 112. LEON3 VHDL-generics

Generic Function Allowed range Default

168

28.8.3 Signal description

28.8.4 Library dependencies

Table shows libraries that the LEON3 module depends on.

TABLE 113. Signal description

Signal name Field Type Function Active

CLK N/A Input Clock -

RSTN N/A Input Reset Low

AHBI * Input AHB master input signals -

AHBO * Output AHB master output signals -

AHBSI * Input AHB slave input signals -

IRQI IRL[3:0] Input Interrupt level High

IRQO INTACK Output Interrupt acknowledge High

IRL[3:0] Output Processor interrupt level High

DBGI - Input Debug inputs from DSU -

DBGO - Output Debug outputs to DSU -

* see GRLIB IP Library User’s Manual

TABLE 114. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GRLIB LEON3 Component, signals LEON3 component declaration, interrupt
and debug signals declaration

169

28.8.5 Model interface

The LEON3 has the following component declaration:

entity leon3s is
 generic (
 hindex : integer := 0;
 fabtech : integer range 0 to 7 := 0;
 memtech : integer range 0 to 7 := 0;
 nwindows : integer range 2 to 32 := 8;
 dsu : integer range 0 to 1 := 0;
 fpu : integer range 0 to 2 := 0;
 v8 : integer range 0 to 2 := 0;
 cp : integer range 0 to 1 := 0;
 mac : integer range 0 to 1 := 0;
 pclow : integer range 0 to 2 := 2;
 notag : integer range 0 to 1 := 0;
 nwp : integer range 0 to 4 := 0;
 irepl : integer range 0 to 2 := 2;
 isets : integer range 1 to 4 := 1;
 ilinesize : integer range 4 to 8 := 4;
 isetsize : integer range 1 to 64 := 1;
 isetlock : integer range 0 to 1 := 0;
 drepl : integer range 0 to 2 := 2;
 dsets : integer range 1 to 4 := 1;
 dlinesize : integer range 4 to 8 := 4;
 dsetsize : integer range 1 to 64 := 1;
 dsetlock : integer range 0 to 1 := 0;
 dsnoop : integer range 0 to 2 := 0;
 lram : integer range 0 to 1 := 0;
 lrambits : integer range 4 to 14 := 4;
 lramstart : integer range 0 to 255 := 16#40#;
 lddel : integer range 1 to 2 := 2;
 disas : integer range 0 to 1 := 0;
 tbuf : integer range 0 to 64 := 0;
 pwd : integer range 0 to 2 := 1;
svt : integer range 0 to 1 := 1;
 rstaddr : integer := 16#00000#
);
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;
 ahbi : in ahb_mst_in_type;
 ahbo : out ahb_mst_out_type;
 ahbsi : in ahb_slv_in_type;
 irqi : in l3_irq_in_type;
 irqo : out l3_irq_out_type;
 dbgi : in l3_debug_in_type;
 dbgo : out l3_debug_out_type
);
end;

170

29 MUL32 - Signed/unsigned 32x32 multiplier module

29.1 Overview

The multiplier module is highly configurable module implementing 32x32 bit multiplier. Multi-
plier takes two signed or unsigned numbers as input and produces 64-bit result. Multiplication
latency and hardware complexity depend on multiplier configuration. Variety of configuration
option makes it possible to configure the multiplier to meet wide range of requirements on com-
plexity and performance.

For DSP applications the module can be configured to perform multiply & accumulate (MAC)
operation. In this configuration 16x16 multiplication is performed and the 32-bit result is added to
40-bit value accumulator.

29.2 Operation

The multiplication is started when ‘1’ is samples on MULI.START on positive clock edge. Oper-
ands are latched externally and provided on inputs MULI.OP1 and MULI.OP2 during the whole
operation. The result appears on the outputs during the clock cycle following the clock cycle when
MULO.READY is asserted if multiplier if 16x16, 32x8 or 32x16 configuration is used. For 32x32
configuration result appears on the output during the second clock cycle after the MULI.START
was asserted.

Signal MULI.MAC shall be asserted to start multiply & accumulate (MAC) operation. This signal
is latched on positive clock edge. Multiplication is performed between two 16-bit values on inputs
MULI.OP1[15:0] and MULI.OP2[15:0]. The 32-bit result of the multiplication is added to the 40-
bit accumulator value on signal MULI.ACC to form a 40-bit value on output
MULO.RESULT[39:0]. The result of MAC operation appears during the second clock cycle after
the MULI.MAC was asserted.

29.3 Configuration options

The multiplier module is configured through following VHDL-generics:

TABLE 115. Multiplier module configuration options (VHDL-generics)

Generic Function Allowed range Default

infer If set the multipliers will be inferred by the synthesis
tool. Use this option if your synthesis tool i capable of
inferring efficient multiplier implementation.

0 to 1 1

multype Size of the multiplier that is actually implemented. All
configuration produce 64-bit result with different laten-
cies.

0 - 16x16 bit multiplier

1 - 32x8 bit multiplier

2 - 32x16 bit multiplier

3 - 32x32 bit multiplier

0 to 3 0

pipe Used in 16x16 bit multiplier configuration with inferred
option enabled. Adds a pipeline register stage to the
multiplier. This option gives better timing but adds one
clock cycle to latency.

0 to 1 0

mac Enable multiply & accumulate operation. Use only with
16x16 multiplier option with no pipelining (pipe = 0)

0 to 1 0

171

Table 116 shows hardware complexity in ASIC gates and latency for different multiplier con-
figurations.

29.4 Signal description

The multiplier module signals are described in table 117.

TABLE 116. Multiplier latencies and hardware complexity

Multiplier size
(multype)

Pipelined
(pipe)

Latency
(clocks)

Approximate area
(gates)

16x16 1 5 6 500

16x16 0 4 6 000

32x8 - 4 5 000

32x16 - 2 9 000

32x32 - 1 15 000

TABLE 117. Multiplier module signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

HOLDN N/A Input Hold Low

MULI OP1[32:0] Input Operand 1

OP1[32] - Sign bit.

OP1[31:0] - Operand 1 in 2’s complement for-
mat

High

OP2[32:0] Operand 2

OP2[32] - Sign bit.

OP2[31:0] - Operand 2in 2’s complement for-
mat

High

FLUSH Flush current operation High

SIGNED Signed multiplication High

START Start multiplication High

MAC Multiply & accumulate High

ACC[39:0] Accumulator. Accumulator value is held exter-
nally.

High

MULO READY Output Result is ready during the next clock cycle for
16x16, 32x8 and 32x16 configurations. Not
used for 32x32 configuration or MAC opera-
tion.

High

NREADY Not used -

ICC[3:0] Condition codes

ICC[3] - Negative result (not used in 32x32
conf)

ICC[1] - Zero result (not used in 32x32 conf)

ICC[1:0] - Not used

High

RESULT[63:0] Result. Available at the end of the clock cycle if
MULO.READY was asserted in previous clock
cycle. For 32x32 configuration the result is
available during second clock cycle after the
MULI.START was asserted.

High

172

29.5 Library dependencies

Table 118 shows libraries required when instantiating the multiplier module.

29.6 Model interface

The multiplier unit has the following component declaration.

component mul32
generic (
 infer : integer := 1;
 multype : integer := 0;
 pipe : integer := 0;
 mac : integer := 0
);
port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 holdn : in std_ulogic;
 muli : in mul32_in_type;
 mulo : out mul32_out_type
);
end component;

29.7 Example instantiation

The VHDL-code below shows how the multiplier module can be instantiated. The module is con-
figured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use gaisler.arith.all;

.

.

.

signal muli : mul32_in_type;
signal mulo : mul32_out_type;

begin

mul0 : mul32 generic map (infer => 1, multype => 0, pipe => 1, mac => 1)
 port map (rst, clk, holdn, muli, mulo);

end;

TABLE 118. Library dependencies

Library Package Imported unit(s) Description

GAISLER ARITH Signals, component Multiplier module signals, component
declaration

173

174

30 MULTLIB - High-performance multipliers

30.1 Overview

The GRLIB.MULTLIB VHDL-library contains a collection of high-performance multipliers from
the Arithmetic Module Generator at Norwegian University of Science and Technology. 32x32,
32x8, 32x16, 16x16 unsigned/signed multipliers are included. 16x16-bit multiplier can be config-
ured to include a pipeline stage. This option improves timing but increases latency with one clock
cycle.

30.2 Configuration

16x16 multiplier can be configured to include a pipeline stage through the mulpipe VHDL-generic
(0 -pipelining disabled, 1 - pipelining enabled).

30.3 Signal description

Multiplier signals are described in table 119.

30.4 Library dependencies

Table 120 shows libraries required when instantiating the multiplier module.

