
CTESK 2.8:
User Documentation

Contents
1Purpose of Ctesk..6

1.1UniTESK Technology...6

1.2UniTesK implementation in CtesK...8

2User manual..10

3General information ...11

4Specifications...12

4.1Specification functions...12

4.2Deferred reactions...13

4.3Access constraints...14

4.4Precondition..15

4.5Postcondition..15

4.6Data Types..17

4.7Allowable types..17

4.8Specification types..18

4.8.1Creating of specification data type value..19

4.8.2Copying the specification type value..20

4.8.3Cloning of the specification type value...21

4.8.4Comparing the specification type values..21

4.8.5Comparing the specification type values to equality..21

4.8.6String form of specification type value...22

4.8.7Creating XML-form of specification type value...22

4.8.8Creating new specification types..22

4.8.9Default implementation of basic operations of specification types..................................25

4.8.10Function of initialization by default..25

4.8.11Function of copying by default...25

4.8.12Function of comparison by default ..25

4.8.13Function of stringifying by default...26

4.8.14Function of creating XML-form by default..26

4.8.15Function of enumeration of inner specification references by default26

4.8.16Function deallocating resources by default...26

4.8.17Definition of own functions for the specification type basics operations.......................26

4.8.18Function of initialization of specification type ..26

4.8.19Function of copying specification type...27

4.8.20Function of comparing specification type...28

4.8.21Function of stringifying specification type...29

4.8.22Function of creating XML-form specification type..30

4.8.23Function of enumeration of inner specification references of specification type31

4.8.24Function deallocating resources of specification type ...32

4.9Invariants..32

4.9.1Type invariant ...33

4.9.2Variable invariant ...34

5Coverages...36

5.1Different types of coverages...37

5.1.1Enumerable coverage..37

5.1.2Computable coverage..38

5.1.3Enum-coverage...39

5.1.4Derived coverage..39

5.1.5Product-coverage..40

5.1.6Change of coverage domain..40

5.1.7Local coverage..41

5.2Operations on coverages elements..42

5.2.1Getting of coverage element...43

5.2.2Coverage element iteration...44

5.2.3Entering of information about coverage element to report..44

5.2.4Storage of coverage elements in variables of CoverageElement type44

6Mediators..45

6.1Mediator function...45

6.1.1Call-block of mediator function..45

6.1.2State-block of mediator function...46

6.2Catcher ...47

7Test scenarios..48

7.1Creation of test scenario and its call parameters...48

7.1.1 Function of initialization ...50

7.1.2Function of evaluating scenario state ...51

7.1.3Function of finalization ..52

7.1.4Function of determining state stationarity ...52

7.1.5Function of saving state stationarity...52

7.1.6 Function of restoring model state...53

7.2Scenario function..53

7.2.1Iteration statement ..54

7.2.2Scenario state variables...55

8Additional facilities..56

8.1String and XML representations of non-specification types. ..56

9SeC Semantic..57

9.1Specification...57

9.1.1Specification functions ...57

9.1.2Deferred reactions...59

9.1.3Access constraints...60

9.1.4Aliases...61

9.1.5Precondition..61

9.1.6Postcondition...62

9.1.7Preexpressions...63

9.2Specification data types..63

9.3Invariants of types...65

9.4Variable invariant ...66

9.5Test scenario...67

9.6Scenario functions...68

9.6.1Iteration statement...69

9.6.2State variables ..70

9.7Coverages..70

9.8Declarations and specifications of coverages...71

9.8.1Shortcut declaration..73

9.8.2Full declaration..74

9.8.3Full declaration of enumerable coverage...74

9.8.4Full declaration of enum – coverage...75

9.8.5Full declaration of derived coverage...75

9.8.6Primary computable coverage declaration..77

9.8.7 Primary computable coverage specification..78

9.8.8Shortcut specification..80

9.8.9Common rules of coverage access..80

9.9 Rules of performing operations on coverage elements...81

9.9.1Getting of a constant coverage element..82

9.9.2Getting of a component of a derived coverage element..83

9.9.3Coverage element computation...84

9.9.4Expression of a tracing of a coverage element..84

9.9.5CoverageElement type..85

9.9.6Coverage elements iteration..85

9.9.7Appeal to the earlier calculated coverage element..87

9.9.8Coverage element-variable declaration...88

9.10Mediator function...88

9.11Semantic of call block of mediator function...89

9.12State block of mediator function...90

9.13String and XML- view of non-specification types...90

10CTesK test system support library..92

10.1Base services of the test system..92

10.1.1System functions ..92

Header file: utils/assertion.h ..93

10.1.2Time model ..93

11Standart test engines...100

11.1Dfsm..100

11.2Ndfsm..100

11.3«Fields of data types of test scenario»..101

11.4Data types used by test engine..105

11.5Test engine service function..107

11.6Standard parameters of test scenario...112

12Tracing services..115

12.1Tracing control..115

12.2Message tracing..118

13Deferred reactions registration services ..120

13.1Interaction channels ...120

13.2Interactions registrar ..122

13.3Catcher functions registering service..126

14Library of specification data types ..129

14.1Standard functions..129

14.1.1Function of Creating references..129

14.1.2Function of getting reference's type..130

14.1.3Function of copying values by references...130

14.1.4Function of cloning object..131

14.1.5Function of comparing values by references..131

14.1.6Function of detecting equivalence of values by references..132

14.1.7Function of building a string representation of value by reference..............................133

14.1.8Function of building XML representation of value by reference..................................133

14.2Predefined specification types..134

14.2.1Char...135

14.2.2Integer and UInteger...137

14.2.3Short and Ushort...139

14.2.4Long and Ulong..141

14.2.5Float..143

14.2.6Double...145

14.2.7VoidAst..147

14.2.8Unit..149

14.2.9BigInteger..150

14.2.10Complex..154

14.2.11String...156

14.2.12List..179

14.2.13Set..191

14.2.14Map...202

14.2.15MultiSet...212

1 Purpose of CTESK
CTESK toolkit is intended for automated test development for systems that provide API interface in
C. Software testing with the help of CTESK tool is based on UniTESK technology.

1.1 UniTESK Technology
Quality control is an important problem which faces software engineers. Testing is the best-known
and most widespread method of estimation and quality improvement. Functionality and complexity
of modern software grow rapidly, while its life time increases permanently. Under such conditions
labor-intensiveness of traditional approaches to testing grows while their efficiency decreases.
Using of UniTESK technology helps to overcome such problems.

The main features of UniTESK technology are as follows:

• In order to provide clear definition of software functionality formal specifications are devel-
oped. This may be done both for newly developed software, even prior to completion of
implementation, and for already existing one. Therefore, the technology may be applied to
the tasks of both forward and reverse software engineering.

• Tests are developed on the base of formal specifications instead of implementation. This
allows checking for conformance of the software behavior to its requirements. This type of
testing is called the “black box” testing. It provides an opportunity to develop a set of tests
which leaves out of account features of the specific implementation.

• Test coverage criteria are also created on the base of formal specifications. These criteria
allow evaluation to what extent the conformance of the software behavior to the
requirements has been checked.

• A test scenario is constructed for a selected criterion of test coverage. This scenario aims to
achieve maximum coverage according to a selected criterion. Widely used test scripts are
analogous to test scenarios. However, UniTESK test scenarios give a possibility to improve
greatly quality of testing under the same effort.

• Formal specifications and test scenarios may be used in invariable form for testing of
various implementations even if their interfaces differ. Binding of an implementation and
tests is provided by specific test system components—mediators. This approach allows
increasing of the degree of reusing the test system components, thus facilitating test suite
engineering and maintaining.

• All components of the test system, i.e. formal specifications, mediators, and test scenarios,
are recorded in specification extension of programming language used for software
development. This significantly facilitates familiarization with the technology and
understanding of how the test in connected with the system under test.

