
ESA GRLIB IP Cor e’s Manual

Version eval-1.0, May 2005

Jiri Gaisler, Edvin Catovic, Roland Weigand (ESA)

Gaisler Research, 2005.

2

Table of contents

1 Introduction..3
1.1 Scope...3

1.2 IP core overview..3

2 Memory Controller..5
2.1 Overview ...5

2.2 PROM access...6

2.3 Memory mapped I/O...6

2.4 SRAM access..7

2.5 8-bit and 16-bit PROM and SRAM access..8

2.6 Burst cycles...9

2.7 8- and 16-bit I/O access...9

2.8 SDRAM access...9

2.9 Refresh..10

2.10 Registers..11

2.11 Using MEMI.BRDYN...13

2.12 Access errors...13

2.13 Attaching an external DRAM controller...14

2.14 Configuration options..15

2.15 Vendor and device id...15

2.16 Signal description..16

2.17 Library dependencies..17

2.18 Memory controller instantiation..17

3 LEON2 Generic UART..21
3.1 Overview ...21

3.2 Configuration options..21

3.3 Vendor and device id...21

3.4 Operation...22

3.5 UART registers..23

3.6 Signal description..24

3.7 Library dependencies..25

3.8 UART instantiation..25

4 PCI arbiter..27
4.1 Overview ...27

4.2 Operation...27

4.3 Configuration...28

4.4 Vendor and device id...28

4.5 Signal description..28

4.6 Library dependencies..29

3

1 Introduction

1.1 Scope

This doumentdescribesspecific IP coresprovided by the EuropeanSPaceAgency inside the
GRLIB IP library. Whenapplicable,thecoresusetheGRLIP plug&play configurationmethodas
describedin the ‘GRLIB User’s Manual’. Thesecoreshasbeenportedfrom the LEON2 VHDL
model, and are provided under the GNU LGPL license.

1.2 IP core overview

Thetablesbelow lists theprovidedIP coresandtheir AMBA plug&play device ID. All coresuse
vendor ID 0x04 (ESA).

TABLE 1. Serial communications

Name Function Device ID License

L2UART LEON2 Generic UART 0x008 LGPL

TABLE 2. PCI functions

Name Function Device ID License

PCIARB PCI arbiter with optional APB interface 0x010 LGPL

TABLE 3. PCI functions

Name Function Device ID License

PCIARB PCI arbiter with optional APB interface 0x010 LGPL

4

5

2 Memory Controller

2.1 Overview

The memory controller handles a memory bus hosting PROM, memory mapped I/O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts as a
slave on the AHB bus. The function of the memory controller is programmed through memory
configuration registers 1, 2 & 3 (MCR1, MCR2 & MCR3) through the APB bus. The memory bus
supports four types of devices: prom, sram, sdram and local I/O. The memory bus can also be con-
figured in 8- or 16-bit mode for applications with low memory and performance demands. The
controller decodes three address spaces (PROM, I/O and RAM) whose mapping is determined
through VHDL-generics.

Chip-select decoding is done for two PROM banks, one I/O bank, five SRAM banks and two
SDRAM banks. Figure 1 shows how the connection to the different device types is made.

Figure 1. Memory controller conected to AMBA bus and different
types of memory devices

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
I/O

CS
OE
WE

A

D
SRAM

MEMO.RAMSN[4:0]
MEMO.RAMOEN[4:0]

MEMO.RWEN[3:0]

MEMO.ROMSN[1:0]
MEMO.OEN

MEMO.WRITEN

MEMO.IOSN

A D

MEMORY

MEMI.A[27:0]

MEMI.D[31:0]/

RAS
CAS
WE

BA

D

SDRAMMEMO.SDRASN
MEMO.SDCASN
MEMO.SDWEN

A[16:15]

DQMMEMO.SDDQM[3:0]

CLK
CSN

MEMO.SDCLK
MEMO.SDCSN[1:0]

A
A[14:2]

CONTROLLER

AHBAPB

MEMO.D[31:0]

MBENMEMO.MBEN[3:0]

6

2.2 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM
cycles can have up to 15 waitstates.

Two PROM chip-select signals are provided, MEMO.ROMSN[1:0]. MEMO.ROMSN[0] is
asserted when the lower half of the PROM area as addressed while MEMO.ROMSN[1] is
asserted for the upper half. When the VHDL model is configured to boot from internal prom,
MEMO.ROMSN[0] is never asserted and all accesses to the lower half of the PROM area are
mapped on the internal prom.

2.3 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a addi-
tional waitstates can be inserted by de-asserting the MEMI.BRDYN signal. The I/O select sig-
nal (MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is
asserted.

Figure 2. Prom read cycle

data1 data2

D1

lead-out

A1

CLK

A

ROMSN

D

OEN

Figure 3. I/O read cycle

lead-in data

D1

lead-out

A1

CLK

A

IOSN

D

OEN

BRDYN

7

2.4 SRAM access

The SRAM area can be up to 1 Gbyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCR2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (MEMO.RAMSN[4]) decodes the upper
512 Mbyte. A read access to SRAM consists of two data cycles and between zero and three wait-
states. Accesses to MEMO.RAMSN[4] can further be stretched by de-asserting MEMI.BRDYN
until the data is available. On non-consecutive accesses, a lead-out cycle is added after a read cycle
to prevent bus contention due to slow turn-off time of memories or I/O devices. Figure 4 shows the
basic read cycle waveform (zero waitstate).