TABLE 119. Multipliers signals

Signal name Type Function Active

CLK

(16x16 multiplier only)

Input Clock -

HOLDN

(16x16 multiplier only)

Input Hold. When active, the pipeline register is not
updates

Low

X[16:0] (16x16 mult)

X[32:0] (32x8 mult)

X[32:0] (32x16 mult)

X[32:0] (32x32 mult)

Input Operand 1. MBS bit is sign bit. High

Y[16:0] (16x16 mult)

Y[8:0] (32x8 mult)

Y[16:0] (32x16 mult)

Y[32:0] (32x32 mult)

Input Operand 2. MSB bit is sign bit. High

P[33:0] (16x16 mult)

P[41:0] (32x8 mult)

P[49:0] (32x16 mult)

P[65:0] (32x32 mult)

Result. Two MSB bits are sign bits. High

TABLE 120. Library dependencies

Library Package Imported unit Description

GRLIB MULTLIB Component Multiplier component declarations

175

30.5 Model interface

Component declaration for 32x32 multiplier is shown below.
component mul_33_33
 port (
 x : in std_logic_vector(32 downto 0);
 y : in std_logic_vector(32 downto 0);
 p : out std_logic_vector(65 downto 0)
);
end component;

30.6 Example instantiation

The VHDL-code below shows how the multiplier module can be instantiated. The module is
configured to implement 16x16 pipelined multiplier with support for MAC operations.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.multlib.all;

.

.

.

signal op1, op2 : std_logic_vector(32 downto 0);
signal prod : std_logic_vector(65 downto 0);

begin

m0 : mul_33_33
 port map (op1, op2, prod);

end;

176

31 PHY - Ethernet PHY simulation model

31.1 Overview

The Ethernet PHY simulation model is a model of an Ethernet PHY chip which is connected
between the physical line and the MAC in Ethernet connections. It receives a bitstream from the
MAC and converts it into an analog signal which is driven on the line. This model is loosely based
on the Intel LXT971A chip. It does not nearly implement all functionality provided by the real
device but merely provides enough functions to make it possible to conduct simple simulations.

31.2 Operation

The PHY simulation model was designed to make it possible to perform simple simulations on the
EDCL unit also included in GRLIB. The EDCL uses the Opencores Ethernet MAC for the Ether-
net communication and the PHY model provides stimuli for the MAC receiver from a file and also
stores output from the MAC in another file. Figure 1 shows a block diagram of a typical connec-
tion.

The PHY model provides the complete MII interface as defined by the IEEE 802.3 standard with
the exception of the management interface. Signals are provided for the management part also but
they are currently not used and should be connected to dummy signals or left unconnected were
appropriate. Although it was designed to be used with the Opencores MAC in the EDCL, the MII
interface should make it possible to connect it to any MAC.

The model can be used in any of the following modes: 10 Mbit half- or full duplex, 100 Mbit half-
or full-duplex. The mode is selected with the LEDCFG signals and Table 1 shows the different
settings. The rx-clk and tx-clk signals are driven with the correct frequency depending on the
selected mode. The other signals are driven in such a way that the follow the 802.3 specification as
closely as possible.

The PHY model reads its in-data from a file called ‘indata’ from the current working directory.
The data should be stored as ASCII with one nibble in binary format per row. It is read using the
VHDL TEXTIO functions. The file should begin with a row containing an invalid bit-vector (any-
thing that cannot be converted to a valid bit-vector by TEXTIO) and all packets should have such
a row in-between. This is needed because the PHY inserts a delay between packets and packet
boundaries are located by letting the TEXTIO read function set an invalid value parameter to true
when an invalid row is found. The delays between packets are currently hard-coded in the design.
When a certain number of packets have been sent (set by the win_size generic) a different delay
value is used once and then the normal values are used again. This is repeated indefinitely.The out-
put from the MAC is stored in a file called outdata in the current working directory. Data is for-
matted in the same way as the input file. An example of this formatting is shown in figure 98.

PHY

MAC
MAC

MII Interface

Output to fileInput from file

Figure 97. Block diagram of the PHY simulation model connected to a MAC.

177

31.3 Configuration options

The PHY model has the following configuration options (VHDL generics):

TABLE 2. PHY model options (generics)

Generic Function Allowed range Default

win_size Sets the number of packets between each
special delay.

all positive integers 3

TABLE 1. The led_cfg values used for the different operating modes

LED_CFG Mode

000 10 Mbit half-duplex

001 10 Mbit full-duplex

010 100 Mbit half-duplex

011 100 Mbit full-duplex

start
1101
1001
.
new
1001
0000
.
new
1001
.

Figure 98. An example of an indata file layout.

178

31.4 Signal descriptions

The PHY model signals are described in table 3.

31.5 Library dependencies

Table 4 shows libraries that should be used when instantiating the PHY model.

31.6 PHY model instantiation

This examples shows how a PHY model module can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.sim.all;

entity phy_ex is
 port (
rst : std_ulogic;
clk : std_ulogic;
);
end;

TABLE 3. PHY model signals

Signal name Field Type Function Active

RESETN - Input Reset Low

LED_CFG - Input Configuration signals used to select the
operating mode

-

MDIO - Input/
Output

Data signal for the management interface
(Currently not used)

-

TX_CLK - Output Transmitter clock -

RX_CLK - Output Receiver clock -

RXD - Output Receiver data -

RX_DV - Output Receiver data valid High

RX_ER - Output Receiver error High

RX_COL - Output Collision High

RX_CRS - Output Carrier sense High

TXD - Input Transmitter data -

TX_EN - Input Transmitter enable High

TX_ER - Input Transmitter error High

MDC - Input Management interface clock (Currently not
used)

-

see the IEEE 802.3 standard for a description of how the signals are used.

TABLE 4. Library dependencies

Library Package Imported unit(s) Description

GAISLER SIM Component Component declaration

179

architecture rtl of phy_ex is

 -- Signals

signal eled_cfg : std_logic_vector(2 downto 0);
signal etx_clk : std_logic;
signal erx_clk : std_logic;
signal erxd : std_logic_vector(3 downto 0);
signal erx_dv : std_logic;
signal erx_er : std_logic;
signal erx_col : std_logic;
signal erx_crs : std_logic;
signal etxd : std_logic_vector(3 downto 0);
signal etx_en : std_logic;
signal etx_er : std_logic;
signal emdc : std_logic;

begin

 -- Other components are instantiated here
 ...

 -- PHY model
phy0 : phy

 generic map (win_size => 8)
 port map(resetn => rst, led_cfg => eled_cfg, mdio => open, tx_clk => etx_clk,
rx_clk => erx_clk, rxd => erxd, rx_dv => erx_dv, rx_er => erx_er,
rx_col => erx_col, rx_crs => erx_crs, txd => etxd, tx_en => etx_en,
tx_er => etx_er, mdc => emdc);

end;

180

32 PCITARGET - Simple 32-bit PCI target with AHB interface

32.1 Overview

This module implements PCI interface with a simple target-only interface. The interface is devel-
oped primarily to support DSU communication over the PCI bus. Focus has been put on small area
and robust operation, rather than performance. The interface has no FIFOs, limiting the transfer
rate to about 5 Mbyte/s. This is however fully sufficient to allow fast download and debugging
using the DSU.

32.2 Configuration options

The PCI target module has following configuration options (VHDL-generics):

32.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x012. For description of vendor
and device ids see GRLIB IP Library User’s Manual.

TABLE 5. Simple PCI Target configuration options (VHDL-generics)

Generic Function Allowed range Default

hindex Selects which AHB select signal (HSEL) will be used
to access the PCI target module

0 to NAHBMAX-1 0

abits Number of bits implemented for PCI memory BAR 0 to 31 21

device_id PCI device id 0 to 65535 0

vendor_id PCI vendor id 0 to 65535 0

nsync One or two synchronization registers between clock
regions

1 - 2 1

oepol Polarity of output enable signals. 0=active low,
1=active high

0 - 1 0

Figure 99. Target-only PCI interface

AMBA AHB

AHB Master AHB
Interface

PCI
Target

PCI Bus

181

32.4 Registers

The module implements one PCI memory BAR.

The interface consist of one PCI memory BAR occupying (2^abits) bytes (default: 2 Mbyte)
of the PCI address space, and an AHB address register. Any access to the lower half of the
address space (def.: 0 - 0xFFFFF) will be forwarded to the internal AHB bus. The AHB
address will be formed by concatenating the AHB address filed of AHB address register with
the LSB bits of the PCI address. An access to the upper half of the address space (default: 1
Mbyte on 0x100000 - 0x1FFFFF) of the BAR will read or write the AHB address register.

32.5 Signal description

PCI Target signals are described in table 6.

The PCIO record contains an additional output enable signal vaden. It is has the same value as
aden at each index but they are all driven from separate registers. A directive is placed on this
vector so that the registers will not be removed during synthesis. This output enable vector can
be used instead of aden if output delay is an issue in the design.

32.6 Library dependencies

Table 7 shows required libraries when instantiating PCI Target module.

TABLE 6. PCI Target signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AHB system clock -

PCICLK N/A Input PCI clock -

PCII *1 Input PCI input signals -

PCIO *1 Output PCI output signals -

APBI *2 Input APB slave input signals -

APBO *2 Output APB slave output signals -

*1) see PCI specification
*2) see GRLIB IP Library User’s Manual

TABLE 7. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Signals, component PCI signals and component declaration

Figure 100. AHB address register (BAR0, 0x100000)

0abits-2abits-131

AHB address [31:abits-1] UNUSED

182

33 PCIDMA - DMA Controller for the GRPCI interface

33.1 Introduction

The DMA controller is an add-on interface to the GRPCI interface. This controller perform bursts
to or from PCI bus using the master interface of GR PCI Master/target unit. Figure 1 below illus-
trates how the DMA controller is attached between the AHB bus and the PCI master interface.