The following table describes actions necessary for test development by UniTESK technology:

1. Write the functional require-
ment to the target software in form
of formal specifications, based on
analysis of existing documents or
project members’ knowledge.

Requirements

Specifications

2. Formulate requirements to test-
ing quality on basis of derived spe-
cifications, i.e. what level of cover-
age for each criterion is sufficient
for testing.

3. Develop a set of test scenarios
to achieve a desired level of
coverage. Scenarios are developed
on basis of specifications and are
not connected to any particular
implementation of target software
or its particular version.

4. Develop a set of mediators to
connect obtained tests to a
particular implementation of the
target sy-tem. A definite interface
of the implementation must be
known, thought the implementation
can not be ready for testing at the
moment.

5. Translate specifications,
mediators, and scenarios from the
extension of programming
language to a complete test system
in this programming language in
order to obtain ready tests.

Specifications

Coverage criterion

Specifications Coverage criterion

Test scenarios

Specifications Software interface

Mediators

Specifications

Target software

Mediators

Test scenarios

Testing system

Automatic generation

6. Execute tests after translation.
Execution can reveal inconsistencies
between the test system and the
target software. One should
determine the cause of each
inconsistence, which can be either a
target system failure, or test system
components failure. After all
failures in specifications, scenarios,
and mediators are corrected, all
tests should be finally executed to
obtain the results in form of test
reports for further analysis.

7. Analyze the results to
determine what failures is detected,
whether the desired level of
coverage is reached, and whether
additional scenarios should be
developed.

Stages of test scenarios and mediators development are independent, so steps 3 and 4 can be carried
out in any order or even simultaneously.

Target software

Test reports

Testing system

Automatic test execution and reports
generation

Failures

Test reports

Test quality evaluation

1.2 UniTESK implementation in CTESK
CTESK implements UnitTESK for C programming language.

CTESK uses specially developed specification extension of C programming language, called SeC,
for test development. SeC extends C with special constructions, introduced to describe requirements
to a system under test and other components of the test system in a compact and convenient manner.
This makes test development maximally comfortable, and allows reduction of training costs for
specialists who are already be aware of C. SeC enables development of specifications and scenarios,
absolutely independent from the implementation, thus allowing their reuse.

CTESK toolkit includes SeC-to-C translator, test system supporting library, specification type
library, and test reports generators.

SeC-to-C translator generates test components from specifications, mediators, and tests scenarios.

Test system supporting library provides the test engine, i.e. implementation of algorithms for test
sequence generation in C, and provides tracing of tests execution.

Specification data types library supports data types integrated with standard functions for creat-ing,
copying, comparing, and destroying data of these types. It also contains a set of predefined
specification data types.

Generators of textual and graphical test reports generate easy-to-analyze representations of test
execution trace.

2 User manual
There is a review of the SeC language usage features in this chapter.

• In “General information” section the differences between SeC and C is cited, the concepts and
constructions which extension of C is described.

• In “Specifications” section, the method of formal description of requirements for a system under
test in the form of preconditions, postconditions, and access constraints within specification
functions and deferred reactions is reviewed. The method of specifying a coverage criterion is
described. Also the concept of allowable and specification data types is introduced, the working
with existing specification data types and rules for creation of new data types are considered in
detail. The mechanism of invariants for data types and variables is described.

• In “Mediators” section explains the way of connecting specification to a system under test
implementation in the form of mediator functions, which carry out a test action and state
synchronization.

• In “Test scenarios” section, building of a test scenario is described, which unites the set of
scenario functions for parameter iteration, a test construction mechanism, the function for
evaluating scenario state, and the method of initialization and finalization of the test system and
the system under test.

3 General information
SeC completely supports ANSI C standard. Additionally, specification data types, types and
variables with invariants, coverages are introduced, along with four kinds of functions:
specification function, reactions, mediator functions, and scenario functions. These types, invariants
and functions are defined in specification files with sec extension. Specification header files, that
contain declarations of specification types and functions should be located in the files with seh
extension.

Specification header files are included to specification files by means of #include C preprocessor
command. Specification files may also contain usual C functions, required for various auxiliary
purposes. When use of data types, constants, variables and functions is necessary, usual C header
files are included.

For the convenience of writing and reading of logical expressions, the implication operator => is
additionally introduced in SeC, which is a binary infix operator, whose priority is below that of the
disjunction operator ||, but is above the priority of the conditional operator ?:. The expression
x => y is equivalent to the expression !x || y, and in the process of its evaluation, similar to
evaluation of other logical operators, the rules of short logic are applied. The implication operator is
associative from left to right, i.e. the expression x => y => z is equivalent to the expression
(x => y) => z.

4 Specifications
A specification represents a formal description of requirements to a system under test. Interface
functions of the system under test and its data, which represent its internal state, are defined.

Within a specification, behavior of the interface functions is described by specification functions, while
the state of the system is modeled by global state variables. Requirements to a tested system are
formulated as constraints for behavior of interface functions (in the form of preconditions and
postconditions in specification functions) and for the data values (in the form of type invariants and
invariants of state variables).

Binding of specification functions and model data to the functions and data of an implementation of
system under test is performed through mediators.

Additionally, coverage criteria are derived from the specification (which are described in specification
functions), which allow evaluating of testing completeness.

In the case of systems with deferred reactions, their behavior in response to outer actions consists of
immediate and deferred reactions. The former are described with usual specification functions, while
deferred reactions shall be added to the specification for the purpose of describing the latter. Binding of
deferred reactions to a system under test is performed with the assistance of mediators and reactions
catchers. Unlike specification functions, coverage criteria can not be specified for deferred reactions.

4.1 Specification functions
Specification functions describe behavior of interface functions of a system under test. In general, a
specification function defines behavior of a system under a certain influence on it via a certain part
of the interface.

Specification functions describe behavior in the form of data access constraints, preconditions,
coverage criteria and postconditions.

Declaration of a specification function consists of the keyword specification, function
signature (in the general sense of C) and, possibly, of access constraints.

specification double sqrt_spec(double x);
SeC supports three constructions using for inclusion in specification function body : a precondition
(which may be omitted), coverage criteria (which may be either in any or no amount) and a
postcondition (which is necessar-ily single).

A precondition checks applicability of a function to a given set of parameters values and state
variables. Coverage criteria divide behavior of the system into functionality branches. Both the
precondition and coverage criteria are executed at the pre-state, i.e. prior to interaction with the
system under test. Expression values at the moment are called pre-values.

Prior to computing a postcondition, the interaction with the system under test is executed through
invoking of a mediator. The postcondition checks compliance of the obtained results to the expected
ones. It is executed at the post-state, i.e. after interaction, and deals with post-values of expressions.

specification double sqrt_spec(double x) {
 pre { ... }
 coverage C { ... }
 post { ... }
}

In a general case, auxiliary code may be used within the body of a specification function between
the described blocks.

Auxiliary code shall not have side effects: apparent data shall not be altered, and the dynamic
memory allocated within a code block, shall be deallocated either within the same block, or in the
block paired to it.Usually this code is using for definition of variables which are common for
precondition, coverages and postcondition. Full description is in semantic requirements to
specification functions.

Specification functions are normally invoked in scenario functions. Invocation of a specification
function consists in checking of invariants in compliance with access constraints, checking of the
precondition, computing of covered branches in compliance with coverage criteria, execut-ing of a
testing interaction and synchronizing of model and implementation states in the media-tor,
secondary checking of invariants and checking of a postcondition. A specification function returns
a value computed in the mediator (provided it is not declared as void).

4.2 Deferred reactions
Deferred reactions describe behavior of the system under test in the event of deferred reacting
on outer influences. Deferred reactions describe behavior in the form of data access constraints,
preconditions and postconditions. Unlike specification functions, coverage criteria are not used
in the deferred reactions.

Declaration of a deferred reaction consists of the keyword reaction, function signature (in the
common sense of C) and, possibly, of access constraints.

reaction String* recv_spec(void);
Deferred reaction:

• never has parameters,

• should return a specification reference.