For read accesses to MEMO.RAMSN[4:0], a separate output enable signal
(MEMO.RAMOEN[n]) is provided for each RAM bank and only asserted when that bank is
selected. A write access is similar to the read access but takes a minimum of three cycles:

Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be
driven until the write strobes are de-asserted. Each byte lane has an individual write strobe to allow
efficient byte and half-word writes. If the memory uses a common write strobe for the full 16- or
32-bit data, the read-modify-write bit MCR2 should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data I/O-pads is provided which has one drive signal for each data bit.
It can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.

data1 data2

D1

lead-out

A1

CLK

A

RAMSN

D

RAMOEN

Figure 4. Static ram read cycle (0-waitstate)

Figure 5. Static ram write cycle

lead-in data lead-out

D1

A1

CLK

A

RAMSN

D

RWEN

8

2.5 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not
necessary to always have full 32-bit memory banks. The SRAM and PROM areas can be indi-
vidually configured for 8- or 16-bit operation by programming the ROM and RAM size fields
in the memory configuration registers. Since read access to memory is always done on 32-bit
word basis, read access to 8-bit memory will be transformed in a burst of four read cycles
while access to 16-bit memory will generate a burst of two 16-bits reads. During writes, only
the necessary bytes will be writen. Figure 6 shows an interface example with 8-bit PROM and
8-bit SRAM. Figure 7 shows an example of a 16-bit memory interface.

Figure 6. 8-bit memory interface example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

MEMO.RAMSN[0]
MEMO.RAMOEN[0]

MEMO.RWEN[0]

MEMO.ROMSN[0]
MEMO.OEN

A D

MEMORY

MEMI.A[27:0]

MEMI.D[31:24]/

RWE[0]

D[31:24]

D[31:24]

A[27:0]

A[27:0]

MEMO.WRITEN

8-bit PROM

8-bit RAMCONTROLLER

MEMO.D[31:24]

Figure 7. 16-bit memory interface example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

MEMO.RAMSN[0]
MEMO.RAMOEN[0]

MEMO.RWEN[0:1]

MEMO.ROMSN[0]
MEMO.OEN

A D

MEMI.A[27:0]

MEMI.D[31:16]/

RWE[1:0]

D[31:16]

D[31:16]

A[27:1]

A[27:1]

MEMO.WRITEN

16-bit PROM

16-bit RAM

MEMORY
CONTROLLER

MEMO.D[31:16]

9

2.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed
in burst mode. Burst transfers will be generated when the memory controller is accessed using an
AHB burst request. These includes instruction cache-line fills, double loads and double stores. The
timing of a burst cycle is identical to the programmed basic cycle with the exception that during
read cycles, the lead-out cycle will only occurs after the last transfer.

2.7 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bits mode. How-
ever, the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but
only with one single access just as in 32-bit mode. To accesses an I/O device on a 16-bit bus,
LDUH/STH instructions should be used while LDUB/STB should be used with an 8-bit bus.

2.8 SDRAM access

2.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 com-
patible devices. This is implemented by a special version of the SDCTRL SDRAM controller core
from Gaisler Research, which is optionally instantiated as a sub-block. The SDRAM controller
supports 64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address
bits. The size of the two banks can be programmed in binary steps between 4 Mbyte and 512
Mbyte. The operation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see
below). Both 32- and 64-bit data bus width is supported, allowing the interface of 64-bit DIMM
modules. The memory controller can be configured to use either a shared or separate bus connect-
ing the controller and SDRAM devices.

2.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of
the RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the con-
troller is enabled and mapped into upper half of the RAM area as long as the SRAM disable bit is
not set. If the SRAM disable bit is set, all access to SRAM is disabled and the SDRAM banks are
mapped into the lower half of the RAM area.

2.8.3 Initialisation

When the SDRAM controller is enabled, it automatically performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simul-
taneously. The controller programs the SDRAM to use page burst on read and single location
access on write.

2.8.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different frequencies),
some SDRAM parameters can be programmed through memory configuration register 2 (MCFG2)
The programmable SDRAM parameters can be seen in table 4:

TABLE 4. SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

10

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

2.9 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-
REFRESH command to both SDRAM banks. The period between the commands (in clock
periods) is programmed in the refresh counter reload field in the MCFG3 register. Depending
on SDRAM type, the required period is typically 7.8 or 15.6 µs (corresponding to 780 or 1560
clocks at 100 MHz). The generated refresh period is calculated as (reload value+1)/sysclk. The
refresh function is enabled by setting bit 31 in MCFG2.

2.9.1 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field
in MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR
command is issued, the CAS delay as programmed in MCFG2 will be used, remaining fields
are fixed: page read burst, single location write, sequential burst. The command field will be
cleared after a command has been executed. Note that when changing the value of the CAS
delay, a LOAD-MODE-REGISTER command should be generated at the same time.