33.2 Operation

The DMA controller is set up by defining the location of memory areas between which the DMA
will take place in both PCI and AHB address space as well as direction, length and type of the
transfer. Only 32-bit word transfer are supported.

The DMA transfer is automatically aborted when any kind of error is detected during a transfer.
The DMA controller does not detect deadlocks in its communication channels. If the system con-
cludes that a deadlock has occurred, it can manually abort the DMA transfer.

When the DMA is not active the AHB slave interface of PCI Master/Target unit will be directly
connected to AMBA AHB bus.

Figure 101. DMA Controller unit

PCI Master PCI Target

AHB Slave AHB Master

Cfg/Stat

AMBA bus

PCI Off-chip bus

PCI Bridge

MTx FIFO MRx FIFO TTx FIFO TRx FIFO

AHB

Ctrl

Buffer
Master

DMA Controller

183

33.3 Configuration options

The PCI Target / Master unit has the following configuration options (VHDL generics):

33.4 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x016. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

33.5 Registers

Following registers are mapped into APB address space:

[31:8]: Reserved.
[7:4]: Transfer Type (TTYPE) - Perform either PCI Memory or I/O cycles. “1000” - memory

cycles, “0100” - I/O cycles. This value drives directly HMBSEL signals on PCI Master/
Targets units AHB Slave interface.

[3]: Error (ERR) - Last transfer was abnormally terminated. If set by the DMA Controller this bit
will remain zero until cleared by writing ‘1’ to it.

[2]: Ready (RDY) - Current transfer is completed. When set by the DMA Controller this bit will
remain zero until cleared by writing ‘1’ to it.

[1]: Transfer Direction (TD) - ‘1’ - write to PCI, ‘0’ - read form PCI.
[0]: Start (ST) - Start DMA transfer. Writing ‘1’ will start the DMA transfer. All other registers

have to be set up before setting this bit.
Set by the PCI Master interface when its transaction is terminated with Target-Abort. Writing ‘1’

TABLE 8. DMA Controller options (generics)

Generic Function Allowed range Default

mstndx DMA Controllers AHB Master interface index 0 - NAHBMST-1 0

apbndx The AMBA APB index for the configuration/sta-
tus APB interface

0 - NAPBMAX-1 0

apbaddr APB interface base address 0 - 16#FFF# 0

apbmask APB interface address mask 0 - 16#FFF# 16#FFF#

blength Burst length - 4

TABLE 9. DMA Controller registers

Address offset Register

0x00 Command/status register

0x04 AMBA Target Address

0x08 PCI Target Address

0x0C Burst length

Figure 102. Status/Command register

031

ST

1

TD

2

RDY

3

ERR

47

TTYPERESERVED

8

184

[31:0]: AMAB Target Address (ATA) - AHB start address for the data on AMBA bus. In case of error,
it indicated failing address.

[31:0]: PCI Target Address (PTA) - PCI start address on PCI bus. This is a complete 32-bit PCI
address and is not further mapped by the PCI Master/Target unit. In case of error, it indicated
failing address.

[blentgh-1:0]: DMA Transfer Length (LEN) - Number of 32-bit words to be transferred.

Figure 103. AMBA Target Address

031

 ATA

Figure 104. PCI Target Address

031

PTA

Figure 105. Length register

031

LEN

blength-1blength

185

33.6 Signal description

DMA controller unit signals are described in table 10.

33.7 Library dependencies

Table 11 shows libraries that should be used when instantiating the DMA controller.

33.8 Example instantiation

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.pci.all;
use gaisler.pads.all;

signal pcii : pci_in_type;
signal pcio : pci_out_type;

dma : pcidma generic map (memtech => memtech, dmstndx => 1,
 dapbndx => 5, dapbaddr => 5, blength => blength, mstndx => 0,
 fifodepth => log2(fifodepth), device_id => CFG_PCIDID, vendor_id => CFG_PCIVID,
 slvndx => 4, apbndx => 4, apbaddr => 4, haddr => 16#E00#, ioaddr => 16#800#,
 nsync => 1)
port map (rstn, clkm, pciclk, pcii, pcio, apbo(5), ahbmo(1),
apbi, apbo(4), ahbmi, ahbmo(0), ahbsi, ahbso(4));

pcipads0 : pcipads generic map (padtech => padtech)
port map (pci_rst, pci_gnt, pci_idsel, pci_lock, pci_ad, pci_cbe,
 pci_frame, pci_irdy, pci_trdy, pci_devsel, pci_stop, pci_perr,
 pci_par, pci_req, pci_serr, pci_host, pci_66, pcii, pcio);

TABLE 10. PCI Target/Master unit signals

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input AMBA system clock -

PCICLK N/A Input PCI clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

AHBMI * Input AHB master input signals -

AHBMO * Output AHB master output signals -

AHBSI0 * Input AHB slave input signals, main AHB bus -

AHBSO0 * Output AHB slave output signals, main AHB bus -

AHBSI1 * Input AHB slave input signals, connected to PCI
Target/Master unit

-

AHBSO1 * Output AHB slave output signals, connected to PCI
Target/Master unit

-

* see GRLIB IP Library User’s Manual

TABLE 11. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AMBA signal definitions

GAISLER PCI Component Component declaration

186

34 REGFILE_3P 3-port RAM generator (2 read, 1 write)

34.1 Operation

The 3-port register file has two read ports and one write port. Each port has a separate address and
data bus. All inputs are latched on the rising edge of clk. The read data appears on dataout directly
after the clk rising edge. Note: on most technologies, the register file is implemented with two 2-
port RAMs with combined write ports. Address width, data width and target technology is param-
etrizable through generics.

Write-through is supported if the function syncram_2p_write_through(tech) returns 1 for the tar-
get technology.

34.2 Component declaration

library grlib;
use grlib.tech.all;
library gaisler;
use gaisler.memory.all;

component regfile_3p
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8;
 wrfst : integer := 0; numregs : integer := 64);
 port (
 wclk : in std_ulogic;
 waddr : in std_logic_vector((abits -1) downto 0);
 wdata : in std_logic_vector((dbits -1) downto 0);
 we : in std_ulogic;
 rclk : in std_ulogic;
 raddr1 : in std_logic_vector((abits -1) downto 0);
 re1 : in std_ulogic;
 rdata1 : out std_logic_vector((dbits -1) downto 0);
 raddr2 : in std_logic_vector((abits -1) downto 0);
 re2 : in std_ulogic;
 rdata2 : out std_logic_vector((dbits -1) downto 0)
);
 end component;

34.3 Signals

TABLE 12. REGFILE_3P signals

Signal name Type Function Active

WCLK Input Write port clock

WADDR Input Write address

WDATA Input Write data

WE Input Write enable High

RCLK Input Read ports clock -

RADDR1 Input Read port1 address -

RE1 Input Read port1 enable High

RDATA1 Output Read port1 data -

RADDR2 Input Read port2 address -

RE2 Input Read port2 enable High

RDATA2 Output Read port2 data -

187

34.4 Parameters (generics)

TABLE 13. VHDL generics

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

wrfst Write-first (write-through). Only applicable to inferred
technology

0 - 1 0

numregs Not used

TABLE 14. Supported technologies

Tech name Technology RAM cell abit range dbit range

ihp25 IHP 0.25 flip-flops unlimited unlimited

inferred Behavioural description synthesis tool dependent

rhumc Rad-hard UMC 0.18 flip-flops unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

188

35 SDCTRL - 32/64-bit SDRAM PC133 SDRAM Controller

35.1 Overview

The SDRAM controller handles PC133 SDRAM compatible memory devices attached to 32 or 64
bit wide data bus. The controller acts as a slave on the AHB bus where it occupies configurable
amount of address space for SDRAM access. The SDRAM controller function is programmed by
writing to a configuration register mapped into AHB I/O address space.

Chip-select decoding is provided for two SDRAM banks.

35.2 Operation

35.2.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 com-
patible devices. The controller supports 64M, 256M and 512M device with 8 - 12 column-address
bits, up to 13 row-address bits, and 4 banks. The size of each of the two banks can be programmed
in binary steps between 4 Mbyte and 512 Mbyte. The operation of the SDRAM controller is con-
trolled through the configuration register SDCFG (see chapter 35.4). SDRAM banks data bus
width is configurable between 32 and 64 bits.

35.2.2 Initialization

When the SDRAM controller is enabled, it automatically performs the SDRAM initialization
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simul-
taneously. The controller programs the SDRAM to use page burst on read and single location
access on write. If the pwron generic is 1, the initialization sequence is also sent automatically
when reset is released. Note that some SDRAM require a stable clock of 100 us before any com-
mands might be sent. When using on-chip PLL, this might not always be the case and the pwron
generic should be set to 0 in such cases.

Figure 106. SDRAM Memory controller conected to AMBA bus and SDRAM

A D

SDRAM

ADDRESS[16:2]

D[63:0]

RAS
CAS
WE

BA

D

SDRAMSDRASN
SDCASN
SDWEN

A[16:15]

DQMSDDQM[7:0]

CLK
CSN

SDCLK
SDCSN[1:0]

A
A[14:2]

CONTROLLER

AHB

SDCKE CKE

D[63:0]

189

35.2.3 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequen-
cies), some SDRAM parameters can be programmed through SDRAM configuration register
(SDCFG) The programmable SDRAM parameters can be seen in table below:

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

35.2.4 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-
REFRESH command to both SDRAM banks. The period between the commands (in clock
periods) is programmed in the refresh counter reload field in the SDCFG register. Depending
on SDRAM type, the required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560
clocks at 100 MHz). The generated refresh period is calculated as (reload value+1)/sysclk. The
refresh function is enabled by setting bit 31 in SDCFG register.