Deferred reaction body consists of two parts: a precondition (which may be omitted) and a post-
condition (which is necessarily single).

Precondition checks possibility of appearing of a reaction in a given state. Precondition is exe-cuted
in pre-state and has the access to pre-values of expressions only.

Postcondition checks compliance of the result obtained when reaction emerges, to the expected one.
It is executed in post-state after emerging of reaction and deals with post-values of expressions

reaction String* recv_spec (void) {
 pre { ... }
 post { ... }
}

In a general case, extra code may be used in the body of deferred reaction between described
blocks. Auxiliary code shall not have side effects: apparent data shall not be altered, and the
dynamic memory allocated within a code block, shall be deallocated either within the same block,
or in the block paired to it. Usually this code is using for definition of variables which are
common for precondition, coverages and postcondition. Full description is in semantic requirements
to deferred reactions.

Deferred reaction can never be invoked explicitly, for it is initiated by the system under test.

4.3 Access constraints
Access constraints determine the way to applying of global variables and parameters in specifi-
cation functions and deferred reactions, as well as of expressions where the former are used. Three
types of access constraints are supported: reading (reads), writing (writes) and updating
(updates).

Constraints are written after the signature of a specification function or deferred reaction in a form
of a list of expressions, divided by commas, which is marked with one of keywords reads,
writes, or updates:

specification void root_spec(
 double a,
 double b,
 double c,
 double *x1,
 double *x2)
 reads a, b, c
 writes *x1, *x2;

Access constraint reads for a certain expression means that the value of the expression is not
updated in the result of interaction, i.e. the pre-value of the expression coincides with the post-
value.

Invariants for such expressions are automatically checked prior to checking of a precondition, and,
prior to checking of a postcondition it is checked whether the expression value has been al-tered.

The access constraint writes for a certain expression means that the pre-value is not used in the
specification function and may be not determined, while the post-value is generated in the result of
interaction with system under test. Expressions with writes access may not be used in the
operator of pre-value @ (refer to “Postcondition” subsection).

Invariants for such expressions are automatically checked prior to checking of a postcondition.

The access constraint updates for a certain expression means that the pre-value of the expres-
sion is the input parameter, on which the behavior of the system may depend, while the post-value
is generated in the result of interaction and may not coincide with the pre-value. Invariants for such
expressions are automatically checked prior to checking of both the precondi-tion and the
postcondition.

Expressions in the access constraints may be assigned with an identifier which is called an alias.
Subsequently, the alias may be used for access to the expression value, including that the opera-tor
@ may be applied to the alias:

specification void deposit_spec(AccountModel *acct, int sum)
 reads sum
 updates balance = acct->balance
{
 ...
 post {
 return balance == @balance + sum;
 }
}

4.4 Precondition
In interacting described by a specification function, behavior of the system under test may be not
defined in certain situations. In order to single out such situations, precondition is used. During
testing, precondition is checked every time when the specification function is invoked. Violation
of a precondition represents that the test is made incorrectly.

In the case of deferred reaction, the precondition defines if appearance of such reaction in the
given state is possible. During testing, precondition is checked every time when reaction appears.
When precondition is violated, incompliance between the system under test behavior and its
specification is registered.

Precondition is written in a form of instructions, included in curly braces and marked with the
keyword pre. Such instructions represent the body of the function that has the parameters similar to
those of either the specification function or deferred reaction, and returns the result of the type bool,
which indicates whether the precondition is satisfied.

specification double sqrt_spec(double x) {
 pre {
 return x >= 0.0;
 }
 ...
}

When the system behavior is defined for all values of input parameters and in any of model states
(or appearance of reaction is acceptable in any state), precondition may be omitted.

Precondition is evaluated prior to interaction with the system under test. Expression values at the
moment are called pre-values.

Prior to checking of precondition, invariants of parameters of specification function and expres-
sions described in the access constraints both reads and updates are automatically checked.

Precondition must not have any side effects: apparent data shall not be altered, and the dynamic
memory allocated within the precondition shall be deallocated in the same place.

Specification function precondition may be evaluated explicitly with the help of pre construction (as
a rule it is used in scenario functions so that a specification function with incorrect parameter is not
invoked):

if (pre sqrt_spec(-1.0)) …

4.5 Postcondition
Postcondition of a specification function is used to describe constraints, which the results of the
system under test performance should satisfy during interaction, described by the specification
function. During testing the postcondition is checked every time after interaction is performed.
If the postcondition is violated, inconsistency of the system under test behavior with its
specifica-tion is registered.

Deferred reaction postcondition describes constraints, which the results of interaction should
sat-isfy after emerging of the reaction. If the postcondition is violated, inconsistency of the
system under test behavior with its specification is registered.

Postcondition is written down in a form of instructions in curly braces and marked with the post
keyword. Such instructions represent the body of the function that has the same parameters as the
specification function, and returns the result of bool type. The value true indicates that behavior
of the system under test conforms to the expected one (postcondition is met), while false value
indicates that the behavior differs from the expected one (postcondition is violated).

There must be always exactly one postcondition in the specification function and deferred reaction.

To access the value returned by the mediator of the specification function, identifier of the speci-
fication function (provided the specification function is not defined as void) is used. Similarly, to
access the registered value of reaction, identifier of deferred reaction is used.

specification double sqrt_spec(double x) {
 ...
 post {
 if (x == 0.0) return (sqrt_spec == 0.0);
 return sqrt_spec >= 0.0
 && fabs((sqrt_spec*sqrt_spec - x) / x) < EPS;
 }
}

Postcondition is evaluated after interaction with the system under test. Actually, post keyword is
interpreted as the test interaction. Expressions values after interaction are called post-values.

Prior to checking of postcondition, invariants of the parameters of the specification function and the
expressions described in writes and updates access constraints, as well as the invariant of the return
value are checked automatically.

To access pre-values from postcondition, the unary operator @ is used. The expression under the
operator must have the allowable type and must be computable immediately before post key-word
(for the values of such expressions are automatically saved immediately before executing
interaction with the system under test). It is prohibited to use the operator @ for expressions that
have writes access.

/* List — library specification type*/
specification void f(List* l) {
 int j;
 post {
 int i;
 Object* pre_item;
 for(i = 0, j = 0
 ; i < @size_List(l) /* allowed */
 ; i++, j++
)

 {
 /* not allowed: i is not defined outside the postcondition */
 pre_item = @get_List(l, i);
 /* not allowed: j has the only one unknown value outside the
postcondition */
 pre_item = @get_List(l, j);
 pre_item = get_List(@l, j); /* allowed */
 if(equals(get_List(l, i), pre_item))
 return false;
 }
 return true;
 }
}

If it is necessary to provide access to pre-value of an expression of a not allowable type, one should
manually save the value of the expression in the local variable before post block (possibly, use of
proper existing specification type or creating a new one is better solution):

{
 char *s = "...", *pre_s;
 ...
 pre_s = strdup(s);
 post {
 return !strcmp(s, pre_s);
 }
 free(pre_s);
}

Postcondition must not have any side effects: it must not update apparent data, and the dynamic
memory allocated within the postcondition must be deallocated in the same place.

4.6 Data Types
SeC language fully supports C data types. Besides, additional data types and their kinds are in-
troduced in SeC:

1. Boolean type bool for presentation of logical expressions, and true and false constants.

2. Specification types, that integrate the types of C with basic operations with the data of the
types: creating, copying, comparing, destroying.

3. Invariant types or subtypes are the data types, which ranges are the subranges of other data
types.The latters are called supertypes for these data types. A subrange is defined by means
of constraints, specified in type invariant.

Types which are allowed for the arguments and return values of specification functions, deffered
reactions and mediator functions, for iteration variables and scenario functions of scenario state
variables and also for global variables using in the above-mentioned cases are called SeC allowable
types.

