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I ntroduction

Scope

This doumentdescribesspecific IP coresprovided by the EuropeanSPace Ageng inside the
GRLIB IP library. Whenapplicable the coresusethe GRLIP plug&play configurationmethodas
describedn the ‘GRLIB Users Manual'. Thesecoreshasbeenportedfrom the LEON2 VHDL
model, and are puwided under the GNU LGPL license.

IP coreoverview

Thetablesbelow lists the provided IP coresandtheir AMBA plug&play device ID. All coresuse

vendor ID 0x04 (ESA).

TABLE 1. Serial communications

Name Function DevicelD License

L2UART LEON2 Generic WRT 0x008 LGPL
TABLE 2. PCI functions

Name Function Device D License

PCIARB PCI arbiter with optional APB inteate 0x010 LGPL
TABLE 3. PCI functions

Name Function Device D License

PCIARB PCI arbiter with optional APB inteate 0x010 LGPL







Memory Controller
Overview

The memory controller handles amemory bus hosting PROM, memory mapped 1/0O devices, asyn-
chronous static ram (SRAM) and synchronous dynamic ram (SDRAM). The controller acts as a
dlave on the AHB bus. The function of the memory controller is programmed through memory
configuration registers 1, 2 & 3 (MCR1, MCR2 & MCR3) through the APB bus. The memory bus
supports four types of devices: prom, sram, sdram and local |/O. The memory bus can also be con-
figured in 8- or 16-bit mode for applications with low memory and performance demands. The
controller decodes three address spaces (PROM, 1/0 and RAM) whose mapping is determined
through VHDL -generics.

Chip-select decoding is done for two PROM banks, one 1/O bank, five SRAM banks and two
SDRAM banks. Figure 1 shows how the connection to the different device typesis made.

APB  AHB A D
MEMO.ROMSN[1:0] cs A | qu—
MEMO.OEN oce  PROM
MEMO.WRITEN WE D | |
rE— MEMO.IOSN cs
- A | G—
L {oe 110 5 -
WE | G—
MEMORY
CONTROLLER ,
MEMO.RAMSN[4:0] cs A
MEMO.RAMOEN([4:0] o  SRAM 5
MEMO.RWEN[3:0] WE =P
MEMO.MBEN[3:0] MBEN
[A[16:15]
MEMO.SD([:LK] CLK oA N
MEMO.SDCSN[1:0 CSN
A[14:2)
| —> MEMO.SDRASN RAS gDRAM A K e
MEMO.SDCASN CAS
MEMO.SDWEN WE D
MEMO.SDDQM[3:0] DQM
MEMI.A[27:0] >
MEMI.D[3L:0]/ |
MEMO.D[3L:0]

Figure 1. Memory controller conected to AMBA bus and different
types of memory devices



22 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM
cycles can have up to 15 waitstates.

datal data2 lead-out
ck /o \ \ \ _/ \ \
A Al }
ROMSN
OEN \ /
0 oD

Figure 2. Prom read cycle

Two PROM chip-select signals are provided, MEMO.ROMSN[1:0]. MEMO.ROMSNIQ] is
asserted when the lower half of the PROM area as addressed while MEMO.ROMSNI1] is
asserted for the upper half. When the VHDL model is configured to boot from internal prom,
MEMO.ROMSNI0] is never asserted and all accesses to the lower half of the PROM area are
mapped on the internal prom.

23  Memory mapped 1/0
Accessesto 1/0 have similar timing to ROM/RAM accesses, the differences being that a addi-

tional waitstates can be inserted by de-asserting the MEMI.BRDY N signal. The 1/O select sig-
nal (MEMO.IOSN) is delayed one clock to provide stable address before MEMO.IOSN is

asserted.
lead-in data |ead-out

ck / \_/ \ \ \ \ \
A Al

IOSN /

OEN \ /
° o

BRDYN \_ _/

Figure 3. I/O read cycle
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SRAM access

The SRAM area can be up to 1 Ghyte, divided on up to five RAM banks. The size of banks 1-4
(MEMO.RAMSN[3:0]is programmed in the RAM bank-size field (MCR2[12:9]) and can be set in
binary steps from 8 Kbyte to 256 Mbyte. The fifth bank (MEMO.RAMSN[4]) decodes the upper
512 Mbyte. A read access to SRAM consists of two data cycles and between zero and three wait-
states. Accesses to MEMO.RAMSN([4] can further be stretched by de-asserting MEMI.BRDYN
until the datais available. On non-consecutive accesses, alead-out cycleis added after aread cycle
to prevent bus contention due to slow turn-off time of memories or I/O devices. Figure 4 showsthe
basic read cycle waveform (zero waitstate).

datal data2 lead-out
ck /o \ \ \ \ \ \
A Al )
RAMSN
RAMOEN \
0 =

Figure 4. Static ram read cycle (O-waitstate)

For read accesses to MEMO.RAMSN[4:0], a separate output enable signa
(MEMO.RAMOENT[nN]) is provided for each RAM bank and only asserted when that bank is
selected. A write accessis similar to the read access but takes a minimum of three cycles:

lead-in data lead-out
ck [\ \ \ \ \
A —d Al
RAMSN N\
RWEN /
D DL )

Figure 5. Static ram write cycle

Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be
driven until the write strobes are de-asserted. Each byte lane has an individual write strobe to allow
efficient byte and half-word writes. If the memory uses a common write strobe for the full 16- or
32-bit data, the read-modify-write bit MCR2 should be set to enable read-modify-write cycles for
sub-word writes.