35.2.5 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field
in SDCFG: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR
command is issued, the CAS delay as programmed in SDCFG will be used, remaining fields
are fixed: page read burst, single location write, sequential burst. The command field will be
cleared after a command has been executed. Note that when changing the value of the CAS
delay, a LOAD-MODE-REGISTER command should be generated at the same time.

35.2.6 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row,
followed by a READ command after the programmed CAS delay. A read burst is performed if
a burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-
CHARGE command, no banks are left open between two accesses. Note that only word bursts
are supported by the SDRAM controller. The AHB bus supports bursts of different sizes such
as bytes and half-words but they cannot be used.

35.2.7 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE com-
mands are issued after activation. A write burst on the AHB bus will generate a burst of write
commands without idle cycles in-between. As in the read case, only word bursts are supported.

35.2.8 Address bus connection

The SDRAM address bus should be connected to SA[12:0], the bank address to SA[14:13],
and the data bus to SD[31:0] or SD[63:0] if 64-bit data bus is used.

35.2.9 Data bus

The external SDRAM data bus is configurable to either 32 or 64 bits width, using the sdbits
generic. 64-bit data bus allows 64-bit (SO)DIMS to be connected using the full data capacity
of the devices. The polarity of the output enable signal to the data pads can be selected with
the oepol generic. Sometimes it is difficult to fulfil the output delay requirements of the output
enable signal. In this case, the vbdrive signal can be used instead of bdrive. Each index in this

TABLE 15. SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks

190

vector is driven by a separate register and a directive is placed on them so that they will not be
removed by the synthesis tool.

35.2.10 Clocking

The external SDRAM clock must be in phase with the internal (AHB) clock, and typically requires
special synchronization. For Xilinx and Altera FPGA targets, GR Clock Generator can be config-
ured to produce a properly synchronized SDRAM clock. For boards where the SDRAM clock can
not be synchronized, the GR Clock Generator can produce an inverted clock. If this scheme is
used, the invclk generic should be set to 1 in order to adjust the SDRAM state machine.

35.2.11 Configuration options

The SDRAM controller has the following configuration options (VHDL generics):

35.3 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x009. For description of vendor
and device ids see GRLIB IP Library User’s Manual.

35.4 Registers

The memory controller is programmed through the SDRAM controller configuration register
mapped into AHB I/O space defined by the controllers AHB BAR1.

TABLE 16. SDRAM controller configuration options (VHDL generics)

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

haddr ADDR filed of the AHB BAR0 defining SDRAM
area. Default is 0xF0000000 - 0xFFFFFFFF.

0 - 16#FFF# 16#000#

hmask MASK filed of the AHB BAR0 defining SDRAM
area.

0 - 16#FFF# 16#F00#

ioaddr ADDR filed of the AHB BAR1 defining I/O address
space where SDCFG register is mapped.

0 - 16#FFF# 16#000#

iomask MASK filed of the AHB BAR1 defining I/O address
space.

0 - 16#FFF# 16#FFF
#

wprot Write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

pwron Enable SDRAM at power-on initialization 0 - 1 0

sdbits 32 or 64-bit data bus width. 32, 64 32

oepol Polarity of bdrive and vbdrive signals. 0=active low,
1=active high

0 - 1 0

191

35.4.1 SDRAM configuration register (SDCFG)

SDRAM configuration register is used to control the timing of the SDRAM.

[14:0]: The period between each AUTO-REFRESH command - Calculated as follows:tREFRESH
= ((reload value) + 1) / SYSCLK

[15]: 64-bit data bus (D64) - Reads ‘1’ if memory controller is configured for 64-bit data bus,
otherwise ‘0’. Read-only.

[20:19] SDRAM command. Writing a non-zero value will generate an SDRAM command:
“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-
REGISTER. The field is reset after command has been executed.

[22:21]: SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]=
“111”, 2048 otherwise.

[25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000”=4 Mbyte,
“001”=8 Mbyte, “010”=16 Mbyte “111”=512 Mbyte.

[26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/
CAS delay (tRCD).

[29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
[30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

SDRAM command

SDRAM Col. size

SDRAM Bank size

CAS delay, tRCD

tRFC

tRP

Refresh enable

031

Figure 107. SDRAM configuration register

1419202122252629 23

SDRAM refresh reload value

2730 15

D64

192

35.5 Signal description

35.6 Library dependencies

Table shows libraries that the memory controller module depends on.

35.7 Memory controller instantiation

This examples shows how the SDRAM controller can be instantiated. The example design con-
tains an AMBA bus with a number of AHB components connected to it including the SDRAM
controller. The external SDRAM bus is defined on the example designs port map and connected to
the SDRAM controller. System clock and reset are generated by GR Clock Generator and Reset
Generator.

SDRAM controller decodes SDRAM area:0x60000000 - 0x6FFFFFFF. SDRAM Configuration
register is mapped into AHB I/O space on address (AHB I/O base address + 0x100).

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDI WPROT Input Not used -

DATA[63:0] Input Data High

SDO SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDWEN Output SDRAM write enable Low

RASN Output SDRAM row address strobe Low

CASN Output SDRAM column address strobe Low

DQM[7:0] Output SDRAM data mask Low

BDRIVE Output Drive SDRAM data bus Low/High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for
each data bit. Every index is driven by its
own register. This can be used to reduce the
output delay.

Low/High2

ADDRESS[16:2] Output SDRAM address Low

DATA[31:0] Output SDRAM data Low

1) see GRLIB IP Library User’s Manual 2) Polarity selected with the oepol generic

TABLE 17. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, component Memory bus signals definitions, com-
ponent declaration

193

library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

signal sdi : sdctrl_in_type;
 signal sdo : sdctrl_out_type;

 signal clkm, rstn : std_ulogic;
signal cgi : clkgen_in_type;

 signal cgo : clkgen_out_type;
 signal gnd : std_ulogic;

begin

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- SDRAM controller
sdc : sdctrl generic map (hindex => 3, haddr => 16#600#, hmask => 16#F00#,

 ioaddr => 1, pwron => 0, invclk => 0)
 port map (rstn, clkm, ahbsi, ahbso(3), sdi, sdo);

 -- input signals
 sdi.data(31 downto 0) <= sd(31 downto 0);

 -- connect SDRAM controller outputs to entity output signals
 sa <= sdo.address; sdcke <= sdo.sdcke; sdwen <= sdo.sdwen;

194

 sdcsn <= sdo.sdcsn; sdrasn <= sdo.rasn; sdcasn <= sdo.casn;
 sddqm <= sdo.dqm;

--Data pad instantiation with scalar bdrive
sd_pad : iopadv generic map (width => 32)
port map (sd(31 downto 0), sdo.data, sdo.bdrive, sdi.data(31 downto 0));

end;

--Alternative data pad instantiation with vectored bdrive
sd_pad : iopadvv generic map (width => 32)

port map (sd(31 downto 0), sdo.data, sdo.vbdrive, sdi.data(31 downto 0));
end;

195

196

36 SRCTRL- 8/32-bit PROM/SRAM Controller

36.1 Overview

SRCTRL is an 8/32-bit PROM/SRAM/IO controller that interfaces external asynchronous SRAM,
PROM and I/O to the AMBA AHB bus. The controller can handle 32-bit wide SRAM and I/O,
and either 8- or 32-bit PROM.

The controller is configured through VHDL-generics to decode three address ranges: PROM,
SRAM and I/O area. By default PROM area is mapped into address range 0x0 - 0x00FFFFFF, the
SRAM area is mapped into address range 0x40000000 - 0x40FFFFFF, and the I/O area is mapped
to 0x20000000 - 0x20FFFFFF.

One chip select is decoded for the I/O area, while SRAM and PROM can have up to four and two
select signals respectively. The controller generates both a common write-enable signal
(WRITEN) as well as four byte-write enable signals (WREN). If the SRAM uses a common write
enable signal the controller can be configured to perform read-modify-write cycles for byte and
half-word write accesses. Number of waitstates is separately configurable for the three address
ranges.

A single write-enable signal is generated for the PROM area (WRITEN), while four byte-write
enable signals (RWEN[3:0]) are provided for the SRAM area. If the external SRAM uses common
write enable signal, the controller can be configured to perform read-modify-write cycles for byte
and half-word write accesses.

Number of waitstates is configurable through VHDL generics for both PROM and SRAM areas.

A signal (BDRIVE) is provided for enabling the bidirectional pads to which the data signals are
connected. The oepol generic is used for selecting the polarity of these enable signals. If output

Figure 108. 8/32-bit PROM/SRAM/IO controller

CS

OE
WE

A

DPROM

CS
OE
WE

A

DSRAM
SRO.RAMSN

SRO.RAMOEN
SRO.RWEN[3:0]

SRO.ROMSN
SRO.OEN

SRO.WRITEN

A D

MEMORY

SRI.A[27:0]

SRI.D[31:0]

CONTROLLER

AHB

AHB/APB

Bridge

APB

CB

CB

CB

CB[7:0]

SRO.D[31:0]

CS
OE
WE

A

DIO
SRO.IOSN

197

delay is an issue, a vectored output enable signal (VBDRIVE) can be used instead. In this
case, each pad has its own enable signal driven by a separate register. A directive is placed on
these registers so that they will not be removed during synthesis (if the output they drive is
used in the design).