2.9.2 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row,
followed by a READ command after the programmed CAS delay. A read burst is performed if
a burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-
CHARGE command, no banks are left open between two accesses.

2.9.3 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE com-
mands are issued after activation. A write burst on the AHB bus will generate a burst of write
commands without idle cycles in-between.

2.9.4 Address bus connection

The memory controller can be configured to either share the address and data buses with the
SRAM, or to use separate address and data buses. When the buses are shared, the address bus
of the SDRAMs should be connected to A[14:2], the bank address to A[16:15]. The MSB part
of A[14:2] can be left unconnected if not used. When separate buses are used, the SDRAM
address bus should be connected to SA[12:0] and the bank address to SA[14:13].

2.9.5 Data bus

SDRAM can be connected to the memory controller through the common or separate data bus.
If the separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus allows the
64-bit SDRAM devices to be connected using the full data capacity of the devices. 64-bit
SDRAM devices can be connected to 32-bit data bus if 64-bit data bus is not available but in
this case only half the full data capacity will be used. There is a drive signal vector and sepa-
rate data vector available for SDRAM. The drive vector has one drive signal for each data bit.
These signals can be used to remove timing problems with the output delay when a separate
SDRAM bus is used. SDRAM bus signals are described in chapter 2.10, for configuration
options refer to chapter 2.14.

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks

TABLE 4. SDRAM programmable timing parameters

Function Parameter range unit

11

2.9.6 Clocking

The SDRAM clock typically requiresspecialsynchronisationat layout level. For Xilinx and
Altera device, the GR Clock Generatorcan be configuredto producea properly synchronised
SDRAM clock. For other FPGA targets, the GR Clock Generator can produce an inverted clock.

2.10 Registers

The memory controller is programmed through tree registers mapped into APB address space.

2.10.1 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

[3:0]: Promreadwaitstates.Definesthe numberof waitstatesduring prom readcycles(“0000”=0,
“0001”=1,... “1111”=15).

[7:4]: Promwrite waitstates.Definesthenumberof waitstatesduringpromwrite cycles(“0000”=0,
“0001”=1,... “1111”=15).

[9:8]: Prom width. Defines the data with of the prom area (“00”=8, “01”=16, “10”=32).
[10]: Reserved
[11]: Prom write enable. If set, enables write cycles to the prom area.
[17:12]: Reserved
[19]: I/O enable. If set, the access to the memory bus I/O area are enabled.
[23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0,

“0001”=1, “0010”=2,..., “1111”=15).
[25]: Bus error (BEXCN) enable.
[26]:Bus ready (BRDYN) enable.
[28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16, “10”=32).

During power-up, thepromwidth (bits [9:8]) aresetwith valueon MEMI.BWIDTH inputs.The
promwaitstatesfieldsaresetto 15 (maximum).Externalbuserrorandbusreadyaredisabled.All
other fields are undefined.

TABLE 5. Memory controller registers

Register APB Address offset

MCFG1 0x0

MCFG2 0x4

MCFG3 0x8

I/O enable

Prom write enable

Prom width

Figure 8. Memory configuration register 1

03478910111217181920232425262731

Prom read wsProm write wsReserved

I/O width

I/O ready enable

BEXCN enable

I/O waitstates Reserved

2829

12

2.10.2 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.

[1:0]: Ramreadwaitstates.Definesthe numberof waitstatesduring ram readcycles(“00”=0,
“01”=1, “10”=2, “11”=3).

[3:2]: Ramwrite waitstates.Definesthenumberof waitstatesduringramwrite cycles(“00”=0,
“01”=1, “10”=2, “11”=3).

[5:4]: Ram with. Defines the data with of the ram area (“00”=8, “01”=16, “1X”= 32).
[6]: Read-modify-write.Enableread-modify-writecycleson sub-word writes to 16- and32-bit

areas with common write strobe (no byte write strobe).
[7]: Bus ready enable. If set, will enable BRDYN for ram area
[12:9]: Rambanksize.Definesthesizeof eachrambank(“0000”=8 Kbyte, “0001”=16Kbyte...

“1111”=256 Mbyte).
[13]: SI - SRAM disable.If settogetherwith bit 14 (SDRAM enable),thestaticramaccesswill

be disabled.
[14]: SE - SDRAM enable. If set, the SDRAM controller will be enabled.
[18]: 64-bit databus (D64) - Reads‘1’ if memorycontroller is configuredfor 64-bit databus,

otherwise ‘0’. Read-only.
[20:19] SDRAM command.Writing a non-zerovalue will generatean SDRAM command:

“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-
REGISTER. The field is reset after command has been executed.

[22:21]: SDRAM columnsize.“00”=256, “01”=512, “10”=1024, “11”=4096 whenbit[25:23]=
“111”, 2048 otherwise.

[25:23]: SDRAM bankssize.Definesthebankssizefor SDRAM chip selects:“000”=4 Mbyte,
“001”=8 Mbyte, “010”=16 Mbyte “111”=512 Mbyte.

[26]: SDRAM CAS delay. Selects2 or 3 cycle CAS delay (0/1). When changed,a LOAD-
COMMAND-REGISTERcommandmustbe issuedat thesametime. Also setsRAS/
CAS delay (tRCD).