A drive signal vector for the data I/O-padsis provided which has one drive signal for each data bit.
It can be used if the synthesis tool does not generate separate registers automatically for the current
technology. This can remove timing problems with output delay.



2.5

8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not
necessary to always have full 32-bit memory banks. The SRAM and PROM areas can be indi-
vidually configured for 8- or 16-bit operation by programming the ROM and RAM size fields
in the memory configuration registers. Since read access to memory is always done on 32-bit
word basis, read access to 8-bit memory will be transformed in a burst of four read cycles
while access to 16-bit memory will generate a burst of two 16-bits reads. During writes, only
the necessary bytes will be writen. Figure 6 shows an interface example with 8-bit PROM and
8-bit SRAM. Figure 7 shows an example of a 16-bit memory interface.

8-bit PROM A D
MEMO.ROMSN(0] cs . llZd
MEMO.0EN PROM .
MEMO.WRITEN \(,JVEE D QEM— =
MEMORY )
CONTROLLER 8-bit RAM
MEMO.RAMSN[0] cs M2
MEMO.RAMOEN[0] SRAM .
MEMO.RWEN[Q] RWE[0] &EE D D[31:24] -
MEMI.A[27:0] >
D[3L:24]/ |«
Mllizhl\llll(l)l.:lg)[[;lé]l] - =>
Figure 6. 8-bit memory interface example
16-bit PROM A b
MEMO.ROMSNI[0] cs A A[27:1]
MEMO.0EN PROM .
MEMO.WRITEN \?WE; D 42%1_ =
MEMORY
CONTROLLER 16-bit RAM
MEMO.RAMSNI0] cs SRAM A Al27:1
MEMO.RAMOEN[0] —{ oE :
MEMO.RWEN[0:1] RWE[L:0] | \vg D NGBS =)
MEMI.A[27:0] >
. :16)/ |
MEMOB3116) | =

Figure 7. 16-bit memory interface example



2.6

2.7

2.8

Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be performed
in burst mode. Burst transfers will be generated when the memory controller is accessed using an
AHB burst request. These includes instruction cache-linefills, double loads and double stores. The
timing of a burst cycle is identical to the programmed basic cycle with the exception that during
read cycles, the lead-out cycle will only occurs after the last transfer.

8- and 16-bit I/O access

Similar to the PROM/RAM areas, the |/O area can also be configured to 8- or 16-bits mode. How-
ever, the 1/O device will NOT be accessed by multiple 8/16 bits accesses as the memory areas, but
only with one single access just as in 32-bit mode. To accesses an 1/0O device on a 16-bit bus,
LDUH/STH instructions should be used while LDUB/STB should be used with an 8-hit bus.

SDRAM access

2.8.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 com-
patible devices. Thisisimplemented by a special version of the SDCTRL SDRAM controller core
from Gaider Research, which is optionally instantiated as a sub-block. The SDRAM controller
supports 64M, 256M and 512M devices with 8 - 12 column-address bits, and up to 13 row-address
bits. The size of the two banks can be programmed in binary steps between 4 Mbyte and 512
Mbyte. The operation of the SDRAM controller is controlled through MCFG2 and MCFG3 (see
below). Both 32- and 64-bit data bus width is supported, allowing the interface of 64-bit DIMM
modules. The memory controller can be configured to use either a shared or separate bus connect-
ing the controller and SDRAM devices.

2.8.2 Address mapping

The two SDRAM chip-select signals are decoded. SDRAM area is mapped into the upper half of
the RAM area defined by BAR2 register. When the SDRAM enable bit is set in MCFG2, the con-
troller is enabled and mapped into upper half of the RAM area as long as the SRAM disable bit is
not set. If the SRAM disable bit is set, al accessto SRAM is disabled and the SDRAM banks are
mapped into the lower half of the RAM area.

2.8.3 Initialisation

When the SDRAM controller is enabled, it automaticaly performs the SDRAM initialisation
sequence of PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks simul-
taneously. The controller programs the SDRAM to use page burst on read and single location
access on write.

2.8.4 Configurable SDRAM timing parameters
To provide optimum access cycles for different SDRAM devices (and at different frequencies),

some SDRAM parameters can be programmed through memory configuration register 2 (MCFG2)
The programmable SDRAM parameters can be seen in table 4:

TABLE 4. SDRAM programmable timing parameters

Function Parameter range unit
CAS latency, RAS/CAS delay tcas treb 2-3 clocks

Precharge to activate trp 2-3 clocks




10

2.9

TABLE 4. SDRAM programmable timing parameters

Function Parameter range unit
Auto-refresh command period trrc 3-11 clocks
Auto-refresh interval 10- 32768 clocks

Remaining SDRAM timing parameters are according the PC100/PC133 specification.
Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-
REFRESH command to both SDRAM banks. The period between the commands (in clock
periods) is programmed in the refresh counter reload field in the MCFGS3 register. Depending
on SDRAM type, the required period istypically 7.8 or 15.6 s (corresponding to 780 or 1560
clocks at 100 MHz). The generated refresh period is calculated as (reload value+1)/sysclk. The
refresh function is enabled by setting bit 31 in MCFG2.

2.9.1 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field
in MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the LMR
command is issued, the CAS delay as programmed in MCFG2 will be used, remaining fields
are fixed: page read burst, single location write, sequential burst. The command field will be
cleared after a command has been executed. Note that when changing the value of the CAS
delay, aLOAD-MODE-REGISTER command should be generated at the same time.