36.2 8-bit PROM access

The SRCTRL controller can be configured to access a 8-bit wide PROM. The data bus of
external PROM should be connected to the upper byte of the 32-bit data bus, i.e. D[31:24].
The 8-bit mode is enabled with the prom8en VHDL generic. When enabled, read accesses to
the PROM area will be done in four-byte bursts. The whole 32-bit word is then presented on
the AHB data bus. Writes should be done one byte at a time and the byte should always be
driven on bit 31-24 on the AHB data bus independent of the byte address.

It is possible to dynamically switch between 8- and 32-bit PROM mode using the
BWIDTH[1:0] input signal. When BWIDTH is “00” then 8-bit mode is selected. If BWIDTH
is “10” then 32-bit mode is selected. Other BWIDTH values are reserved for future use.

SRAM access is not affected by the 8-bit PROM mode.

36.3 PROM/SRAM waveform

Read accesses to 32-bit PROM and RAM has the same timing, see figure below.

The write access for 32-bit PROM and RAM can be seen below.

If waitstates are configured through the VHDL generics, one extra data cycle will be inserted
for each waitstate in both read and write cycles.

Figure 109. 32-bit PROM/SRAM/IO read cycle

data1 data2

D1

lead-out

A1

CLK

A

ROMSN

D

OEN

RAMSN

Figure 110. 32-bit PROM/SRAM/IO write cycle

lead-in data lead-out

D1

A1

CLK

A

RAMSN

D

RWEN

198

36.4 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed
in burst mode. Burst transfers will be generated when the memory controller is accessed using an
AHB burst request. These includes instruction cache-line fills and burst from DMA masters. The
timing of a burst cycle is identical to the programmed basic cycle with the exception that during
read cycles, the lead-out cycle will only occurs after the last transfer.

36.5 Component declaration

component srctrl
 generic (
 hindex : integer := 0;
 romaddr : integer := 0;
 rommask : integer := 16#ff0#;
 ramaddr : integer := 16#400#;
 rammask : integer := 16#ff0#;;
 ioaddr : integer := 16#200#;
 iomask : integer := 16#ff0#;
 ramws : integer := 0;
 romws : integer := 2;
 iows : integer := 2;
 rmw : integer := 0;-- read-modify-write enable
 prom8en : integer := 0;
 oepol : integer := 0;

 srbanks : integer range 1 to 5 := 1;
 banksz : integer range 0 to 13:= 13;
 romasel : integer range 0 to 27:= 19

);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 sri : in memory_in_type;
 sro : out memory_out_type;
 sdo : out sdctrl_out_type
);
end component;

199

36.6 Configuration options

The Memory controller has the following configuration options (VHDL generics):

36.7 Vendor and device id

The module has vendor id 0x01 (Gaisler Research) and device id 0x008. For description of
vendor and device ids see GRLIB IP Library User’s Manual.

36.8 Registers

The module does not implement any use programmable registers. All configuration is done
through the VHDL-generics.

TABLE 18. Simple 32-bit PROM/SRAM controller configuration options (VHDL generics)

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

romaddr ADDR filed of the AHB BAR0 defining PROM
address space. Default PROM area is 0x0 -
0xFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK filed of the AHB BAR0 defining PROM
address space.

0 - 16#FFF# 16#FF0#

ramaddr ADDR filed of the AHB BAR1 defining RAM
address space. Default RAM area is 0x40000000-
0x40FFFFFF.

0 - 16#FFF# 16#400#

rammask MASK filed of the AHB BAR1 defining RAM
address space.

0 -16#FFF# 16#FF0#

ioaddr ADDR filed of the AHB BAR2 defining IO address
space. Default IO area is 0x20000000-0x20FFFFFF.

0 - 16#FFF# 16#200#

iomask MASK filed of the AHB BAR2 defining IO address
space.

0 -16#FFF# 16#FF0#

ramws Number of waitstates during access to SRAM area 0 - 15 0

romws Number of waitstates during access to PROM area 0 - 15 2

iows Number of waitstates during access to IO area 0 - 15 2

rmw Enable read-modify-write cycles. 0 - 1 0

prom8en Enable 8 - bit PROM accesses 0 - 1 0

oepol Polarity of bdrive and vbdrive signals. 0=active low,
1=active high

0 - 1 0

srbanks Set the number of RAM banks 1 - 5 1

banksz Set the size of bank 1 - 4. 0 = 8 Kbyte, 1 = 16 Kbyte,
... , 13 = 64Mbyte.

0 - 13 13

romasel address bit used for ROM chip select. 0 - 27 19

200

36.9 Signal description

Memory controller signals are described in table 19.

TABLE 19. Memory controller signal description.

Signal name Field Type Function Polarity

CLK N/A Input Clock -

RST N/A Input Reset Low

SRI DATA[31:0] Input Memory data High

BRDYN Input Not used -

BEXCN Input Not used -

WRN[3:0] Input Not used -

BWIDTH[1:0] Input BWIDTH=”00” => 8-bit PROM mode

BWIDTH=”10” => 32-bit PROM mode

-

SD[31:0] Input Not used -

SRO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data High

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Not used. Driven to ‘1’ (inactive) Low

ROMSN[1:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable Low

MBEN[3:0] Output Byte enable Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus. Con-
trols I/O-pads connected to external memory bus.

Low/

High2

VBDRIVE[31:0] Output Identical to BDRIVE but has one signal for each
data bit. Every index is driven by its own register.
This can be used to reduce the output delay.

Low/

High2

READ Output Read strobe High

SA[14:0] Output Not used High

AHBSI 1) Input AHB slave input signals -

AHBSO 1) Output AHB slave output signals -

SDO SDCASN Output Not used. All signals are driven to inactive state. Low

1) See GRLIB IP Library User’s Manual

2) Polarity is selected with the oepol generic

201

36.10 Library dependencies

Table shows libraries that the memory controller module depends on.

36.11 Memory controller instantiation

This examples shows how a memory controller can be instantiated. The example design con-
tains an AMBA bus with a number of AHB components connected to it including the memory
controller. The external memory bus is defined on the example designs port map and con-
nected to the memory controller. System clock and reset are generated by GR Clock Generator
and Reset Generator.

Memory controller decodes default memory areas: PROM area is 0x0 - 0xFFFFFF and RAM
area is 0x40000000 - 0x40FFFFF. The 8-bit PROM mode is disabled. Two SRAM banks of
size 64 Mbyte are used and the fifth chip select is disabled.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
use gaisler.misc.all;
library esa;
use esa.memoryctrl.all;

entity srctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(1 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;

modesel : in std_logic; --PROM width select
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel
 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data

);
end;

TABLE 20. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals, compo-
nent

Memory bus signals definitions, com-
ponent declaration

202

architecture rtl of srctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdctrl_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- AMBA Components are defined here ...

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 rst0 : rstgen
 port map (resetn, clkm, cgo.clklock, rstn);

 -- Memory controller
srctrl0 : srctrl generic map (rmw => 1, prom8en => 0, srbanks => 2,
banksz => 13, ramsel5 => 0)

 port map (rstn, clkm, ahbsi, ahbso(0), memi, memo, sdo);

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 -- Alternative I/O pad instantiation with vectored enable instead
 datapads : for i in 0 to 3 generate

 data_pad : iopadvv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(31-i*8 downto 24-i*8),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

203

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= memo.ramoen;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;

end;

204

37 SYNCRAM - Single-port RAM generator

37.1 Operation

The single port RAM has a common address bus, and separate data-in and data-out buses. All
inputs are latched on the on the rising edge of clk. The read data appears on dataout directly after
the clk rising edge.

37.2 Component declaration

library grlib;
use grlib.tech.all;

library gaisler;
use gaisler.memory.all;

 component syncram
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
 port (
 clk : in std_ulogic;
 address : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 enable : in std_ulogic;
 write : in std_ulogic);
 end component;

37.3 Signals

37.4 Parameters and technology support

TABLE 21. SYNCRAM signals

Signal name Type Function Active

CLK Input Clock. All input signals are latched on the rising edge of the clock. -

ADDRESS Input Address bus. Used for both read and write access. -

DATAIN Input Data inputs for write data -

DATAOUT Output Data outputs for read data -

ENABLE Input Chip select High

WRITE Input Write enable High

TABLE 22. SYNCRAM parameters (VHDL generics)

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

205

37.5 Component instantiation

This examples shows how a SYNCRAM can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library gaisler;
use gaisler.memory.all;
.
.
clk : std_ulogic;
address : std_logic_vector((abits -1) downto 0);
datain : std_logic_vector((dbits -1) downto 0);
dataout : std_logic_vector((dbits -1) downto 0);
enable : std_ulogic;
write : std_ulogic);

ram0 : syncram generic map (tech => tech, abits => addrbits, dbits => dbits)
 port map (clk, addr, datain, dataout, enable, write);

TABLE 23. SYNCRAM supported technologies

Tech name Technology RAM cell abit range dbit range

ihp15 IHP 0.25 sram2k (512x32) 2 - 9 unlimited

inferred Behavioral description Tool dependent unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 12 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 14 unlimited

axcel Actel AX, RTAX RAM64K36 2 - 12 unlimited

proasic Actel Proasic RAM256x9SST 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited

memvirage Virage ASIC RAM hdss1_128x32cm4sw0
hdss1_256x32cm4sw0
hdss1_512x32cm4sw0
hdss1_1024x32cm8sw0

7 - 11 32

206

38 SYNCRAM_2P - Two-port RAM generator

38.1 Operation

The two-port RAM generator has a one read port and one write port. Each port has a separate
address and data bus. All inputs are registered on the rising edge of clk. The read data appears on
dataout directly after the clk rising edge. Address width, data width and target technology is
parametrizable through generics.