 Special demands are maked for the allowable types. Many types of C-language doesn't provide
this demands. For example, it's impossible to compute the array size using its pointer,
correspondingly it's impossible to copy the type's value.Specification types are using for this
constraints overcoming . Also specification types are necessary ones during use of test system
support library CTESK (See also “CTESK test system support library”).

4.7 Allowable types
Only the following data types are acceptable for arguments and return values of specification
functions, deferred reactions, and mediator functions, for iteration variables and scenario state
variables, and for global variables used in the above functions:

1. Arithmetical types (int, char, double, ...).

2. Enumerated types (enum), the range of which, unlike C, is limited to their constants and
may not contain an arbitrary integer value.

3. Typed pointer. A pointer to any allowable type. The pointer is assumed to be either equal to
zero, or point to a single value of a corresponding type. Structure of pointers must be tree-
type, i.е. it must not contain undirected cycles.

4. Non-typed pointer (void*). Values of the type are interpreted simply as an address of a cer-
tain memory cell.

5. Functional pointer. Values of the type are interpreted simply as an address of a certain func-
tion.

6. Structural type. The structure should be of a complete type, i.e. the definition of its body
must be visible in the point of its usage. Structure fields must be of allowable types.

7. Fixed length array. The elements of the array must be of an allowable type.

The same constraints are applied to the basic types in definitions of the types with invariants, as
well as to the types of variables with invariants. Such constraints allow the test system to handle
data of such types automatically: to allocate and free memory, copy and compare values.

Hereinafter, the types that are allowable in the above-mentioned cases are called SeC allowable
types.

4.8 Specification types
The acceptable data types are required to meet the demands which are not ensured by many
types of the C language. It is impossible, for example, to calculate the size of array by pointer to
it, thereafter, it is impossible to copy value of data type. Specification types are used for
overcoming this constraints. CTESK test system support library use is also required
specification types (See also CTESK test system support library).

Specification data type combines C data type with basic operations for dealing with data of this
type: creating, copying, comparing, destroying.

Values of specification data types are always located in a dynamic memory and are available only
by specification references – pointer of appropriate type, which is either null or point to allocated or
initialized memory. It means that there can be no declaration of variables or parameters of the
specification types (not pointers to them) and also no direct use of specification type in structures,
unions or arrays determination.

If specification reference is omitted in a specification data type definition, it is given zero value
automatically.

Specification references are dereferencing like pointers in C – whit the use of dereferencing
operators * and ->. The result of reference dereferencing is a l-value data type of which is the same
as the data type on the base of which specification data type was defined (namely with the base data
type in specification data type definition) or with the type of specification structure field (See also
Creating new specification types).

Zero references can't be dereferenced (lead to run-time error).

Specification references returned by function call without assigning returned references to variables
can't be dereferenced (lead to memory leak or run-time error).

/* List — library specification type */
List* l = create_List(&type_Integer);
/* Integer — library specification type */

Integer* spec_i;
int i;

append_List(l,create_Integer(1));

i = *get_List(l,0); /* not allowed */
spec_i = get_List(l,0);
i = *spec_i; /* i is 1 */

specification typedef struct {int a; int b;} IntPair ={};

IntPair* ip = create(&type_IntPair, 1, 1);
int ai = create(&type_IntPair, 1, 1)->a; /* not allowed */

ai = ip->a; /* ai is 1 */

Address arithmetic on references or their indexing is not allowed.
Comparison of addresses in references with C operators == and != is allowed.

Comparison of addresses in references returned by function call without assigning returned
references to variables is not allowed (lead to memory leak).

List* l = create_List(&type_Integer);
Integer* spec_i
int i;

append_List(l,create_Integer(1));
spec_i = get_List(l,0);
if (get_List(l,0)!= NULL) /* not allowed */
if (spec_i != NULL)
i = *spec_i; /* i is 1 */

In SeC the built-in specification type Object is defined that is incomplete specification type. It is
abstract basic data type for all specification data types. The reference type Object* is applied by
analogy with void*. The reference to any specification type may be cast to the reference to Object
and vice versa. If, in case of an inverse cast, reference type of value is not compatible with the data
type to which the cast is performed, then the system behavior is not defined.

Data types of specification references can only be cast to pointers to void or Object types, as well as
to the specification references of compatible specification types. The specification types are
considered to be compatible if they are the subtypes of the same specification type (about subtypes
see also Type invariant).

Management of the memory, to which specification references refer, is automated through the
mechanism of reference counting with tracking of cyclic relations. When specification references
are used in the assignment statements, operations of passing references as the function arguments,
returning a reference from the function, exit a reference from the visibility scope, reference counters
vary automatically. The memory that has been allocated for the value of a specification data type is
automatically deallocated as soon as the reference counter is zeroed to such value.

Usage of the pointers to specification references and aggregate types of C, which contain
specification references, is not recommended, as in such cases automatic altering of reference
counters is not supported.

The functions that implement basic operations on the values of specification data types are located
in the library of specification data types of CTESK (See also “Library of specification data types”).

4.8.1 Creating of specification data type value

Object* create(const Type *type, ...)
As the first parameter, the function receives a pointer to a specification data type descriptor. The
descriptor of the specification type is a constant the name of which consist of the name of a type
with the type_ prefix:

const Type type_name_of_specifiction_type ;
The remaining parameters are those of type initializing. They differ for various types and are passed
in a list of the va_list* type to function of initialization of specification type.

The function allocates memory for the value of the specification type, zeroizes it, invokes the type
initialization function, passing values of the type initialization parameters in a list of the va_list*
type to it and returns the pointer to the allocated and initialized memory.

Integer* i = create(&type_Integer, 10);
String* str = create(&type_String, "a string");

In the code above, references of the library specification types Integer and String are created and
initialized, which are the specification representation of the C built-in type int and of the string
specification type, respectively. When a reference of the Integer* type is created, an integer value,

which will be stored according to the reference, should be passed to the function create. When a
reference of the String* type is created, a normal string of C must be passed.

The usage of function create can cause errors because of the usage of not typified argument list....
To except such errors it is recommended to create function create_
name_of_specifiction_type for each specification data type and to call create out of it.

specification typedef struct {int a; int b;} IntPair ={};
IntPair* create_IntPair(int a, int b)
{
 return create(&type_IntPair, a, b);
}

If you use create out of function the name of which has create_ prefix, the compiler gives out
warning:

warning: call create() out of create_... function

4.8.2 Copying the specification type value

void copy(Object* src, Object* dst)
The function copies the data stored by the reference src, to the location of the data by the reference
dst. The references must be of nonzero value and belong to the same type, in other words, they must
have similar type descriptors. If these conditions are not complied with, termination of the program
will occur in the execution time, accompanied with an error message. The copy function fills the
memory pointed by the reference dst with zeros before it calls the function of coping specification
type.

SpecificationType* ref1 = create(...);
SpecificationType* ref2 = create(...);
copy(ref1,ref2);

In the example above, the references ref1 and ref2 after initialization refer to different values of
the SpecificationType specification type. As soon as the copy()function is invoked, the value
of the reference ref2 becomes equivalent to that of the reference ref1.

4.8.3 Cloning of the specification type value

Object* clone(Object* ref)
The function allocates memory for a value of the type, to which ref refers, initializes the allocated
memory with the value equivalent to that of the reference ref, and returns the pointer to the allocated
and initialized memory.

SpecificationType* ref1 = create(...);
SpecificationType* ref2 = clone(ref1);

Values of the references ref1 and ref2 become equivalent after invoking clone.

4.8.4 Comparing the specification type values

int compare(Object* left, Object* right)
When the values of the references passed are equal, the function returns a zero value. Otherwise, the

function returns a nonzero value, which may be interpreted depending on the type of the values
being compared. For instance, in respect to String library type, the result will be similar to that of
the function strcmp() for char* type of C language. If the parameters are of incomparable types,
i.e. the references’ types are not equivalent, not subtypes of the same type, and the type of one
reference is not the subtype of the second reference’s type (see also Type invariant), then the
function returns a nonzero value. If one of the references is zero, and the other is not, a nonzero
value will be returned. If both references are zero, then zero will be returned.