2.9.2 Read cycles

A read cycleis started by performing an ACTIVATE command to the desired bank and row,
followed by a READ command after the programmed CAS delay. A read burst is performed if
a burst access has been requested on the AHB bus. The read cycle is terminated with a PRE-
CHARGE command, no banks are |eft open between two accesses.

2.9.3 Writecycles

Write cycles are performed similarly to read cycles, with the difference that WRITE com-
mands are issued after activation. A write burst on the AHB bus will generate a burst of write
commands without idle cycles in-between.

2.9.4 Addressbusconnection

The memory controller can be configured to either share the address and data buses with the
SRAM, or to use separate address and data buses. When the buses are shared, the address bus
of the SDRAM s should be connected to A[14:2], the bank addressto A[16:15]. The MSB part
of A[14:2] can be left unconnected if not used. When separate buses are used, the SDRAM
address bus should be connected to SA[12:0] and the bank address to SA[14:13].

2.9.5 Databus

SDRAM can be connected to the memory controller through the common or separate data bus.
If the separate bus is used the width is configurable to 32 or 64 bits. 64-bit data bus alows the
64-bit SDRAM devices to be connected using the full data capacity of the devices. 64-bit
SDRAM devices can be connected to 32-bit data bus if 64-bit data bus is not available but in
this case only half the full data capacity will be used. There is a drive signal vector and sepa-
rate data vector available for SDRAM. The drive vector has one drive signal for each data bit.
These signals can be used to remove timing problems with the output delay when a separate
SDRAM bus is used. SDRAM bus signals are described in chapter 2.10, for configuration
options refer to chapter 2.14.
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2.9.6 Clocking

The SDRAM clock typically requiresspecial synchronisatiomat layout level. For Xilinx and

Altera device, the GR Clock Generatorcan be configuredto producea properly synchronised

SDRAM clock. For other FPGA tayets, the GR Clock Generator can produce aeried clock.
2.10 Registers

The memory controller is programmed through trggsters mapped into APB address space.

TABLE 5. Memory controller rgisters

Register APB Address offset
MCFG1 0x0
MCFG2 0x4
MCFG3 0x8

2.10.1 Memory configuration egister 1 (MCFG1)

Memory configuration gister 1 is used to program the timing of rom and local I/O accesses.

31 29 28 27 26 25 24 23 20 1918 17 12 1110 9 8 7 4 3 0
‘ Resered ‘ ‘ ‘ ‘ ‘ I/0 Waitstate# Resered ‘ ‘ ‘ ‘Prom write WS% Prom read W#

1/0 width 110 enableJ
1/0 ready enable
BEXCN enable Prom write enabl
Prom width

Figure 8. Memory configuration igister 1

[3:0]: PromreadwaitstatesDefinesthe numberof waitstatesduring prom readcycles (*0000"=0,
“0001"=1,... “1111"=15).

[7:4]: Promwrite waitstatesDefinesthe numberof waitstatesduring promwrite cycles(*0000"=0,
“0001"=1,... “1111"=15).

[9:8]: Prom width. Defines the data with of the prom area (“00"=8, “01"=16, “10"=32).

[10]: Resered

[11]: Prom write enable. If set, enables wriyeles to the prom area.

[17:12]: Resergd

[19]: I/O enable. If set, the access to the memaosy/IHO area are enabled.

[23:20]: I/O waitstates. Defines the number ditgtates during I/O accesses (“*0000"=0,
“0001"=1, “0010"=2,..., “1111"=15).

[25]: Bus error (BEXCN) enable.

[26]:Bus ready (BRI¥N) enable.

[28:27]: I/O tus width. Defines the data with of the I/O area (“00"=8, “01"=16, “10"=32).

During power-up, the prom width (bits [9:8]) are setwith valueon MEMI.BWIDTH inputs.The
promwaitstatedieldsaresetto 15 (maximum).Externalbuserrorandbusreadyaredisabled All
other fields are undefined.
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2.10.2 Memory configuration egister 2 (MCFG2)
Memory configuration gister 2 is used to control the timing of the SRAM and SDRAM.

3130 29 27 26 25 23 22 212019 18 14 13 12 9 87 6 5 4 3 2 10
LI 1] [ [ [0 se|st|srambanksz [ | | | [ |
SDRAM command BRDYN enable
SDRAM Col. size Read-mod.-write.
SDRAM Bank size Ram width
CAS delaytRCD Write waitstates
tRFC Read wvaitstates
tRP
Refresh enable

Figure 9. Memory configuration igster 2

[1:0]: Ramreadwaitstates Definesthe numberof waitstatesduring ram readcycles (“00"=0,
“01"=1, “10"=2, “11"=3).

[3:2]: Ramwrite waitstatesDefinesthe numberof waitstatesduring ramwrite cycles(“00"=0,
“01"=1, “10"=2, “11"=3).

[5:4]: Ram with. Defines the data with of the ram area (“00"=8, “01"=16, “1X"= 32).

[6]: Read-modify-write Enableread-modify-writecycleson sub-word writes to 16- and 32-bit
areas with common write strobe (no byte write strobe).

[7]: Bus ready enable. If set, will enable BR® for ram area

[12:9]: Rambanksize.Definesthe sizeof eachrambank(“0000"=8 Kbyte, “0001"=16 Kbyte...
“1111"=256 Mbyte).

[13]: SI- SRAM disable.lf settogethemith bit 14 (SDRAM enable)the staticramacceswill
be disabled.