Write-through is supported if the function syncram_2p_write_through(tech) returns 1 for the tar-
get technology.

38.2 Component declaration

library grlib;
use grlib.tech.all;

library gaisler;
use gaisler.memory.all;

component syncram_2p
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8; sepclk :
integer := 0);
 port (
 rclk : in std_ulogic;
 renable : in std_ulogic;
 raddress : in std_logic_vector((abits -1) downto 0);
 dataout : out std_logic_vector((dbits -1) downto 0);
 wclk : in std_ulogic;
 write : in std_ulogic;
 waddress : in std_logic_vector((abits -1) downto 0);
 datain : in std_logic_vector((dbits -1) downto 0));
 end component;

38.3 Signals

TABLE 24. SYNCRAM_2P signals

Signal name Type Function Active

RCLK Input Read port clock -

RENABLE Input Read enable High

RADDRESS Input Read address bus -

DATAOUT Output Data outputs for read data -

WCLK Input Write port clock -

WRITE Input Write enable High

WADDRESS Input Write address -

DATAIN Input Write data -

207

38.4 Parameters and supported technologies

38.5 Component instantiation

This examples shows how a SYNCRAM_2P can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library gaisler;
use gaisler.memory.all;

rclk : in std_ulogic;
renable : in std_ulogic;
raddress : in std_logic_vector((abits -1) downto 0);
dataout : out std_logic_vector((dbits -1) downto 0);
wclk : in std_ulogic;
write : in std_ulogic;
waddress : in std_logic_vector((abits -1) downto 0);
datain : in std_logic_vector((dbits -1) downto 0));

ram0 : syncram_2p generic map (tech => tech, abits => addrbits, dbits => dbits)
 port map (rclk, renable, raddress, dataout, wclk, write, waddress, datain,

enable, write);

TABLE 25. Parameters (VHDL generics)

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

sepclk If 1, separate clocks (rclk/wclk) are used for the two ports.
If 0, rclk is used for both ports.

0 - 1 0

TABLE 26. Supported technologies

Tech name Technology RAM cell abit range dbit range

Inferred Behavioural description Tool dependent unlimited unlimited

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 10 unlimited

axcel Actel AX, RTAX RAM64K36 2 - 12 unlimited

proasic Actel Proasic RAM256x9SST 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9, ram512x18 2 - 12 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

208

39 SYNCRAM_DP dual-port RAM generator

39.1 Operation

The dual-port RAM generator has two independent read/write ports. Each port has a separate
address and data bus. All inputs are latched on the on the rising edge of clk. The read data appears
on dataout directly after the clk rising edge. Address width, data width and target technology is
parametrizable through generics. Simultaneous write to the same address is technology depen-
dent, and generally not allowed.

39.2 Component declaration

library grlib;
use grlib.tech.all;

library gaisler;
use gaisler.memory.all;

component syncram_dp
 generic (tech : integer := 0; abits : integer := 6; dbits : integer := 8);
 port (
 clk1 : in std_ulogic;
 address1 : in std_logic_vector((abits -1) downto 0);
 datain1 : in std_logic_vector((dbits -1) downto 0);
 dataout1 : out std_logic_vector((dbits -1) downto 0);
 enable1 : in std_ulogic;
 write1 : in std_ulogic;
 clk2 : in std_ulogic;
 address2 : in std_logic_vector((abits -1) downto 0);
 datain2 : in std_logic_vector((dbits -1) downto 0);
 dataout2 : out std_logic_vector((dbits -1) downto 0);
 enable2 : in std_ulogic;
 write2 : in std_ulogic);
 end component;

39.3 Signals

TABLE 27. SYNCRAM_DP signals

Signal name Type Function Active

CLK1 Input Port1 clock -

ADDRESS1 Input Port1 address -

DATAIN1 Input Port1 write data -

DATAOUT1 Output Port1 read data -

ENABLE1 Input Port1 chip select High

WRITE1 Input Port 1 write enable High

CLK2 Input Port2 clock -

ADDRESS2 Input Port2 address -

DATAIN2 Input Port2 write data -

DATAOUT2 Output Port2 read data -

ENABLE2 Input Port2 chip select High

WRITE2 Input Port 2 write enable High

209

39.4 Parameters and supported technologies

39.5 Component instantiation

This examples shows how a SYNCRAM_DP can be instantiated.

library ieee;
use ieee.std_logic_1164.all;
library gaisler;
use gaisler.memory.all;

clk1 : in std_ulogic;
address1 : in std_logic_vector((abits -1) downto 0);
datain1 : in std_logic_vector((dbits -1) downto 0);
dataout1 : out std_logic_vector((dbits -1) downto 0);
enable1 : in std_ulogic;
write1 : in std_ulogic;
clk2 : in std_ulogic;
address2 : in std_logic_vector((abits -1) downto 0);
datain2 : in std_logic_vector((dbits -1) downto 0);
dataout2 : out std_logic_vector((dbits -1) downto 0);
enable2 : in std_ulogic;
write2 : in std_ulogic);

ram0 : syncram_dp generic map (tech => tech, abits => addrbits, dbits => dbits)
 port map (clk1, address1, datain1, dataout1, enable1, write1, clk2, address2,

datain2, dataout2, enable2, write2);

TABLE 28. Parameters (VHDL generics)

Name Function Range Default

tech Technology selection 0 - NTECH 0

abits Address bits. Depth of RAM is 2abits-1 see table below -

dbits Data width see table below -

TABLE 29. Supported technologies

Tech name Technology RAM cell abit range dbit range

virtex Xilinx Virtex, Virtex-E, Spartan-2 RAMB4_Sn 2 - 10 unlimited

virtex2 Xilinx Virtex2, Spartan3, Virtex4 RAMB16_Sn 2 - 14 unlimited

proasic3 Actel Proasic3 ram4k9 2 - 12 unlimited

memvirage Virage ASIC RAM hdss2_64x32cm4sw0
hdss2_128x32cm4sw0
hdss2_256x32cm4sw0
hdss2_512x32cm4sw0

6 - 9 32

210

40 TAP - JTAG TAP Controller

40.1 Overview

JTAG TAP Controller provides an Test Access Port according to IEEE-1149 (JTAG) Standard.
The module implements the Test Access Port signals, the synchronous TAP state-machine, a num-
ber of JTAG data registers (depending on the target technology) and an interface to user-defined
JTAG data registers.

40.2 Operation

40.2.1 Generic TAP Controller

The generic TAP Controller implements JTAG Test Access Point interface with signals TCK,
TMS, TDI and TDO, a synchronous state-machine compliant to the IEEE-1149 standard, JTAG
instruction register and two JTAG data registers: bypass and device identification code register.
The module is capable of shifting and updating the JTAG instruction register, putting the device
into bypass mode (BYPASS instruction) and shifting out the devices identification number
(IDCODE instruction). User-defined JTAG test registers are accessed through user-defined data
register interface.

The access to the user-define test data registers is provided through the user-defined data register
interface. The instruction in the TAP controller instruction register appears on the interface as well
as shift-in data and signals indicating that the TAP controller is in Capture-Data-Register, Shift-
Data-Register or Update-Data-Register state. Logic controlling user-defined data registers should
observe value in the instruction register and TAP controller state signals in order to capture data,
shift data or update data-registers.

JTAG test registers such as boundary-scan register can be interfaced to the TAP controller through
the user data register interface.

40.3 Technology specific TAP controllers

The module instantiates technology specific TAP controller if it is available in target technology.

Figure 111. TAP Controller block diagram

JTAG TAP
Controller

TCK

TMS

TDI

TDO

Interface to user-defined
data registers

211

40.4 Configuration options

JTAG TAP Controller module has the following configuration options (VHDL generics):

40.5 Vendor and device id

The module does not have vendor and device id since it does not have AMBA AHB
interface.

40.6 Registers

The module implements three JTAG registers: instruction, bypass and device identification
code register.

TABLE 30. TAP Controller configuration options (VHDL generics)

Generic Function Allowed range Default

tech Target technology 0 - NTECH 0

irlen Instruction register length (generic tech only) 2 - 8 2

idcode JTAG IDCODE instruction code(generic tech only) 0 - 255 9

id_msb JTAG Device indentification code MSB bits (generic
tech only)

0 - 65536 0

id_lsb JTAG Device indentification code LSB bits (generic
tech only)

0 - 65536 0

idcode JTAG IDCODE instruction (generic tech only) 0 - 255 9

212

40.7 Signal description

TAP Controller signals are described in table 31.