/* creating two references of SpecificationType* type */
SpecificationType* ref1 = create(&type_SpecificationType);
SpecificationType* ref2 = create(&type_SpecificationType);
...
if (!compare(ref1,ref2)) {/* values are equivalent */
...
}
else {/* values are not equivalent */
 ...
}

4.8.5 Comparing the specification type values to equality

bool equals(Object* self, Object* ref)
The function returns either the true value, in case the values of the references passed are equival, or
false otherwise. When the parameters are of different types, the function returns false. If one of the
references is zero, and the other is not, it returns false. If both references are zero true will be
returned.

SpecificationType* ref1 = create(&type_SpecificationType);
SpecificationType* ref2 = create(&type_SpecificationType);
...
if (equals(ref1,ref2)) {/* values are equival */
...
} else {/* values are not equival*/
...
}

4.8.6 String form of specification type value

String* toString(Object* ref)
The function returns the reference to the String type value - the specification form of a string type.

SpecificationType* ref = create(&type_SpecificationType);
String* str;
...
/* conversion *ref into string form*/
str = toString(ref);
printf("*ref == %s/n", toCharArray_String(str);

In the code above the library function toCharArray_String is used, which returns the string content in
a form of the array of char type, which ends with the zero value '\0'. The function returns a pointer to
the internal data accessible via the passed reference of String* type. Therefore, on the one hand, free
cannot be invoked for the returned pointer, and on the other hand, the pointer may not be used after
destroying the value of the passed reference.

4.8.7 Creating XML-form of specification type value

String *to_XML_MyType(Object *ref)
The function returns specification line which contain XML-form of ref parameter.

4.8.8 Creating new specification types

Specification types are declared using usual C typedef construct marked with the SeC keyword
specification.

Declaration of a specification type

specification typedef basic_type new_type;
is different from its definition, which should contain an initializer:

specification typedef basic_type new_type = {
 .init = pointer_to_initialize_function
, .copy = pointer_to_copy_function
, .compare = pointer_to_compare_function
, .to_string = pointer_to_stringify_function
, .to_XML = pointer_to _XML_conversion_function
, .enumerate = pointer_to_enumerate_function
, .destroy = pointer_to_destroy_function
};

The specification type must be declared or defined in each translation unit before use.

Definition of a specification type must occur only once, and only in one of the translation units that
are integrated in a united system.

In definition of a specification type, none of the following may be used as the basic type:

• specification types, incompletely defined structures and arrays with unknown length;

• structures, unions, and arrays with fixed length, with elements of the above-defined types;

• pointers to all of the above-listed types, other than specification references.

It is acceptable to use incompletely defined structures in declarations of specification types.

Within definition of a specification type, an initializer determines which functions will be applied to
the basic operations with the data of the specification type.

Field init has the type Init:

typedef void (*Init)(void*, va_list*);
According to the field, the function of specification type initializing is invoked from create library
function in the process of creating a reference. Within the first argument, it receives a pointer to the
allocated area of memory which must be initialized. Within the second argument, a list of
parameters is passed, based on which the data of specification type is initialized. The list of
parameters is built up of the parameters of create function, following the first parameter - a type
descriptor. Therefore, the parameters of create function should, by the types and order, correspond to
those expected in the specification type initializing function. The type descriptor - a global constant
of Type type - is implicitly defined or declared in the process of defining or declaring the
specification type, and has the name, which consists of the type name and the prefix type_:
type_type_name.

Field copy has the type Copy:

typedef void (*Copy)(void*,void*);
Using this pointer the function of copying the value of the given specification type is invoked from
the library functions copy and clone. The function of copying specification type is invoked if the
references passed to the function copy or clone are nonzero. With the first parameter it receives a
reference, the value of which must be copied to the memory area according to the reference passed
to it within the second parameter.

Field compare has the type Compare:

typedef int (*Compare)(void*,void*);
Using this field the function of comparing the values of the given specification type is invoked from
the library functions compare and equals. The function of comparing specification type is called if
the references passed to the functions compare or equals are nonzero and the reference types are
either similar, or subtypes of the same type, or if the type of one reference is a subtype of another
reference (refer to Type invariant). References as parameters are passed to the function in the same
order as they have been passed to the function compare or equals.

Field to_string has the type ToString:

typedef String* (*ToString)(void*);
Using the field the function of constructing a string presentation of the given specification type is
invoked from the library function toString. The stringifying function is invoked if the reference
transferred to toString is nonzero.

Field enumerate has the type Enumerate:

typedef void (*Enumerate) (void*,void(*callback)(void*,void*),void*);
Using the field the function of enumerating references of specification types that are contained in
the value of the given specification type, is invoked. The function is applied to resolution of
specification references cycles in the process of automatic management of the dynamic memory.

Field destroy has the type Destroy:

typedef void (*Destroy)(void*);
Using the field, the function of deallocating resources is invoked, after zeroing the counter of
references to the specification type value.

If the basic type in the definition of a specification type is a SeC allowable type then initialization of
any field may be omitted. In such case, the function by default will be applied for a corresponding
basic operation with the specification type value. If default functions implement all needed
functionality for all basic operations an empty initialization is used in specification type definition.

specification typedef struct {int x; int y;} Point = {};
Point *pt2, *pt1 = create(&type_Point, 1, 2);
/*in result : pt1->x == 1, pt1->y == 2*/

In the example above, the specification type Point is created on the basis of the structure that
contains two fields of the type int. In definition of the type, an empty initializer is used. That is why
for implementation of the basic operations with the data of this type, the default functions are used.
When creating a reference of the type Point*, the values used for initiation of the fields of the basic
structure should be passed to create function (refer to “Function of initialization by default”

subsection). After creation of a reference of the type Point*, it may be handled similar to a basic
structure pointer.

To create data structure with complex topology, e.g. defining recursive structures,it is recommended
to use specification references only.

struct link;
specification typedef struct link Link;
struct link
{
 Link* next;
 int item;
};
specification typedef struct link Link = {};
Link* l1 = create(&type_Link, NULL, 1)
 , l2 = create(&type_Link, NULL, 2);
l1->next = l2;

In the above code fragment, the specification type Link is defined which implements a
unidirectional list. When the field next of the reference l1 is assigned a value of the reference l2, an
automatic increase of the reference counter occurs by the value of reference l2. That is why after
destroying the reference l2, the value that it refers to, is not destroyed.

When a recursive structure that contains a non-specification pointer to itself is used in definition of
the type Link, it will be more difficult to correct management of the dynamic memory.

specification typedef struct link {
 struct link* next;
 int item
 } Link = {};
...
struct link* s = malloc(sizeof(struct link));
Link* l = create(&type_Link, s, 1);
...
free(s);

In the above fragment of the code, after invocation of free for pointer s, the filed next of the
reference l will point at the deallocated memory. In order to avoid such problems, one should define
special functions of initializing and destroying for the type Link.

If a default function of a certain basic operation does not implement functionality, that is necessary
for a specification type being defined, then, for this operation, a special function must be defined,
the pointer to which will initialize a corresponding field within the type definition initializer. Such
necessity mostly appears, when a basic type in definition of a specification type represents a pointer
to the first component of a dynamic array, or a union, or a pointer to one of such types, a structure,
or a fixed length array, which contain elements of the listed types.

4.8.9 Default implementation of basic operations of specification types

If the basic type in the definition of a specification type is a SeC allowable type then initialization of
any field may be omitted. In such case, the function by default will be applied for a corresponding
basic operation with the specification type value. If default functions implement all needed
functionality for all basic operations an empty initialization is used in specification type definition.