[14]: SE - SDRAM enable. If set, the SDRAM controller will be enabled.

[18]: 64-bit databus (D64) - Reads1’ if memorycontrolleris configuredfor 64-bit databus,
otherwise ‘0’. Read-only

[20:19] SDRAM command.Writing a non-zerovalue will generatean SDRAM command:
“01"=PRECHARGE, “10"=AUTO-REFRESH, “11"=LOAD-COMMAND-
REGISTER. The field is reset after command has beecuéed.

[22:21]: SDRAM columnsize.“00"=256, “01"=512, “10"=1024,“11"=4096 whenbit[25:23]=
“111”, 2048 otherwise.

[25:23]: SDRAM bankssize.Definesthe bankssizefor SDRAM chip selects*000"=4 Mbyte,
“001"=8 Mbyte, “010"=16 Mbyte .... “111"=512 Mbyte.

[26]: SDRAM CAS delay Selects2 or 3 cycle CAS delay (0/1). When changeda LOAD-
COMMAND-REGISTERcommandmustbe issuedat the sametime. Also setsRAS/
CAS delay (tRCD).

[29:27]: SDRAM RKectiming. gec Will be equal to 3 + fieldalue system clocks.
[30]: SDRAM tzptiming. izp will be equal to 2 or 3 system clocks (0/1).
[31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.
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2.10.3 Memory configuration egister 3 (MCFG3)
MCFG3 is contains the reload value for the SDRAM refresh counter.

31 27 26 12 11 0

RESERVED SDRAM refresh reload value ‘ RESERVED

Figure 10. Memory configuration register 3

The period between each AUTO-REFRESH command is calculated as follows:
tREFRESH = ((rel oad val Ue) + 1) | SYSCLK

Using MEMI.BRD YN

The MEMI.BRDY N signal can be used to stretch access cycles to the I/O area and the ram area
decoded by MEMO.RAMSN[4]. The accesses will always have at |east the pre-programmed num-
ber of waitstates as defined in memory configuration registers 1 & 2, but will be further stretched
until MEMI.BRDY N isasserted. MEMI.BRDY N should be asserted in the cycle preceding the last
one. The use of MEMI.BRDY N can be enabled separately for the /O and RAM aress.

datal deta2 waitstate lead-out
ck /o \ \ \ \ \ \
A —A Al
RAMSN[4]
OEN
° oD
BRDYN |/

Figure 11. RAM read cycle with one BRDY N controlled waitstate

Access erprs

An access error can be signaled by asserting the MEMI.BEXCN signal, which is sampled
together with the data. If the usage of MEMI.BEXCN is enabled in memory configuration register
1, an error response will be generated on the internal AMBA bus. MEMI.BEXCN can be enabled
or disabled through memory configuration register 1, and is active for al areas (PROM, /O an
RAM).
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datal data2 |ead-out
ok [T/ T\ \ \ \ \
A Al
RAMSN \
OEN \ /
> =
BEXCN \_ _/

Figure 12. Read cycle with BEXCN

2.13 Attaching an external DRAM controller

To attach an external DRAM controller, MEMO.RAMSN[4] should be used sinceit alowsthe
cycle time to vary through the use of MEMI.BRDY N. In this way, delays can be inserted as
required for opening of banks and refresh.



2.14 Configuration options

The Memory controller has the following configuration options (VHDL generics):

TABLE 6. Memory controller configuration options (VHDL generics)

15

Generic Function Allowed range Default

hindex AHB dlave index 1-NAHBSLV-1 | O

pindex APB dave index 0- NAPBSLV-1 0

romaddr ADDR filed of the AHB BARO defining PROM address | O - 16#FFF# 16#000#
space. Default PROM areais 0x0 - Ox 1IFFFFFFF.

rommask MASK filed of the AHB BARO defining PROM address | O - 16#FFF# 16#E00#
space.

ioaddr ADDR filed of the AHB BAR1 defining I/O address 0 - 16#FFF# 16#200#
space. Default 1/0 areais 0x20000000 - Ox2FFFFFFF.

iomask MASK filed of the AHB BARL defining I/O address 0 - 16#FFF# 16#EQC#
space.

ramaddr ADDR filed of the AHB BAR2 defining RAM address 0 - 16#FFF# 16#400#
space. Default RAM area is 0x40000000-0x7FFFFFFF.

rammask MASK filed of the AHB BAR2 defining RAM address 0 -16#FFF# 16#C00
space. #

paddr ADDR filed of the APB BAR configuration registers 0 - 16#FFF# 0
address space.

pmask MASK filed of the APB BAR configuration registers 0 - 16#FFF# 16#FFF
address space. #

wprot RAM write protection. 0-1 0

invelk Inverted clock isused for the SDRAM. 0-1 0

fast Enable fast SDRAM address decoding. 0-1 0

romasel log2(PROM address space size) - 1. E.g. if size of the 0-31 28
PROM areais 0x20000000 romasdl islog2(229)-1 = 28.

sdrasel log2(RAM address space size) - 1. E.g if size of the 0-31 29
RAM address space is 0x40000000 sdrasdl is
log2(2"30)-1= 29.

srbanks Number of SRAM banks. 0-5 4

ramg Enable 8-bit PROM and SRAM access. 0-1 0

raml6 Enable 16-bit PROM and SRAM access. 0-1 0

sden Enable SDRAM controller. 0-1 0

sepbus SDRAM islocated on separate bus. 0-1 1

sdbits 32 or 64 -bit SDRAM data bus. 32,64 32

oepol Select polarity of drive signals for data pads. O = active 0-1 0
low, 1 = active high.