*) If the target technology is Xilinx Virtex-II or Spartan3 the modules JTAG signals TCK, TCKN, TMS,
TDI and TDO are not used. Instead the dedicated FPGA JTAG pins are used. These pins are implicitly
made visible to the module through Xilinx TAP controller instantiation.

40.8 Library dependencies

Table 32 shows libraries that should be used when instantiating a TAP Controller.

TABLE 31. TAP Controller signals

Signal name Field Type Function Active

RST N/A Input System reset Low

CLK N/A Input System clock (AHB clock domain) -

TCK N/A Input JTAG clock* -

TCKN N/A Input Inverted JTAG clock* -

TMS N/A Input JTAG TMS signal* High

TDI N/A Input JTAG TDI signal* High

TDO N/A Output JTAG TDO signal* High

User-defined data register interface

TAPO_TCK N/A Output TCK signal High

TAPO_TDI N/A Output TDI signal High

TAPO_INST[7:0] N/A Output Instruction in the TAP Ctrl instruction register High

TAPO_RST N/A Output TAP Controller in Test-Logic_Reset state High

TAPO_CAPT N/A Output TAP Controller in Capture-DR state High

TAPO_SHFT N/A Output TAP Controller in Shift-DR state High

TAPO_UPD N/A Output TAP Controller in Update-DR state High

TAPO_XSEL1 N/A Output Xilinx User-defined Data Register 1 selected
(Xilinx tech only)

High

TAPO_XSEL2 N/A Output Xilinx User-defined Data Register 2 selected
(Xilinx tech only)

High

TAPI_EN1 N/A Input Enable shift-out data port 1 (TAPI_TDO1),
when disabled data on port 2 is used

High

TAPI_TDO1 N/A Input Shift-out data from user-defined register port
1

High

TAPI_TDO2 N/A Input Shift-out data from user-defined register port
2

High

TABLE 32. Library dependencies

Library Package Imported unit(s) Description

GAISLER JTAG Component TAP Controller component declaration

213

40.9 JTAG TAP Controller instantiation

This examples shows how a TAP Controller can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library gaisler;
use gaisler.jtag.all;

entity tap_ex is
 port (
 clk : in std_ulogic;
 rst : in std_ulogic;

 -- JTAG signals
 tck : in std_ulogic;
 tms : in std_ulogic;
 tdi : in std_ulogic;
 tdo : out std_ulogic
);
end;

architecture rtl of tap_ex is

signal gnd : std_ulogic;

signal tapo_tck, tapo_tdi, tapo_rst, tapo_capt : std_ulogic;
signal tapo_shft, tapo_upd : std_ulogic;
signal tapi_en1, tapi_tdo : std_ulogic;
signal tapo_inst : std_logic_vector(7 downto 0);

begin

 gnd <= ‘0’;
 tckn <= not tck;

-- TAP Controller

 tap0 : tap (tech => 0)
 port map (rst, tck, tckn, tms, tdi, tdo, tapo_tck, tapo_tdi, tapo_inst,
 tapo_rst, tapo_capt, tapo_shft, tapo_upd, open, open,
 tapi_en1, tapi_tdo, gnd);

-- User-defined JTAG data registers

 ...

end ;

	Gaisler Research IP Core’s Manual
	1 Introduction
	1.1 Scope
	1.2 IP core overview

	2 AHBJTAG - JTAG Debug Link with AHB Master Interface
	2.1 Overview
	2.2 Operation
	2.2.1 Transmission protocol

	2.3 Configuration options
	2.4 Vendor and device id
	2.5 Registers
	2.6 Signal description
	2.7 Library dependencies
	2.8 JTAG Debug link instantiation

	3 AHBCTRL - AMBA AHB controller with plug&play support
	3.1 Overview
	3.2 Operation
	3.2.1 Arbitration
	3.2.2 Decoding
	3.2.3 Plug&play information

	3.3 AHB split support
	3.4 Component declaration
	3.5 Configuration options
	3.6 Signal descriptions
	3.7 Library dependencies
	3.8 AHB controller instantiation

	4 APBCTRL - AMBA AHB/APB bridge with plug&play support
	4.1 Overview
	4.2 Operation
	4.2.1 Decoding
	4.2.2 Plug&play information

	4.3 Component declaration
	4.4 Configuration options
	4.5 Signal descriptions
	4.6 Library dependencies
	4.7 APB bridge instantiation

	5 AHBRAM - Single-port RAM with AHB interface
	5.1 Overview
	5.2 Configuration options
	5.3 Library dependencies
	5.4 Component declaration
	5.5 Component instantiation example

	6 AHBREPORT - AMBA Plug&Play AHB Report Module
	6.1 Overview
	6.2 Operation
	6.3 Configuration options
	6.4 Signal descriptions
	6.5 Library dependencies
	6.6 Component declaration
	6.7 AHB report module instantiation

	7 AHBROM - Single-port ROM with AHB interface
	7.1 Overview
	7.2 PROM generation
	7.3 Configuration options
	7.4 Library dependencies
	7.5 Component declaration

	8 AHBSTAT - AHB Status Registers
	8.1 Overview
	8.2 Operation
	8.3 Configuration options
	8.4 Vendor and device id
	8.5 Registers
	8.6 Signal description
	8.7 Library dependencies
	8.8 AHB status register module instantiation

	9 AHBTRACE - AHB Trace Buffer
	9.1 Overview
	9.2 Operation
	9.3 Registers
	9.3.1 Register address map
	9.3.2 Trace buffer control register
	9.3.3 Trace buffer index register
	9.3.4 Trace buffer time tag register
	9.3.5 Trace buffer breakpoint registers

	9.4 Configuration options
	9.5 Vendor and device id
	9.6 Library dependencies
	9.7 Component declaration

	10 AHBUART - Serial debug interface for AHB
	10.1 Overview
	10.2 Operation
	10.2.1 Transmission protocol
	10.2.2 Baud rate generation

	10.3 Configuration options
	10.4 Vendor and device id
	10.5 Registers
	10.6 Signal description
	10.7 Library dependencies
	10.8 AHB UART instantiation

	11 APBREPORT - AMBA Plug&Play APB Report Module
	11.1 Overview
	11.2 Operation
	11.3 Configuration options
	11.4 Signal descriptions
	11.5 Library dependencies
	11.6 Component declaration
	11.7 APB report module instantiation

	12 APBUART - UART with APB interface
	12.1 Overview
	12.2 Operation
	12.2.1 Transmitter operation
	12.2.2 Receiver operation

	12.3 Baud-rate generation
	12.3.1 Loop back mode
	12.3.2 Interrupt generation

	12.4 Configuration options
	12.5 Vendor and device id
	12.6 UART registers
	12.6.1 UART Data Register
	12.6.2 UART Status Register
	12.6.3 UART Control Register
	12.6.4 UART Scaler Register
	12.6.5 Signal descriptions

	12.7 Library dependencies
	12.8 APB UART instantiation

	13 CAN_OC - GRLIB wrapper for Opencore CAN core
	13.1 Overview
	13.2 Configuration options
	13.3 Vendor and device id
	13.4 Signal descriptions
	13.5 Library dependencies
	13.6 Component declaration

	14 DIV32 - Signed/unsigned 64/32 divider module
	14.1 Overview
	14.2 Operation
	14.3 Signal description
	14.4 Library dependencies
	14.5 Model interface
	14.6 Example instantiation

	15 DSU3 - LEON3 Hardware debug support unit
	15.1 Introduction
	15.2 Operation
	15.3 AHB Trace Buffer
	15.4 Instruction trace buffer
	15.5 DSU memory map
	15.6 DSU registers
	15.6.1 DSU control register
	15.6.2 DSU Break and Single Step register
	15.6.3 DSU Debug Mode Mask Register
	15.6.4 DSU trap register
	15.6.5 Trace buffer time tag counter
	15.6.6 DSU ASI register
	15.6.7 AHB Trace buffer control register
	15.6.8 AHB trace buffer index register
	15.6.9 AHB trace buffer breakpoint registers
	15.6.10 Instruction trace control register

	15.7 Configuration and synthesis
	15.7.1 Plug&play configuration
	15.7.2 Configuration options
	15.7.3 Signal description
	15.7.4 Library dependencies
	15.7.5 Model interface
	15.7.6 Example instantiation

	16 EDCL - Ethernet Debug communication Link
	16.1 Overview
	16.2 Operation
	16.2.1 Hardware module
	16.2.2 Transmission protocol

	16.3 Configuration options
	16.4 Vendor and device id
	16.5 Registers
	16.6 Signal description
	16.7 Library dependencies
	16.8 EDCL instantiation

	17 ETH_ARB - Ethernet PHY arbiter
	17.1 Overview
	17.2 Operation
	17.2.1 Arbitration method

	17.3 Configuration options
	17.4 Registers
	17.5 Signal description
	17.6 Library dependencies
	17.7 ETH_ARB instantiation

	18 ETH_OC - GRLIB wrapper for Opencore 10/100 Mbit Ethernet core
	18.1 Overview
	18.2 Configuration options
	18.3 Vendor and device id
	18.4 Signal descriptions
	18.5 Library dependencies
	18.6 Component declaration
	18.7 Instantiation example