4.8.10Function of initialization by default

The function of initialization by default for all the specification types defined on the basis of simple
types (other than composite ones), has a single additional parameter of the basic type. It initializes
the value of a specification type through deep copying of the parameter, with the consideration
given to possible pointers and specification references cycles. The function of initializing structure
specification types has additional parameters, the types and the order of which coincide with the
types and the order of the fields of the basic structure. Fields by the passed reference are initialized
through deep copying of the parameters passed. The function of initializing specification types
defined on the basis of fixed-length array has one additional parameter, which acts as the pointer to
the set of values of the type of the array elements in an amount that coincides with the length of the
array. The array by the passed reference is initialized through deep copying of each value by the
received pointer to the element of the array that corresponds to it. The technique of copying used in
the initialization function, coincides with that used in the function of copying by default.

4.8.11 Function of copying by default

The function of copying by default provides deep copying, taking into account possible pointers and
specification references cycles, which a reference being copied contains:

• values of allowable simple types of C, other than typed pointers, are copied byte by byte;

• specification references are copied with the use of the function of copying a corresponding
specification type;

• typed pointer are interpreted to be the pointers to a single value, which does not depend on a
location in the memory, and, therefore, a single value under the nonzero pointer is copied
according to the rules enumerated in this list;

• values of composite types are copied by means of application of the above-listed rules to
each of the elements that compose them.

4.8.12Function of comparison by default

The function of comparing by default compares the basic type values in the following way:

• arithmetic types, functional pointers and non-typed pointers are compared byte by byte;

• typed pointers are considered as the pointers to a single value that does not depend on its
location in the memory, in other words zero values are always considered to be equal, a non-
zero value and a zero value are always unequal, and non-zero values are equal if and only if
the values are equal, which they point at, and the values by the pointers are being compared
under the rules of this list;

• specification references are compared with the assistance of compare library function of
comparing;

• composite types are compared with the application of the present rules to every one of their
individual elements.

4.8.13Function of stringifying by default

The stringifying function by default returns the string presentation of the basic type value:

• for arithmetic types—a numeric value;

• for untyped and functional pointers—address;

• for typed pointers—either NULL, or string presentation of a value by a non-zero pointer,
marked with its address;

• for specification references—the result of invoking of toString library function;

• for structural types—concatenation of string presentations of the structure fields, divided
with commas, framed with curled braces, and with the word “struct” prior to it;

• for the fixed length array—concatenation of string presentations of array elements, divided
with commas, and framed with square brackets.

4.8.14Function of creating XML-form by default

Function of creating XML-form by default returns XML-form of basic type value.

4.8.15Function of enumeration of inner specification references by default

The function of enumeration of inner specification references by default does not act if a basic type
is a simple non-specification type. In the case when a basic type is a specification reference, the
function through the passed functional pointer callback is called with a specification reference and
auxiliary parameter par, which have been passed to the function of enumeration of inner
specification references. If a basic type is composite, these rules apply to each of its component.

4.8.16Function deallocating resources by default

The function of deallocating resources by default:
• does not act provided that a basic type is a arithmetic, functional or untyped pointer;

• if a basic type represents a specification reference, the counter of references to its value is
reduced by a unity;

• if a basic type represents a typed pointer, then the value by a non-zero pointer is processed
according to the listed rules, following which the function free is called for the pointer itself;

• if a basic type is composite, this rules apply to each component.

4.8.17Definition of own functions for the specification type basics operations

If a default function of a certain basic operation does not implement functionality, that is necessary
for a specification type being defined, then, for this operation, a special function must be defined,
the pointer to which will initialize a corresponding field within the type definition initializer. Such
necessity mostly appears, when a basic type in definition of a specification type represents a pointer
to the first component of a dynamic array, or a union, or a pointer to one of such types, a structure,
or a fixed length array, which contain elements of the listed types.

4.8.18Function of initialization of specification type

void name_of_initializing_function(void* p, va_list* arg_list)
The function does not have a return value. Within the first argument, the function receives a pointer
of the type void* to the area of the memory, allocated for the purpose of storing the data of the

specification type and filled with zeros, and initializes the area with the values passed within the
second argument in the list of the type va_list*. When necessary, the additional memory is allocated
within the function with aim to store the data.

struct integer_seq {
 int length;
 Integer* *items;
};

void init_IntegerSeq(void* ref, va_list *arg_list) {
 struct integer_seq *is = (struct integer_seq*)ref;

 is->length = va_arg(*arg_list, int);
 is->items = calloc(is->length, sizeof(Integer*));
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,

};
In the example above, the specification type IntegerSeq is created, which is intended to store
sequences of unknown length, containing references of the type Integer* - references to the values of
the library specification type Integer, which is a specification representation of the built-in int type of
C. Type IntegerSeq is defined on the basis of the structure struct integer_seq with two fields: the
sequence length (length) and the pointer to an array that contains the very sequence - items.

The library function create allocates memory only for the purpose of storing values of the structure
struct integer_seq itself. The function of initializing by default has two parameters of initialization
for such structure specification type: the first one of the type int and the second of the type
Integer**. In this case, the second parameter in the function of initialization by default is interpreted
as a pointer to a single value. Therefore, the field items of the default function is initialized by the
pointer to the reference, which contains a copy of the reference value, passed via the pointer. In our
case, such functionality is unacceptable. That is why it is necessary to apply a special function of
initializing init_IntegerSeq, which implements a sufficient functionality.

The function init_IntegerSeq expects the passed list of the type va_list* contains the single parameter
of initiation of the type IntegerSeq - the sequence length. Its value initializes the field length by the
initialized reference. The second field items is initialized by the pointer to the dynamically allocated
and filled with zeros area of the memory sufficient to store the reference sequences of necessary
lengths.

The pointer to initializing function init_IntegerSeq initializes the field init in definition of the type
IntegerSeq.

4.8.19Function of copying specification type

void name_of_copying_function(void* src, void* dst)
The function has no return value. It has two parameters of the type void*. The function must copy
into a sufficient depth the data values by the pointer src passed within the first parameter to the
memory area filled with zeros by the pointer dst passed within the second parameter.

void copy_IntegerSeq (void *src, void *dst) {
 struct integer_seq *is_src = (struct integer_seq *)src
 , *is_dst = (struct integer_seq *)dst;

 int i;

 is_dst->length = is_src->length;
 is_dst->items = calloc(is_src->length, sizeof(Integer*));
 for (i = 0; i < is_src->length; i++)
 is_dst->items[i] = clone(is_src->items[i]);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .destroy = destroy_IntegerSeq
};

In the example above, the function of copying vales of the type IntegerSeq is defined. Definition of
the function is necessary, because the function of copying by default interprets the field items as a
pointer to the single value of the type Integer*, i.e. only the first value by the reference of the first
element of the sequence src is copied. The function copy_IntegerSeq provides deep copying of
the total sequence, through the library function of copying clone. Initialization by zeros of the
memory allocated for is_dst->items is necessary to ensure during assigning within the cycle
is_dst->items[i] = clone(is_src->items[i]) an attempt to reduce the reference counter
by a nonexistent value of the reference is_dst->items[i] does not occur.

The pointer to the function of copying initializes the field copy in definition of the type IntegerSeq.

4.8.20Function of comparing specification type

int name_of_comparing_function(void* left, void* right)
The function has a return value of the type int and two parameters of the type void*. The function
compares the values by the passed pointers and returns zero, if the values are equivalent, or a
nonzero value otherwise. A nonzero value may depend on relation of the values by the references
passed.

int compare_IntegerSeq(void* left, void* right) {
 struct integer_seq *isl = (struct integer_seq *)left
 , *isr = (struct integer_seq *)right;
 if (isl->length != isr->length) return isl->length – isr->length;
 else {
 int i, res;
 for (i = 0; i < isl->length; i++) {
 res = compare(isl->items[i], isr->items[i]);
 if (res) return res;
 }
 }
 return 0;
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .compare = compare_IntegerSeq,
 .destroy = destroy_IntegerSeq
};

In the example above, the function of comparing values of the type IntegerSeq is defined. Definition
of the function is necessary, as the function of comparing by default interprets the field items as a

pointer to the single value of the type Integer*, i.e. only the values by the references of the first
elements of the sequences left and right are compared.