2.15 Vendor and device id

The module has vendor id 0x04 (ESA) and device id 0x00F. For description of vendor and device
ids see GRLIB IP Library User's Manual.
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2.16 Signal description
Memory controller signals are described in table 7.

TABLE 7. Memory controller signal description.

Signal name | Field Type Function Active
CLK N/A Input Clock -
RST N/A Input Reset Low
MEMI DATA[31:0] Input Memory data High
BRDYN Input Bus ready strobe Low
BEXCN Input Bus exception Low
WRNJ[3:0] Input SRAM write enable feedback signal Low
BWIDTH[1:0] Input Prom width. This valueiswritten in Prom High
Width field of MCFGO register.
SD[31:0] Input SDRAM separate data bus High
MEMO ADDRESS[27:0] Output Memory address High
DATA[31:0] Output Memory data -
SDDATA[63:0] Output Sdram memory data -
RAMSN[4:0] Output SRAM chip-select Low
RAMOEN[4:0] Output SRAM output enable Low
IOSN Output Local 1/0 select Low
ROMSN[1:0] Output PROM chip-select Low
OEN Output Output enable Low
WRITEN Output Write strobe Low
WRN[3:0] Output SRAM write enable Low
MBEN[3:0] Output Byte enable Low
BDRIVE[3:0] Output Drive byte lanes on external memory bus. Low/High
Controls 1/O-pads connected to external
memory bus.
VBDRIVE[31:0] Output Vectored |/O-pad drive signals. Low/High
SVBDRIVE[63:0] | Output Vectored |/O-pad drive signalsfor separate | Low/High
sdram bus.
READ Output Read strobe High
SA[14:0] Output SDRAM separate address bus High
AHBSI * Input AHB slave input signals -
AHBSO * Output AHB dlave output signals -
APBI * Input APB daveinput signas -
APBO * Output APB dave output signals -
WPROT WPROTHIT Input Unused -
SDO SDCASN Output SDRAM column address strobe Low
SDCKE[1:0] Output SDRAM clock enable High
SDCSN[1:0] Output SDRAM chip select Low
SDDQM[7:0] Output SDRAM data mask Low
SDRASN Output SDRAM row address strobe Low
SDWEN Output SDRAM write enable Low

* see GRLIB IP Library User's Manual
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Library dependencies

17

Table shows libraries that the memory controller module depends on.

TABLE 8. Library dependencies

Library Package Imported unit(s) | Description

GRLIB AMBA Signals AHB signa definitions

GAISLER MEMCTRL Signals Memory bus signals definitions
Components SDMCTRL component

ESA MEMORYCTRL | Component Memory controller component declaration

Memory controller instantiation

This examples shows how a memory controller can be instantiated. The example design contains
an AMBA bus with a number of AHB components connected to it including the memory control-
ler. The external memory bus is defined on the example designs port map and connected to the
memory controller. System clock and reset are generated by GR Clock Generator and Reset Gen-

erator.

Memory controller decodes default memory areas. PROM area is 0x0 - Ox1FFFFFFF, 1/O-areais
0x20000000-0x3FFFFFFF and RAM area is 0x40000000 - Ox7FFFFFFF. SDRAM controller is
enabled. SDRAM clock is synchronized with system clock by clock generator.

library ieee;
use ieee.std_logic_1164.all;

l'ibrary grlib;

use grlib.anba.all;

use grlib.tech.all;
l'ibrary gaisler;

use gaisler.nenctrl.all;
use gai sl er.pads. all;
library esa;

use esa. menoryctrl.all;

- used for |/0O pads

entity nctrl_ex is

port (
clk : in std_ulogic;
resetn : in std_ul ogic;
pllref : in std_ulogic;
- menory bus
address : out std_l ogi c_vector (27 downto 0);
dat a : inout std_|ogic_vector (31 downto 0);
ransn : out std_l ogi c_vector(4 downto 0);
ranmoen : out std_l ogi c_vector(4 downto 0);
rwen : inout std_logic_vector(3 downto 0);
ronsn : out std_logic_vector(1l downto 0);
i osn : out std_Il ogi c;
oen : out std_l ogic;
read : out std_|l ogi c;
witen : inout std_logic;
brdyn Tin std_l ogic;
bexcn in std_|l ogi c;
- sdrami/f
sdcke : out std_logic_vector ( 1 downto 0);
sdcsn : out std_logic_vector ( 1 downto 0);

- menory bus

- clk en
- chip sel



sdwen : out std_logic; -- write en

sdrasn : out std_logic; -- row addr stb
sdcasn : out std_logic; -- col addr stb
sddgm : out std_logic_vector (7 downto 0); -- data i/0 mask
sdclk : out std_logic; -- sdram clk output
sa : out std_logic_vector(14 downto 0); -- optional sdram address
s : inout std_logic_vector(63 downto 0) -- optional sdram data
)i
end;

architecture rtl of mctrl_ex is

-- AMBA bus (AHB and APB)

signal apbi : apb_slv_in_type;

signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;

signal ahbso : ahb_slv_out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;

signal ahbmo : ahb_mst_out_vector := (others => ahbm_none);

-- signals used to connect memory controller and memory bus
signal memi : memory_in_type;
signal memo : memory_out_type;

signal sdo : sdram_out_type;

signal wprot : wprot_out_type; -- dummy signal, not used
signal clkm, rstn : std_ulogic; -- system clock and reset