[29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
[30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.

BRDYN enable

Read-mod.-write

Ram width

Write waitstates

Read waitstates

012345689121331

SRAM bank sz

Figure 9. Memory configuration register 2

71419202122252629 23

SDRAM command

SDRAM Col. size

SDRAM Bank size

CAS delay, tRCD

tRFC

tRP

Refresh enable

SISE

2730 18

D64

13

2.10.3 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

2.11 Using MEMI.BRDYN

The MEMI.BRDYN signal can be used to stretch access cycles to the I/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will always have at least the pre-programmed num-
ber of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched
until MEMI.BRDYN is asserted. MEMI.BRDYN should be asserted in the cycle preceding the last
one. The use of MEMI.BRDYN can be enabled separately for the I/O and RAM areas.

2.12 Access errors

An access error can be signalled by asserting the MEMI.BEXCN signal, which is sampled
together with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register
1, an error response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled
or disabled through memory configuration register 1, and is active for all areas (PROM, I/O an
RAM).

Figure 10. Memory configuration register 3

0262731

RESERVED SDRAM refresh reload value

1112

RESERVED

Figure 11. RAM read cycle with one BRDYN controlled waitstate

data2 waitstate

D1

lead-out

A1

CLK

A

RAMSN[4]

D

OEN

BRDYN

data1

14

2.13 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used since it allows the
cycle time to vary through the use of MEMI.BRDYN. In this way, delays can be inserted as
required for opening of banks and refresh.

Figure 12. Read cycle with BEXCN

data1 data2

D1

lead-out

A1

CLK

A

RAMSN

D

OEN

BEXCN

15

2.14 Configuration options

The Memory controller has the following configuration options (VHDL generics):

2.15 Vendor and device id

The module has vendor id 0x04 (ESA) and device id 0x00F. For description of vendor and device
ids see GRLIB IP Library User’s Manual.

TABLE 6. Memory controller configuration options (VHDL generics)

Generic Function Allowed range Default

hindex AHB slave index 1 - NAHBSLV-1 0

pindex APB slave index 0 - NAPBSLV-1 0

romaddr ADDR filed of the AHB BAR0 defining PROM address
space. Default PROM area is 0x0 - 0x1FFFFFFF.

0 - 16#FFF# 16#000#

rommask MASK filed of the AHB BAR0 defining PROM address
space.

0 - 16#FFF# 16#E00#

ioaddr ADDR filed of the AHB BAR1 defining I/O address
space. Default I/O area is 0x20000000 - 0x2FFFFFFF.

0 - 16#FFF# 16#200#

iomask MASK filed of the AHB BAR1 defining I/O address
space.

0 - 16#FFF# 16#E00#

ramaddr ADDR filed of the AHB BAR2 defining RAM address
space. Default RAM area is 0x40000000-0x7FFFFFFF.

0 - 16#FFF# 16#400#

rammask MASK filed of the AHB BAR2 defining RAM address
space.

0 -16#FFF# 16#C00
#

paddr ADDR filed of the APB BAR configuration registers
address space.

0 - 16#FFF# 0

pmask MASK filed of the APB BAR configuration registers
address space.

0 - 16#FFF# 16#FFF
#

wprot RAM write protection. 0 - 1 0

invclk Inverted clock is used for the SDRAM. 0 - 1 0

fast Enable fast SDRAM address decoding. 0 - 1 0

romasel log2(PROM address space size) - 1. E.g. if size of the
PROM area is 0x20000000 romasel is log2(2^29)-1 = 28.

0 - 31 28

sdrasel log2(RAM address space size) - 1. E.g if size of the
RAM address space is 0x40000000 sdrasel is
log2(2^30)-1= 29.

0 - 31 29

srbanks Number of SRAM banks. 0 - 5 4

ram8 Enable 8-bit PROM and SRAM access. 0 - 1 0

ram16 Enable 16-bit PROM and SRAM access. 0 - 1 0

sden Enable SDRAM controller. 0 - 1 0

sepbus SDRAM is located on separate bus. 0 - 1 1

sdbits 32 or 64 -bit SDRAM data bus. 32, 64 32

oepol Select polarity of drive signals for data pads. 0 = active
low, 1 = active high.

0 - 1 0

16

2.16 Signal description

Memory controller signals are described in table 7.

TABLE 7. Memory controller signal description.

Signal name Field Type Function Active

CLK N/A Input Clock -

RST N/A Input Reset Low

MEMI DATA[31:0] Input Memory data High

BRDYN Input Bus ready strobe Low

BEXCN Input Bus exception Low

WRN[3:0] Input SRAM write enable feedback signal Low

BWIDTH[1:0] Input Prom width. This value is written in Prom
Width field of MCFG0 register.

High

SD[31:0] Input SDRAM separate data bus High

MEMO ADDRESS[27:0] Output Memory address High

DATA[31:0] Output Memory data -

SDDATA[63:0] Output Sdram memory data -

RAMSN[4:0] Output SRAM chip-select Low

RAMOEN[4:0] Output SRAM output enable Low

IOSN Output Local I/O select Low

ROMSN[1:0] Output PROM chip-select Low

OEN Output Output enable Low

WRITEN Output Write strobe Low

WRN[3:0] Output SRAM write enable Low

MBEN[3:0] Output Byte enable Low

BDRIVE[3:0] Output Drive byte lanes on external memory bus.
Controls I/O-pads connected to external
memory bus.