The function of comparing compare_IntegerSeq ensures comparison of sequences element by
element. If the sequences are of different length, then the difference of lengths of sequences by the
references left and right is returned. If the lengths of the sequences are equal, then the
sequences are compared element by element with the use of the library function compare. In this
case, if all elements of the sequences coincide, the result is zero, otherwise the result of comparison
of the first non-matching elements is returned.

The pointer to the function of comparing initializes the field compare in definition of the type
IntegerSeq.

4.8.21Function of stringifying specification type

String* name_of_stringifying_function(void* p)
The function has a return value of the type String* and a parameter of the type void*. The
function returns a reference to the specification type String, which should contain a string
presentation of the specification type, that corresponds to the value of the reference, passed within
the single parameter of the function.

String* to_string_IntegerSeq(void *ref) {
 struct integer_seq *is = (struct integer_seq *)ref;

 String *start = create_String ("<");
 String *end = create_String (">");
 String *sep = create_String (", ");
 String *res = start;

 if (is->length > 0) {
 int i;
 for (i = 0; i < is->length; i++) {
 if (i > 0) res = concat_String(res, sep);
 res = concat_String(res, toString(is->items[i]));
 }
 }
 return concat_String (res, end);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .compare = compare_IntegerSeq,
 .to_string = to_string_IntSeq,
 .destroy = destroy_IntegerSeq
}

In the example above, the stringifying function to_string_IntegerSeq for the type
IntegerSeq is defined. Definition of the function is necessary, because function of stringifying by
default interprets the field items as a pointer to the single value of the type Integer* and creates a
string which contains, within curly braces and divided by commas, the value of the field length
and a string presentation of the value by the reference of the first element of the sequence.

The function to_string_IntSeq returns the reference of the type String*, which contains a
string, where, within angle bracket ('<' and '>'), string presentations of the values by the references

of all elements of the sequence are enlisted divided by commas, with preservation of their order.
The function to_string_IntSeq utilizes functions create_String and concat_String.

The pointer to the function to_string_IntSeq initializes the field to_string in definition of
the type IntegerSeq.

4.8.22Function of creating XML-form specification type

String* name_of_XML-form_creating_function (void* p)
The function has a return value of the type String* and a parameter of the type void*. The
function returns a reference to the specification type String, which should contain an XML-form of
the specification type, passed within the single parameter of the function.

If the data type don't have the inner structure we needed in, then a conversion function should be
written like to_XML_Integer():

String *to_XML_MyType(MyType *mt)
{
 return to_XML_spec("MyType", to_string_MyType(mt));
}

If the inner structure of the data type is important, then a conversion function could be written like
library type function Set (set):

String *to_XML_MyType(MyType *mt)
{
 String *res = format_String("<object kind=\"spec\" type=\"MyType\"
text=\"Header\">\n" [, ...]);
 foreach(Object obj: nested obects, which inherit Object)
 {
 res = concat_String(res, toXML(r(obj)));
 }
 foreach(data: nested obects with kind = Simple, Struct, Pointer,
Array)
 {
 res = concat_String(res, ts_to_XML_sectype(&typeDesc, &data));
 }
 res = concat_String(res, create_String("</object>\n"));
 return res;
}

or like library type function Map (mapping):

String *to_XML_MyType(MyType *mt)
{
 String *res
 = format_String
 ("<object kind=\"spec\" type=\"MyType\" text=\"Header\">\n
 [, ...]
);

foreach(Object obj: nested obects, which inherit Object)
{
 res = concat_String
 (res
 , format_String
 ("<object kind=\"spec\" "

 "type=\" MyElement\" "
 "text=\"element header\">"
 [, ...]
)
);
 res = concat_String(res, toXML(r(obj)));
 res = concat_String(res, create_String("</object>\n"));
 }

 foreach(data: nested obects with kind = Simple, Struct, Pointer,
Array)
 {
 res = concat_String(res
 , format_String
 ("<object kind=\"simple\" "
 "type=\" MyType.Element\" "
 "text=\"element\"/>"
 [, ...]
)
 }
 res = concat_String(res, create_String("</object>\n"));
 return res;
}

Combining the templates of generation from the above-listed examples, one can create any treetype
structure of objects.

4.8.23Function of enumeration of inner specification references of specification
type

void name_of_enumeration_function(*Enumerate)
 (void* p, void (*callback)(void*,void*), void* par)

The function of enumerating references should invoke a callback function, the pointer to which is
passed to it in the second argument, for each reference of the specification type. In all invocations
of a callback function, the enumerated references are passed in the first argument, the second
argument passes parameters via the pointer par, passed within the third argument of the function of
enumerating.

void enumerate_IntegerSeq(void* p
 , void (*callback)(void*,void*)
 , void* par
) {
 struct integer_seq *is = (struct integer_seq*)p;
 int i;
 for (i = 0; i < is->length; i++)
 callback(is->items[i], par);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .copy = copy_IntegerSeq,
 .compare = compare_IntegerSeq,
 .enumerate = enumerate_IntegerSeq,
 .destroy = destroy_IntegerSeq
};

In the example above, the function of enumerating the references enumerate_IntegerSeq for the type
IntegerSeq is defined. Definition of a special function of enumerating the references is necessary,
because the function of enumerating references by default does not provide enumeration of the
references, accessible via the pointer to array.

A callback function is invoked within the function enumerate_IntegerSeq for all references of
the sequence, which are accessible via the field items of the type Integer**, by a pointer passed to
the enumeration function enumerate_IntegerSeq within the second parameter. The first
parameter of such invocations passes enumerated specification references, the second parameter
passes the pointer passed in the third parameter to the function of enumerating
enumerate_IntegerSeq.

The pointer to the function enumerate_IntegerSeq initializes the field enumerate in definition
of the type IntegerSeq.

4.8.24Function deallocating resources of specification type

void name_of_deallocating_function(void* p)
The function has no return value. It has one parameter of the type void* that represents a pointer to
the memory location, where data of the specification type is stored. The function must deallocate
only additional memory, allocated within the function of initialization the given specifica-tion type.

void destroy_IntegerSeq (void *ref) {
 struct integer_seq* is = (struct integer_seq*)ref;
 int i;
 for (i = 0; i < is->length; i++)
 is->items[i] = NULL;
 free (is->items);
}

specification typedef struct integer_seq IntegerSeq = {
 .init = init_IntegerSeq,
 .destroy = destroy_IntegerSeq
};

In the example above, the function deallocating resources destroy_IntegerSeq for the specification
type IntegerSeq is defined. Definition of the function is necessary, because the function of
deallocating resources by default for composite types interprets the field items as the pointer to the
single value of the type Integer*, and therefore the reference counter decreases only for the first
reference of the sequence, following which free for the pointer items is invoked.

The function destroy_IntegerSeq reduces the reference counter by a unity for each element of the
sequence by the passed reference, after which it deallocates memory by the pointer items. Reference
counters are reduced by means of assigning the value NULL to the references.

The pointer to the function deallocating resources destroy_IntegerSeq initializes the field destroy in
the definition of the type IntegerSeq.

4.9 Invariants
In a specification, the requirements for a system under test are contained, including the requirements
for data. Such requirements consist in limitation of a range of allowable values and may be imposed
both on a certain data type as a whole (by means of type invariants), and on the values of individual
global variables (with the use of variable invariants).

Invariants may be also interpreted as common part of preconditions and postconditions of specification
functions, which utilize the data of relevant types.