-- signals used by clock and reset generators
signal cgi : clkgen_in_type;
signal cgo : clkgen_out_type;

signal gnd : std_ulogic;
begin

-- Clock and reset generators

clkgenO : clkgen generic map (clk_mul => 2, clk_div => 2, sdramen => 1,
tech => virtex2, sdinvclk => 0)

port map (clk, gnd, clkm, open, open, sdclk, open, cgi, cgo);

cgi.plictrl <="00"; cgi.plirst <= resetn; cgi.pliref <= pliref;

-- Memory controller
mctrlO : mctrl generic map (srbanks => 1, sden => 1)
port map (rstn, clkm, memi, memo, ahbsi, ahbso(0), apbi, apbo(0), wprot, sdo);

-- memory controller inputs not used in this configuration
memi.brdyn <="1’; memi.bexcn <="1’; memi.wrn <= "1111";
memi.sd <= sd;

-- prom width at reset
memi.bwidth <= "10";

-- 1/0 pads driving data memory bus data signals
datapads : foriin O to 3 generate
data_pad : iopadv generic map (width => 8)
port map (pad => data(31-i*8 downto 24-i*8),
0 => memi.data(31-i*8 downto 24-i*8),
en => memo.bdrive(i),
i => memo.data(31-i*8 downto 24-i*8));
end generate;

-- connect memory controller outputs to entity output signals
address <= memo.address; ramsn <= memo.ramsn; romsn <= memo.romsn;
oen <= memo.oen; rwen <= memo.wrn; ramoen <= "1111" & memo.ramoen(0);
sa <= memo.sa,;
writen <= memo.writen; read <= memo.read; iosn <= memo.iosn;
sdcke <= sdo.sdcke; sdwen <= sdo.sdwen; sdcsn <= sdo.sdcsn;
sdrasn <= sdo.rasn; sdcash <= sdo.casn; sddgm <= sdo.dgm;
end;
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3.2

3.3

LEON2 Generic UART

Overview

The GenericUART is a universalasynchronousecever/transmitteroriginally developedfor the
LEONZ2 processarThe UART supportdataframeswith 8 databits, oneoptionalparity bit andone
stopbit. To generatehebit-rate,eachUART hasa programmabld 2-bitsclock divider. Hardware
flow-controlis supportedhroughthe RTSN/CTSNhand-sha& signals.Figure 13 shows a block

diagram

of the ART.

Baud-rate
generator

8*bitclk

Serial port
Controller

RXD K}—

Receiver shift register

Transmitter shift register

>0

!

T

Receiver holding register

Transmit. holding register

I

I

Figure 13. LEON2 UART block diagram

Configuration options

The UART has the follaing configuration options (VHDL generics):

TABLE 9. UART configuration options (VHDL generics)

<«—FK1 CTSN
——»K) RTSN

TXD

Generic Function Allowed range Default
pindex APB slave index 0 - NAPBSLV-1 0
paddr ADDR filed of the APB B\R. 0 - 16#FFF# 0
pmask MASK filed of the APB B\R. 0 - 16#FFF# 16#FFF#
console Prints output form the ART on console during 0-1 0

VHDL simulation and speeds up simulation by

always returning ‘1’ for Data Ready bit ofART Sta-

tus register Does not déct synthesis.
pirq Index of the interrupt line. 0 - NAHBIRQ-1 0

Vendor and device id

The modulehasvendorid 0x04 (ESA) anddevice id 0x008.For descriptionof venoranddevice

IDs, see GRLIB IP Library Uses’Manual.
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Operation

3.4.1 Transmitter operation

The transmitteris enabledthroughthe TE bit in the UART control register Whenreadyto

transmit,datais transferredrom the transmitterholding registerto the transmittershift regis-

terandcorvertedto a serialstreamon the transmitterserialoutputpin (TXD). It automatically
sendsastartbit followedby eightdatabits, anoptionalparity bit, andonestopbits (figure 14).

The least significant bit of the data is sent first

Data frame, no parity: TStart‘ DO ‘ D1 ‘ D2 ‘ D3 ‘ D4 ‘ D5 ‘ D6 ‘ D7 ‘Stop‘

Data frame with parity: TStart‘ DO ‘ D1 ‘ D2 ‘ D3 ‘ D4 ‘ D5 ‘ D6 ‘ D7 ‘Parity‘Stop

Figure 14. UART data frames

Following thetransmissiorof the stopbit, if a new characteis notavailablein thetransmitter
holdingregistet the transmitterserialdataoutputremainshigh andthe transmittershift regis-

teremptybit (TSRE)will besetin the UART control register Transmissiomesumesandthe
TSREis clearedvhenanew characteis loadedin thetransmitteholdingregister If thetrans-
mitter is disabled,it will continueoperatinguntil the charactercurrentlybeingtransmitteds

completelysentout. Thetransmitteroldingregistercannotbe loadedwhenthe transmitteris

disabled.

If flow controlis enabledthe CTSNinput mustbelow in orderfor the characteto be trans-
mitted. If it is deasserteth the middle of a transmissionthe characteiin the shift registeris
transmittedand the transmitterserial output then remainsinactive until CTSN is asserted
aguin. If the CTSN is connected to a reees RSN, oserrun can déctively be prgented.