Low/High

VBDRIVE[31:0] Output Vectored I/O-pad drive signals. Low/High

SVBDRIVE[63:0] Output Vectored I/O-pad drive signals for separate
sdram bus.

Low/High

READ Output Read strobe High

SA[14:0] Output SDRAM separate address bus High

AHBSI * Input AHB slave input signals -

AHBSO * Output AHB slave output signals -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

WPROT WPROTHIT Input Unused -

SDO SDCASN Output SDRAM column address strobe Low

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[7:0] Output SDRAM data mask Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User’s Manual

17

2.17 Library dependencies

Table shows libraries that the memory controller module depends on.

2.18 Memory controller instantiation

This examples shows how a memory controller can be instantiated. The example design contains
an AMBA bus with a number of AHB components connected to it including the memory control-
ler. The external memory bus is defined on the example designs port map and connected to the
memory controller. System clock and reset are generated by GR Clock Generator and Reset Gen-
erator.

Memory controller decodes default memory areas: PROM area is 0x0 - 0x1FFFFFFF, I/O-area is
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - 0x7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.
library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
use grlib.tech.all;
library gaisler;
use gaisler.memctrl.all;
use gaisler.pads.all; -- used for I/O pads
library esa;
use esa.memoryctrl.all;

entity mctrl_ex is
 port (
 clk : in std_ulogic;
 resetn : in std_ulogic;
 pllref : in std_ulogic;

 -- memory bus
 address : out std_logic_vector(27 downto 0); -- memory bus
 data : inout std_logic_vector(31 downto 0);
 ramsn : out std_logic_vector(4 downto 0);
 ramoen : out std_logic_vector(4 downto 0);
 rwen : inout std_logic_vector(3 downto 0);
 romsn : out std_logic_vector(1 downto 0);
 iosn : out std_logic;
 oen : out std_logic;
 read : out std_logic;
 writen : inout std_logic;
 brdyn : in std_logic;
 bexcn : in std_logic;
-- sdram i/f
 sdcke : out std_logic_vector (1 downto 0); -- clk en
 sdcsn : out std_logic_vector (1 downto 0); -- chip sel

TABLE 8. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

GAISLER MEMCTRL Signals

Components

Memory bus signals definitions

SDMCTRL component

ESA MEMORYCTRL Component Memory controller component declaration

18

 sdwen : out std_logic; -- write en
 sdrasn : out std_logic; -- row addr stb
 sdcasn : out std_logic; -- col addr stb
 sddqm : out std_logic_vector (7 downto 0); -- data i/o mask
 sdclk : out std_logic; -- sdram clk output
 sa : out std_logic_vector(14 downto 0); -- optional sdram address
 sd : inout std_logic_vector(63 downto 0) -- optional sdram data
);
end;

architecture rtl of mctrl_ex is

 -- AMBA bus (AHB and APB)
 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);
 signal ahbsi : ahb_slv_in_type;
 signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
 signal ahbmi : ahb_mst_in_type;
 signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

 -- signals used to connect memory controller and memory bus
 signal memi : memory_in_type;
 signal memo : memory_out_type;

 signal sdo : sdram_out_type;

 signal wprot : wprot_out_type; -- dummy signal, not used
 signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
 signal cgi : clkgen_in_type;
 signal cgo : clkgen_out_type;

 signal gnd : std_ulogic;

begin

 -- Clock and reset generators
 clkgen0 : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
 tech => virtex2, sdinvclk => 0)
 port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

 cgi.pllctrl <= "00"; cgi.pllrst <= resetn; cgi.pllref <= pllref;

 -- Memory controller
 mctrl0 : mctrl generic map (srbanks => 1, sden => 1)
 port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

 -- memory controller inputs not used in this configuration
 memi.brdyn <= ’1’; memi.bexcn <= ’1’; memi.wrn <= "1111";
 memi.sd <= sd;

 -- prom width at reset
 memi.bwidth <= "10";

 -- I/O pads driving data memory bus data signals
 datapads : for i in 0 to 3 generate
 data_pad : iopadv generic map (width => 8)
 port map (pad => data(31-i*8 downto 24-i*8),
 o => memi.data(31-i*8 downto 24-i*8),
 en => memo.bdrive(i),
 i => memo.data(31-i*8 downto 24-i*8));
 end generate;

 -- connect memory controller outputs to entity output signals
 address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
 oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
 sa <= memo.sa;
 writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
 sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
 sdrasn <= sdo.rasn; sdcasn <= sdo.casn; sddqm <= sdo.dqm;
end;

19

20

21

3 LEON2 Generic UART

3.1 Overview

TheGenericUART is a universalasynchronousreceiver/transmitter, originally developedfor the
LEON2processor. TheUART supportdataframeswith 8 databits,oneoptionalparitybit andone
stopbit. To generatethebit-rate,eachUART hasaprogrammable12-bitsclockdivider. Hardware
flow-control is supportedthroughtheRTSN/CTSNhand-shake signals.Figure13 shows a block
diagram of the UART.