	19 FTAHBRAM - On-chip SRAM with EDAC and AHB interface
	19.1 Overview
	19.2 Operation
	19.3 Configuration options
	19.4 Vendor and device id
	19.5 Registers
	19.6 Signal description
	19.7 Library dependencies
	19.8 FTAHBRAM instantiation

	20 FTSDCTRL - 32/64-bit PC133 SDRAM Controller with EDAC
	20.1 Overview
	20.2 Operation
	20.2.1 General
	20.2.2 Initialisation
	20.2.3 Configurable SDRAM timing parameters
	20.2.4 Refresh
	20.2.5 SDRAM commands
	20.2.6 Read cycles
	20.2.7 Write cycles
	20.2.8 Address bus connection
	20.2.9 Data bus
	20.2.10 Clocking
	20.2.11 EDAC

	20.3 Configuration options
	20.4 Vendor and device id
	20.5 Registers
	20.5.1 EDAC Configuration register (ECFG)

	20.6 Signal description
	20.7 Library dependencies
	20.8 Memory controller instantiation

	21 FTSRCTL - Fault Tolerant 32-bit PROM/SRAM/IO Controller
	21.1 Overview
	21.2 Operation
	21.3 PROM/SRAM/IO waveforms
	21.4 Component declaration
	21.5 Configuration options
	21.6 Vendor and device id
	21.7 Registers
	21.8 Signal description
	21.9 Library dependencies
	21.10 Memory controller instantiation

	22 GRGPIO - General Purpose I/O Port
	22.1 Overview
	22.2 Operation
	22.3 Component declaration
	22.4 Configuration options
	22.5 Vendor and device id
	22.6 Registers
	22.7 Signal description
	22.8 Library dependencies
	22.9 I/O port instantiation

	23 GPTIMER - General Purpose Timer Unit
	23.1 Overview
	23.2 Operation
	23.3 Configuration options
	23.4 Vendor and device id
	23.5 Registers
	23.6 Signal description
	23.7 Library dependencies
	23.8 GP Timer instantiation

	24 GRFPU - High-performance IEEE-754 Floating-point unit
	24.1 Overview
	24.2 Functional Description
	24.2.1 Floating-point number formats
	24.2.2 FP operations
	24.2.3 Exceptions
	24.2.4 Rounding
	24.2.5 Denormalized numbers
	24.2.6 Non-standard Mode
	24.2.7 NaNs

	24.3 Signals and Timing
	24.3.1 Signal Description
	24.3.2 Signal Timing

	25 GRFPC - GRFPU Control Unit
	25.1 Floating-Point register file
	25.2 Floating-Point State Register (FSR)
	25.3 Floating-Point Exceptions and Floating-Point Deferred-Queue

	26 GRPCI - PCI Target / Master Unit
	26.1 Overview
	26.2 Operation
	26.3 Configuration options
	26.4 Vendor and device id
	26.5 PCI Target Interface
	26.5.1 PCI Target - Configuration Space Header Registers

	26.6 PCI Master Interface
	26.7 PCI AMBA Registers
	26.8 Signal description
	26.9 Library dependencies
	26.10 Example instantiation

	27 IRQMP - Multiprocessor Interrupt Controller
	27.1 Overview
	27.2 Operation
	27.2.1 Interrupt prioritization
	27.2.2 Processor status monitoring

	27.3 Configuration options
	27.4 Vendor and device id
	27.5 Registers
	27.5.1 Interrupt level register
	27.5.2 Interrupt pending register
	27.5.3 Interrupt force register (NCPU = 0)
	27.5.4 Interrupt clear register
	27.5.5 Interrupt mask register
	27.5.6 Multi-processor status register
	27.5.7 Interrupt force register (NCPU > 1)

	27.6 Signal description
	27.7 Library dependencies
	27.8 MP IRQ controller instantiation example

	28 LEON3 - High-performance SPARC V8 32-bit Processor
	28.1 Overview
	28.1.1 Integer unit
	28.1.2 Cache sub-system
	28.1.3 Floating-point unit and co-processor
	28.1.4 On-chip debug support
	28.1.5 Interrupt interface
	28.1.6 AMBA interface
	28.1.7 Power-down mode
	28.1.8 Multi-processor support
	28.1.9 Performance

	28.2 LEON3 integer unit
	28.2.1 Overview
	28.2.2 Instruction pipeline
	28.2.3 SPARC Implementor’s ID
	28.2.4 Multiply instructions
	28.2.5 Multiply and accumulate instructions
	28.2.6 Divide instructions
	28.2.7 Hardware breakpoints
	28.2.8 Instruction trace buffer
	28.2.9 Processor configuration register
	28.2.10 Exceptions
	28.2.11 Single vector trapping (SVT)
	28.2.12 Address space identifiers (ASI)
	28.2.13 Power-down
	28.2.14 Processor reset operation
	28.2.15 Multi-processor support
	28.2.16 Cache sub-system

	28.3 Instruction cache
	28.3.1 Operation
	28.3.2 Instruction cache tag

	28.4 Data cache
	28.4.1 Operation
	28.4.2 Write buffer
	28.4.3 Data cache tag

	28.5 Additional cache functionality
	28.5.1 Cache flushing
	28.5.2 Diagnostic cache access
	28.5.3 Cache line locking
	28.5.4 Local instruction ram
	28.5.5 Local data ram
	28.5.6 Cache Control Register
	28.5.7 Cache configuration registers
	28.5.8 Software consideration

	28.6 Memory management unit
	28.6.1 ASI mappings
	28.6.2 Cache operation
	28.6.3 MMU registers
	28.6.4 Translation look-aside buffer (TLB)

	28.7 Floating-point unit and custom co-processor interface
	28.7.1 Gaisler Research’s floating-point unit (GRFPU)
	28.7.2 The Meiko FPU
	28.7.3 Generic co-processor

	28.8 Configuration and synthesis
	28.8.1 Plug&play configuration
	28.8.2 Configuration options
	28.8.3 Signal description
	28.8.4 Library dependencies
	28.8.5 Model interface

	29 MUL32 - Signed/unsigned 32x32 multiplier module
	29.1 Overview
	29.2 Operation
	29.3 Configuration options
	29.4 Signal description
	29.5 Library dependencies
	29.6 Model interface
	29.7 Example instantiation

	30 MULTLIB - High-performance multipliers
	30.1 Overview
	30.2 Configuration
	30.3 Signal description
	30.4 Library dependencies
	30.5 Model interface
	30.6 Example instantiation

	31 PHY - Ethernet PHY simulation model
	31.1 Overview
	31.2 Operation
	31.3 Configuration options
	31.4 Signal descriptions
	31.5 Library dependencies
	31.6 PHY model instantiation

	32 PCITARGET - Simple 32-bit PCI target with AHB interface
	32.1 Overview
	32.2 Configuration options
	32.3 Vendor and device id
	32.4 Registers
	32.5 Signal description
	32.6 Library dependencies

	33 PCIDMA - DMA Controller for the GRPCI interface
	33.1 Introduction
	33.2 Operation
	33.3 Configuration options
	33.4 Vendor and device id
	33.5 Registers
	33.6 Signal description
	33.7 Library dependencies
	33.8 Example instantiation

	34 REGFILE_3P 3-port RAM generator (2 read, 1 write)
	34.1 Operation
	34.2 Component declaration
	34.3 Signals
	34.4 Parameters (generics)

	35 SDCTRL - 32/64-bit SDRAM PC133 SDRAM Controller
	35.1 Overview
	35.2 Operation
	35.2.1 General
	35.2.2 Initialization
	35.2.3 Configurable SDRAM timing parameters
	35.2.4 Refresh
	35.2.5 SDRAM commands
	35.2.6 Read cycles
	35.2.7 Write cycles
	35.2.8 Address bus connection
	35.2.9 Data bus
	35.2.10 Clocking
	35.2.11 Configuration options

	35.3 Vendor and device id
	35.4 Registers
	35.4.1 SDRAM configuration register (SDCFG)

	35.5 Signal description
	35.6 Library dependencies
	35.7 Memory controller instantiation

	36 SRCTRL- 8/32-bit PROM/SRAM Controller
	36.1 Overview
	36.2 8-bit PROM access
	36.3 PROM/SRAM waveform
	36.4 Burst cycles
	36.5 Component declaration
	36.6 Configuration options
	36.7 Vendor and device id
	36.8 Registers
	36.9 Signal description
	36.10 Library dependencies
	36.11 Memory controller instantiation

	37 SYNCRAM - Single-port RAM generator
	37.1 Operation
	37.2 Component declaration
	37.3 Signals
	37.4 Parameters and technology support
	37.5 Component instantiation

	38 SYNCRAM_2P - Two-port RAM generator
	38.1 Operation
	38.2 Component declaration
	38.3 Signals
	38.4 Parameters and supported technologies
	38.5 Component instantiation

	39 SYNCRAM_DP dual-port RAM generator
	39.1 Operation
	39.2 Component declaration
	39.3 Signals
	39.4 Parameters and supported technologies
	39.5 Component instantiation

	40 TAP - JTAG TAP Controller
	40.1 Overview
	40.2 Operation
	40.2.1 Generic TAP Controller

	40.3 Technology specific TAP controllers
	40.4 Configuration options
	40.5 Vendor and device id
	40.6 Registers
	40.7 Signal description
	40.8 Library dependencies
	40.9 JTAG TAP Controller instantiation