3.4.2 Receiver operation

Therecever is enabledior datareceptionthroughthe recever enable(RE) bit in the USART

control register The recever looks for a high to low transitionof a startbit on the recever

serialdatainputpin. If atransitionis detectedthe stateof the serialinputis sampleda half bit

clockslater If the serialinputis samplechigh the startbit is invalid andthe searchor a valid

startbit continueslf the serialinput is still low, a valid startbit is assumedindthe recever

continuego sampletheserialinputat onebit time intervals (atthetheoreticakentreof thebit)

until thepropernumberof databits andthe parity bit have beenassemble@ndonestopbit has
beendetectedThe serialinput is shiftedthroughan 8-bit shift registerwhereall bits have to

have thesamevaluebeforethe new valueis takeninto accountgeffectively forming alow-pass
filter with a cut-of frequeng of 1/8 system clock.

During reception the leastsignificantbit is recevedfirst. The datais thentransferredo the
recever holdingregister(RHR) andthe dataready(DR) bit is setin the USART statusregis-

ter. Theparity, framingandoverrunerrorbits aresetattherecevedbyteboundaryatthesame
time astherecever readybit is set.If both recever holding andshift registerscontainanun-

readcharactewhenanew startbit is detectedthenthe characteheldin therecever shift reg-

isterwill belostandthe overrunbit will be setin the UART statusregister If flow controlis

enabled,then the RTSN will be negated (high) when a valid start bit is detectedand the
recever holding registercontainsan un-readcharacterWhenthe holding registeris read,the
RTSN will automatically be reassertedaay

3.4.3 Baud-rate generation

EachUART containsa 12-bit down-countingscalerto generatethe desiredbaud-rate.The
scaleris clocked by the systemclock andgeneratesa UART tick eachtime it underflavs. The
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scaler is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is set, the
scaler will be clocked by the UARTI.EXTCLK input rather than the system clock. In this case, the
frequency of UARTI.EXTCL must be less than half the frequency of the system clock.

3.4.4 Loop back mode

If the LB hit in the UART control register is set, the UART will be in loop back mode. In this
mode, the transmitter output is internally connected to the receiver input and the RTSN is con-
nected to the CTSN. It is then possible to perform loop back tests to verify operation of receiver,
transmitter and associated software routines. In this mode, the outputs remain in the inactive state,
in order to avoid sending out data.

3.4.5 Interrupt generation

The UART will generate an interrupt under the following conditions: when the transmitter is
enabled, the transmitter interrupt is enabled and the transmitter holding register moves from full to
empty; when the receiver is enabled, the receiver interrupt is enabled and the receiver holding reg-

ister moves from empty to full; when the receiver is enabled, the receiver interrupt is enabled and a
character with either parity, framing or overrun error is received.

UART registers

The UART is programmed through tree registers mapped into APB address space.

TABLE 10. Uart registers

Register APB Address offset
UART Dataregister 0x0
UART Status register 0x4
UART Control register 0x8
UART Scaler register oxC
3.5.1 UART Data Register
31 8 7 0
RESERVED DATA

Figure 15. UART data register

[7:0]: Receiver holding register (read access
[7:0]: Transmitter holding register (write access)

31 8 76543210
| RESERVED |Ec|LB|FL|PE|Ps|Ti | ri | TE|RE]

Figure 16. UART control register

0: Receiver enable (RE) - if set, enables the receiver.
1: Transmitter enable (TE) - if set, enables the transmitter.
2: Receiver interrupt enable (RI) - if set, enables generation of receiver interrupt.
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3: Transmitter interrupt enable (TI) - if set, enables generation of transmitter interrupt.
4: Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)

5: Parity enable (PE) - if set, enables parity generation and checking.

6: Flow control (FL) - if set, enables flow control using CTS/RTS.

7: Loop back (LB) - if set, loop back mode will be enabled.

8: External Clock (EC) - if set, the UART scaler will be clocked by UARTI.EXTCLK

3.5.2 UART Status Register

31 76543210
| RESERVED |Fe|PE|ov|BR TH TS| DR

Figure 17. UART status register

0: Dataready (DR) - indicates that new datais available in the receiver holding register.

1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
3: Bresk received (BR) - indicates that a BREAK has been received.

4: Overrun (OV) - indicates that one or more character have been lost due to overrun.

5: Parity error (PE) - indicates that a parity error was detected.

6: Framing error (FE) - indicates that aframing error was detected.

3.5.3 UART Scaler Register

31 12 11 0
RESERVED SCALER RELOAD VALUE

Figure 18. UART scaler reload register

3.6  Signal description
The UART signals are described in table 11.

TABLE 11. UART signal description.

Signal name Field Type Function Active

RST N/A Input Reset Low

CLK N/A Input Clock

APBI * Input APB daveinput signals

APBO * Output APB save output signals

UARTI RXD Input UART receiver data High
CTSN Input UART clear-to-send High
EXTCLK Input Use as alternative UART clock

UARTO RTSN Output UART request-to-send High
TXD Output UART transmit data High

* see GRLIB IP Library User's Manual




3.7 Library dependencies

Table 12 shows libraries that should be used when instantiating an APB UART.