3.2 Configuration options

The UART has the following configuration options (VHDL generics):

3.3 Vendor and device id

Themodulehasvendorid 0x04(ESA) anddevice id 0x008.For descriptionof venoranddevice
IDs, see GRLIB IP Library User’s Manual.

TABLE 9. UART configuration options (VHDL generics)

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR filed of the APB BAR. 0 - 16#FFF# 0

pmask MASK filed of the APB BAR. 0 - 16#FFF# 16#FFF#

console Prints output form the UART on console during
VHDL simulation and speeds up simulation by
always returning ‘1’ for Data Ready bit of UART Sta-
tus register. Does not effect synthesis.

0 - 1 0

pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

Figure 13. LEON2 UART block diagram

RXD TXD

CTSN

RTSN

Receiver shift register Transmitter shift register

Receiver holding register Transmit. holding register

APB

Serial port
Controller8*bitclkBaud-rate

generator

22

3.4 Operation

3.4.1 Transmitter operation

The transmitteris enabledthroughthe TE bit in the UART control register. Whenreadyto
transmit,datais transferredfrom thetransmitterholdingregisterto thetransmittershift regis-
terandconvertedto aserialstreamonthetransmitterserialoutputpin (TXD). It automatically
sendsastartbit followedby eightdatabits,anoptionalparitybit, andonestopbits (figure14).
The least significant bit of the data is sent first

Following thetransmissionof thestopbit, if a new characteris not availablein thetransmitter
holdingregister, thetransmitterserialdataoutputremainshigh andthetransmittershift regis-
ter emptybit (TSRE)will besetin theUART control register. Transmissionresumesandthe
TSREis clearedwhenanew characteris loadedin thetransmitterholdingregister. If thetrans-
mitter is disabled,it will continueoperatinguntil thecharactercurrentlybeingtransmittedis
completelysentout.Thetransmitterholdingregistercannotbeloadedwhenthetransmitteris
disabled.

If flow control is enabled,theCTSNinput mustbe low in orderfor thecharacterto be trans-
mitted. If it is deassertedin themiddleof a transmission,thecharacterin theshift registeris
transmittedand the transmitterserial output then remainsinactive until CTSN is asserted
again. If the CTSN is connected to a receivers RTSN, overrun can effectively be prevented.

3.4.2 Receiver operation

Thereceiver is enabledfor datareceptionthroughthereceiver enable(RE) bit in theUSART
control register. The receiver looks for a high to low transitionof a startbit on the receiver
serialdatainputpin. If a transitionis detected,thestateof theserialinput is sampledahalf bit
clockslater. If theserialinput is sampledhigh thestartbit is invalid andthesearchfor a valid
startbit continues.If the serial input is still low, a valid startbit is assumedandthe receiver
continuesto sampletheserialinputatonebit time intervals(at thetheoreticalcentreof thebit)
until thepropernumberof databitsandtheparitybit havebeenassembledandonestopbit has
beendetected.Theserialinput is shiftedthroughan8-bit shift registerwhereall bits have to
have thesamevaluebeforethenew valueis takeninto account,effectively forminga low-pass
filter with a cut-off frequency of 1/8 system clock.

During reception,the leastsignificantbit is received first. The datais thentransferredto the
receiver holdingregister(RHR) andthedataready(DR) bit is setin theUSART statusregis-
ter. Theparity, framingandoverrunerrorbitsaresetat thereceivedbyteboundary, at thesame
time asthereceiver readybit is set.If bothreceiver holdingandshift registerscontainanun-
readcharacterwhenanew startbit is detected,thenthecharacterheldin thereceivershift reg-
isterwill be lost andtheoverrunbit will besetin theUART statusregister. If flow control is
enabled,then the RTSN will be negated (high) when a valid start bit is detectedand the
receiver holdingregistercontainsanun-readcharacter. Whentheholdingregisteris read,the
RTSN will automatically be reasserted again.

3.4.3 Baud-rate generation

EachUART containsa 12-bit down-countingscalerto generatethe desiredbaud-rate.The
scaleris clockedby thesystemclock andgeneratesa UART tick eachtime it underflows.The

Figure 14. UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:

23

scaler is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is set, the
scaler will be clocked by the UARTI.EXTCLK input rather than the system clock. In this case, the
frequency of UARTI.EXTCL must be less than half the frequency of the system clock.

3.4.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this
mode, the transmitter output is internally connected to the receiver input and the RTSN is con-
nected to the CTSN. It is then possible to perform loop back tests to verify operation of receiver,
transmitter and associated software routines. In this mode, the outputs remain in the inactive state,
in order to avoid sending out data.

3.4.5 Interrupt generation

The UART will generate an interrupt under the following conditions: when the transmitter is
enabled, the transmitter interrupt is enabled and the transmitter holding register moves from full to
empty; when the receiver is enabled, the receiver interrupt is enabled and the receiver holding reg-
ister moves from empty to full; when the receiver is enabled, the receiver interrupt is enabled and a
character with either parity, framing or overrun error is received.