TABLE 12. Library dependencies
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Library Package Imported unit(s) Description

GRLIB AMBA Types APB signal definitions
GAISLER UART Types Type declarations

ESA MISC Component Component declaration

3.8 UART instantiation

This examples shows how the UART can be instantiated.

library ieee;

use ieee.std_logic_1164.all;

l'ibrary grlib;
use grlib.anba.all;
l'ibrary gaisler;

use gaisler.uart.all;

library esa;
use esa.msc.all;

entity apbuart_ex is

port (

clk : in std_ulogic;
rstn : in std_ul ogic;
-- UART signals
rxd :in std_ul ogic;
t xd : out std_ulogic
)

end;

architecture rtl of apbuart_ex is

-- APB signals
signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);

-- UART signals

signal uarti : uart_in_type;
signal uarto : uart_out_type;

begi n

uart0 : |2uart

generic map (pindex => 1,
port map (rstn, clk, apbi,

-- UART input data

uarti.rxd <= rxd;

paddr => 1, pirq => 2,
apbo(1l), uarti, uarto);

-- APB UART inputs not used in this configuration
; uarti.extclk <="'0";

uarti.ctsn <= '0’

-- connect APB UART output to entity output signal

txd <= uarto.txd;
end;

console => 1)
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4.2

PCI arbiter

Overview

PCIARB is n arbiter for the PCI bus, according to the PCI specification version 2.1. It is config-
urable for 4, 8, 16 or 32 agents, with 4 as default. The arbiter uses nested round-robbing policy in
two priority levels. The priority assignment is either hard-coded or programmable through an
APB interface.

Operation

4.2.1 Scheduling algorithm

The arbiter uses the algorithm described in the implementation note of section 3.4 of the PCI stan-
dard. The busis granted by two nested round-robbing loops, where an agent number and a priority
level is assigned to each agent. The agent number determines which pair of REQ/GNT lines are
used. Agents are counted from 0 to NB_ AGENTS-1. All agents in one level have equal accessto
the bus through a round-robbing policy. All agents of level 1 as agroup have access equal to each
agent of level 0. Re-arbitration occurs, when frame _n is asserted, as soon as any other master has
requested the bus, but only once per transaction.

With programmable priorities, the priority level of al agents except NB_AGENTS-1 is program-
mable via APB. In a 256 byte APB address range, the priority level of agent N is accessed viathe
address 0x80 + 4*N. The APB read returns 0 on all non-implemented addresses, and the address
bits (1:0) are not decoded. The constant ARB_LVL_C in pci_arb.vhd isthe reset value.

4.2.2 Time-out

The “broken master” time-out is another reason for re-arbitration (section 3.4.1 of the PCI stan-
dard). Grant is removed from an agent, which has not started a cycle within 16 cycles after request
(and grant). Reporting of such a‘broken’ master is not implemented.

4.2.3 Turn-over

A turn-over cycle is required by the standard, when re-arbitration occurs during idle state of the
bus. Notwithstanding to the standard, “idle state” is assumed, when FRAMEN is high for more
than 1 cycle.

4.2.4 Busparking

The bus is parked to agent O after reset, it remains granted to the last owner, if no other agent
requests the bus. When another request is asserted, re-arbitration occurs after one turnover cycle.

425 Lock

Lock is defined as a resource lock by the PCI standard. The optional bus lock mentioned in the
standard is not considered here and there are no specia conditions to handle when LOCKN is
active during in arbitration.

4.2.6 Latency

Latency control in PCI isviathe latency counters of each agent. The arbiter does not perform any
latency check and a once granted agent continues its transaction until its grant isremoved AND its
own latency counter has expired. Even though, a bus re-arbitration occurs during atransaction, the
hand-over only becomes effective, when the current owner deasserts FRAMEN .



Configuration

The arbiter can be configured to NB_ AGENTS =4, 8, 16 or 32. A priority level (0=high, 1=
low) is assigned to each device. Exception isagent NB_AGENTS-1, which has always lowest
priority.

The priority levels are hard-coded, when APB_PRIOS = 0. In this case, the APB ports (APBI/
APBO) are unconnected. The constant ARB_LVL_C must then be set to appropriate values.

When APB_PRIOS = 1, the levels are programmable via the APB-address 0x80. Bit 31 (left-
most) = master 31 . . bit O (rightmost) = master 0. Bit NB_AGENTS-1 isdon’t care at write
and reads 1. Bits NB_AGENTS to 31, if existing, are dont care and read 0. The constant
ARB_LVL_Cisthen thereset value.

The PCI arbiter has the following configuration options (VHDL generics):

TABLE 13. Memory controller configuration options (VHDL generics)

Generic Function Allowed range Default

pindex APB dave index 0- NAPBSLV-1 0

paddr ADDR filed of the APB BAR configuration registers 0 - 16#FFF# 0
address space.

pmask MASK filed of the APB BAR configuration registers 0 - 16#FFF# 16#FFF
address space. #

nb_agents | Number of agents 4,8, 16 0or 32 4

apb_en Enable programming through APB 0-1 1

Vendor and device id

The module has vendor id 0x04 (ESA) and device id 0x010. For description of venor and
deviceids see GRLIB IP Library User’'s Manual.

Signal description
Memory controller signals are described in table 14.

TABLE 14. Memory controller signal description.

Signal name Type Function Active
CLK Input PCI Clock -
RST_N Input PCl Reset Low
REQ_N[0ton-1] Input PCl Request signals Low
FRAME_N Input PCI FRAME Low
GNT_N[0ton-1] Output PCI Grant signals Low
PCLK Input APB Clock -
PRST_N Input APB Reset Low
APBI* Input APB slaveinput signals -
APBO* Output APB dave output signals -

* see GRLIB IP Library User's Manual
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Library dependencies

Table shows libraries that the memory controller module depends on.

TABLE 15. Library dependencies
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Library

Package

Imported unit(s)

Description

GRLIB

AMBA

Signals

AHB signa definitions
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