3.5 UART registers

The UART is programmed through tree registers mapped into APB address space.

3.5.1 UART Data Register

[7:0]: Receiver holding register (read access
[7:0]: Transmitter holding register (write access)

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Receiver interrupt enable (RI) - if set, enables generation of receiver interrupt.

TABLE 10. Uart registers

Register APB Address offset

UART Data register 0x0

UART Status register 0x4

UART Control register 0x8

UART Scaler register 0xC

Figure 15. UART data register

07831

RESERVED DATA

Figure 16. UART control register

0123456731

RESERVED RETERITIPSPEFLLB

8

EC

24

3: Transmitter interrupt enable (TI) - if set, enables generation of transmitter interrupt.
4: Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)
5: Parity enable (PE) - if set, enables parity generation and checking.
6: Flow control (FL) - if set, enables flow control using CTS/RTS.
7: Loop back (LB) - if set, loop back mode will be enabled.
8: External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK

3.5.2 UART Status Register

0: Data ready (DR) - indicates that new data is available in the receiver holding register.
1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
3: Break received (BR) - indicates that a BREAK has been received.
4: Overrun (OV) - indicates that one or more character have been lost due to overrun.
5: Parity error (PE) - indicates that a parity error was detected.
6: Framing error (FE) - indicates that a framing error was detected.

3.5.3 UART Scaler Register

3.6 Signal description

The UART signals are described in table 11.

TABLE 11. UART signal description.

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock -

APBI * Input APB slave input signals -

APBO * Output APB slave output signals -

UARTI RXD Input UART receiver data High

CTSN Input UART clear-to-send High

EXTCLK Input Use as alternative UART clock -

UARTO RTSN Output UART request-to-send High

TXD Output UART transmit data High

* see GRLIB IP Library User’s Manual

Figure 17. UART status register

0123456731

RESERVED DRTSTHBROVPEFE

Figure 18. UART scaler reload register

0111231

RESERVED SCALER RELOAD VALUE

25

3.7 Library dependencies

Table 12 shows libraries that should be used when instantiating an APB UART.

3.8 UART instantiation

This examples shows how the UART can be instantiated.

library ieee;
use ieee.std_logic_1164.all;

library grlib;
use grlib.amba.all;
library gaisler;
use gaisler.uart.all;
library esa;
use esa.misc.all;

entity apbuart_ex is
 port (
 clk : in std_ulogic;
 rstn : in std_ulogic;

 -- UART signals
 rxd : in std_ulogic;
 txd : out std_ulogic
);
end;

architecture rtl of apbuart_ex is
-- APB signals

 signal apbi : apb_slv_in_type;
 signal apbo : apb_slv_out_vector := (others => apb_none);

 -- UART signals
 signal uarti : uart_in_type;
 signal uarto : uart_out_type;

begin

 uart0 : l2uart
 generic map (pindex => 1, paddr => 1, pirq => 2, console => 1)
 port map (rstn, clk, apbi, apbo(1), uarti, uarto);

 -- UART input data
 uarti.rxd <= rxd;

 -- APB UART inputs not used in this configuration
 uarti.ctsn <= ’0’; uarti.extclk <= ’0’;

 -- connect APB UART output to entity output signal
 txd <= uarto.txd;
end;

TABLE 12. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Types APB signal definitions

GAISLER UART Types Type declarations

ESA MISC Component Component declaration

26

27

4 PCI arbiter

4.1 Overview

PCIARB is n arbiter for the PCI bus, according to the PCI specification version 2.1. It is config-
urable for 4, 8, 16 or 32 agents, with 4 as default. The arbiter uses nested round-robbing policy in
two priority levels. The priority assignment is either hard-coded or programmable through an
APB interface.

4.2 Operation

4.2.1 Scheduling algorithm

The arbiter uses the algorithm described in the implementation note of section 3.4 of the PCI stan-
dard. The bus is granted by two nested round-robbing loops, where an agent number and a priority
level is assigned to each agent. The agent number determines which pair of REQ/GNT lines are
used. Agents are counted from 0 to NB_AGENTS-1. All agents in one level have equal access to
the bus through a round-robbing policy. All agents of level 1 as a group have access equal to each
agent of level 0. Re-arbitration occurs, when frame_n is asserted, as soon as any other master has
requested the bus, but only once per transaction.

With programmable priorities, the priority level of all agents except NB_AGENTS-1 is program-
mable via APB. In a 256 byte APB address range, the priority level of agent N is accessed via the
address 0x80 + 4*N. The APB read returns 0 on all non-implemented addresses, and the address
bits (1:0) are not decoded. The constant ARB_LVL_C in pci_arb.vhd is the reset value.

4.2.2 Time-out

The “broken master” time-out is another reason for re-arbitration (section 3.4.1 of the PCI stan-
dard). Grant is removed from an agent, which has not started a cycle within 16 cycles after request
(and grant). Reporting of such a ‘broken’ master is not implemented.

4.2.3 Turn-over

A turn-over cycle is required by the standard, when re-arbitration occurs during idle state of the
bus. Notwithstanding to the standard, “idle state” is assumed, when FRAMEN is high for more
than 1 cycle.

4.2.4 Bus parking

The bus is parked to agent 0 after reset, it remains granted to the last owner, if no other agent
requests the bus. When another request is asserted, re-arbitration occurs after one turnover cycle.

4.2.5 Lock

Lock is defined as a resource lock by the PCI standard. The optional bus lock mentioned in the
standard is not considered here and there are no special conditions to handle when LOCKN is
active during in arbitration.

4.2.6 Latency

Latency control in PCI is via the latency counters of each agent. The arbiter does not perform any
latency check and a once granted agent continues its transaction until its grant is removed AND its
own latency counter has expired. Even though, a bus re-arbitration occurs during a transaction, the
hand-over only becomes effective, when the current owner deasserts FRAMEN .

28

4.3 Configuration

The arbiter can be configured to NB_AGENTS = 4, 8, 16 or 32. A priority level (0 = high, 1 =
low) is assigned to each device. Exception is agent NB_AGENTS-1, which has always lowest
priority.

The priority levels are hard-coded, when APB_PRIOS = 0. In this case, the APB ports (APBI/
APBO) are unconnected. The constant ARB_LVL_C must then be set to appropriate values.

When APB_PRIOS = 1, the levels are programmable via the APB-address 0x80. Bit 31 (left-
most) = master 31 . . bit 0 (rightmost) = master 0. Bit NB_AGENTS-1 is don’t care at write
and reads 1. Bits NB_AGENTS to 31, if existing, are dont care and read 0. The constant
ARB_LVL_C is then the reset value.

The PCI arbiter has the following configuration options (VHDL generics):

4.4 Vendor and device id

The module has vendor id 0x04 (ESA) and device id 0x010. For description of venor and
device ids see GRLIB IP Library User’s Manual.

4.5 Signal description

Memory controller signals are described in table 14.

TABLE 13. Memory controller configuration options (VHDL generics)

Generic Function Allowed range Default

pindex APB slave index 0 - NAPBSLV-1 0

paddr ADDR filed of the APB BAR configuration registers
address space.

0 - 16#FFF# 0

pmask MASK filed of the APB BAR configuration registers
address space.

0 - 16#FFF# 16#FFF
#

nb_agents Number of agents 4, 8, 16 or 32 4

apb_en Enable programming through APB 0 - 1 1

TABLE 14. Memory controller signal description.

Signal name Type Function Active

CLK Input PCI Clock -

RST_N Input PCI Reset Low

REQ_N[0 to n-1] Input PCI Request signals Low

FRAME_N Input PCI FRAME Low

GNT_N[0 to n-1] Output PCI Grant signals Low

PCLK Input APB Clock -

PRST_N Input APB Reset Low

APBI* Input APB slave input signals -

APBO* Output APB slave output signals -

* see GRLIB IP Library User’s Manual

29

4.6 Library dependencies

Table shows libraries that the memory controller module depends on.

TABLE 15. Library dependencies

Library Package Imported unit(s) Description

GRLIB AMBA Signals AHB signal definitions

	ESA GRLIB IP Core’s Manual
	1 Introduction
	1.1 Scope
	1.2 IP core overview

	2 Memory Controller
	2.1 Overview
	2.2 PROM access
	2.3 Memory mapped I/O
	2.4 SRAM access
	2.5 8-bit and 16-bit PROM and SRAM access
	2.6 Burst cycles
	2.7 8- and 16-bit I/O access
	2.8 SDRAM access
	2.8.1 General
	2.8.2 Address mapping
	2.8.3 Initialisation
	2.8.4 Configurable SDRAM timing parameters

	2.9 Refresh
	2.9.1 SDRAM commands
	2.9.2 Read cycles
	2.9.3 Write cycles
	2.9.4 Address bus connection
	2.9.5 Data bus
	2.9.6 Clocking

	2.10 Registers
	2.10.1 Memory configuration register 1 (MCFG1)
	2.10.2 Memory configuration register 2 (MCFG2)
	2.10.3 Memory configuration register 3 (MCFG3)

	2.11 Using MEMI.BRDYN
	2.12 Access errors
	2.13 Attaching an external DRAM controller
	2.14 Configuration options
	2.15 Vendor and device id
	2.16 Signal description
	2.17 Library dependencies
	2.18 Memory controller instantiation

	3 LEON2 Generic UART
	3.1 Overview
	3.2 Configuration options
	3.3 Vendor and device id
	3.4 Operation
	3.4.1 Transmitter operation
	3.4.2 Receiver operation
	3.4.3 Baud-rate generation
	3.4.4 Loop back mode
	3.4.5 Interrupt generation

	3.5 UART registers
	3.5.1 UART Data Register
	3.5.2 UART Status Register
	3.5.3 UART Scaler Register

	3.6 Signal description
	3.7 Library dependencies
	3.8 UART instantiation

	4 PCI arbiter
	4.1 Overview
	4.2 Operation
	4.2.1 Scheduling algorithm
	4.2.2 Time-out
	4.2.3 Turn-over
	4.2.4 Bus parking
	4.2.5 Lock
	4.2.6 Latency

	4.3 Configuration
	4.4 Vendor and device id
	4.5 Signal description
	4.6 Library dependencies