Invariants are automatically checked within the specification functions prior to the check of a
precondition:

• for function parameters

• for expressions, described in the reads or updates access constraints and prior to check of a
postcondition:

• for function parameters

• for expressions, described in the writes or updates access constraints

• for return value

Additionally, the method of explicit check of an invariant is provided.

In checking of invariants of composite types, the check of invariants for all of its components is
automatically executed.

4.9.1 Type invariant

A type invariant introduces the constraint for the range of values of a certain type. A resulting new
type, the range of which is the subrange of a basic type, is called a subtype. The following
constraint is imposed on a basic type: it must be an allowable type.

The type with invariant is defined with the use of the typedef construction, marked with the
keyword invariant:

invariant typedef int Nat;
In this case, int represents a basic type, and Nat represents the subtype defined. Here, unlike a
usual typedef construction of C, which only introduces a new identifier for the previous type, a
new type with an own range is defined.

Constraints for the range of a subtype are defined in the invariant construction, similar to
definition of functions with a single parameter of the defined subtype. The function returns a
boolean value: true, if a value passed satisfies the constraints, or false, if it does not. As far as
the type of a return value is fixed, it is not indicated explicitly:

invariant(Nat n) {
 return n > 0;
}

If a specification type is used as a basic type, the parameter of the invariant function will have the
type of a relevant specification reference, for values of specification types are only accessible via
pointer:

invariant typedef Integer Natural;

invariant(Natural* n) {
 return value_Integer(n) > 0;
}

At that, the functions of operating with a subtype will be assumed from definition of the basic type.

The invariant function shall not have side effects: apparent data shall not be altered, and the
dynamic memory allocated within the function shall be deallocated in the same place.

It is allowable to define new specification types with indication of an invariant:

invariant specification typedef int Natural = {};
invariant(Natural* n) {
 return *n > 0;
}

In such case, a subtype and a basic type coincide.

A specification type may not be defined on the basis of another specification type, but one may
create subtypes of specification types. Moreover, one may define subtypes for subtypes, owing to
which an hierarchy of types is created. In this case, for a value of subtype invariants of all parent
subtypes upward the hierarchy will be also checked.

An invariant of a variable of a relevant type may be checked explicitly using the function invariant:

invariant typedef int Nat;
Nat n;
if (invariant(n)) ...

A subtype may be casted to a basic type; moreover, such transformation is executed implicitly. A
basic type may also be casted to a subtype. However, due to the fact that values of a subtype are the
subset of values of a basic type, such transformation should be written explicitly:

invariant typedef int Nat;
int i;
Nat n;
...
i = n;
n = (Nat)i;

A situation may appear, when the invariant of the type turns unsatisfied. If necessary it may be
checked explicitly after assignment.

4.9.2 Variable invariant

An invariant of a variable introduces constraints for a range of an individual global variable of an
allowable type.

A variable with an invariant is defined with the help of usual declaration or definition, with
invariant keyword:

invariant int Qty;
Constraints for the range of a variable are defined within the invariant construction, similar to
definition of a function without parameters. The function returns a boolean value: true, of a value
of a global variant satisfies the constraints, or false, if it does not. As far as the type of a return
value is fixed, it is not indicated explicitly. The name of the variable, for which the invariant is
defined, is indicated in brackets:

invariant(Qty) {

 return Qty >= 0;
}

However, a variable is not a parameter of an invariant function. The function provides access
immediately to the value of a global variable. At that, the function shall not have side effects:
apparent data shall not be altered, and the dynamic memory allocated within the function shall be
deallocated in the same place.

A variable invariant may be explicitly checked with the help of invariant function:

invariant int Qty;
...
if (invariant(Qty)) ...

If the variable with an invariant has the type, for which the type invariant is defined, then the type
invariant will be checked first, and then goes the variable invariant.

5 Coverages
Coverage criteria are used for estimation of achieved test complete.

Full testing of program requires checking of correctness of its behavior in all situations. The total
number of situations is usually too large for full test. Coverage criterion is choosing to reduce the
number of test situations. According to coverage criterion all test situations are divided into classes,
called coverage elements.

Hypothesis of testing is put forward. Any error in a program, which becomes apparent in situation
referred to the certain class, becomes apparent in any other situations from this class. That is, if
hypothesis of testing is accepted, it is enough to check correctness of program behavior in one
situation from each class for full testing. If the coverage criterion is selected appropriately then test
hypothesis is correct for all errors. In this case reached the degree of completeness of testing
corresponds to the percentage of covered elements for given coverage criterion.

In the software industry coverage criteria based on the structure of source code of program are used,
in particular:

• coverage of operators;

• coverage of graph branches of the thread of execution;

• coverage of graph path of the thread of execution;

• coverage of conditions.

During black-box testing source code of program may be unavailable. In this case similar coverage
criteria based on the specification structure are applied.

During program testing again given requirements set coverage criterion may be based on the
definitions of situations used in the requirements. That is, for the requirement “if the condition C is
fulfilled then requirement R must be fulfilled ”, the condition C defines coverage elements.

Such coverage may be sufficiently rough - It will be enough to check requirement R once in
situation satisfying condition C. If it isn't enough coverage elements can be divided additionally
and requirement is considered as tested fully only in case of its checking under each qualified
condition.

In CTESK 2.8 coverages are realized as set of elements, attributes if which are name and optional
text description. Each coverage element corresponds to the certain state of system under test.

Coverages are specified using CTESK 2.8 construction, in which information necessary for
coverage identification and work with them and their elements concentrates. CTESK 2.8 allows to
create coverages of different types and requires compliance with the certain rules for specifying of
coverages of each type.

Basic operations of interaction with coverages elements are:

• access to an element of coverage (for example, the calculation of achieved element);

• compare element with another one (for example, achieved element with an expected one);

• entering of information to trace about coverage element achievement

5.1 Different types of coverages
In SeC coverage is defined by name, set of coverage elements and not obligatory computation
function of current element. Coverage element can have identifier or text representation, or both of
them. Using system state given by parameters and global variables, computation function computes
coverage element to which this state applies.

Coverages are specified using SeC construction, in which information necessary for coverage
identification and work with them and their elements concentrates. SeC allows to create coverages
of different types and requires compliance with the certain rules for specifying of coverages of each
type.

Type of coverages are differed the following way:

• By belonging to the specification functions:

◦ global coverage isn't tied to the specification function, it is defined and declare on the
compilation module level;

◦ local coverage is tied to the certain specification function. Prototype and definition of the
specification function contain declarations and definitions of the local coverages,
respectively.

• By elements representation and computing method of achieved element:

◦ If the author of the test immediate specifies the collection of the elements for coverage
and marks on his own the achieved element then this coverage is a enumerable one.

◦ If the author of the test immediate specifies the collection of the elements for coverage
and defines the computation function of achieved element then this coverage is a
computable one. Computation function is a indispensable part of such coverage.

◦ If the author of the test defines some enum-type as the collection of the coverage
elements then computation function is generated on basis of the structure of this type and
the coverage is called enum-coverage.

• By the position in the hierarchy:

◦ primary coverage, set of elements of which was created independently of other
coverages;

◦ derived coverage, set of elements of which is combination of elements of other
coverages. Coverages, elements of which were used in creation of derived coverage, are
called basic with respect to it.

Global coverages can be enumerable, computable and enum-coverages. Local coverages are always
computable.

5.1.1 Enumerable coverage

Enumerable coverage is coverage which doesn't have elements computation function. Thereby,
accessibility of the elements of the enumerable coverage is described by the author of the test.
Enumerable coverage is specifies only by set of elements in possession of names and not obligatory
string description.

// declaration of enumerable coverage

extern coverage ConstCovD =
{
 C1 = "First",
 C2, // string description of this elements on default: "С2"
 C3 = "Last"
};

// definition of the previously declared coverage
сoverage ConstCovD;

// definition of not previously declared coverage
coverage ConstCovND =
{
 C1 = "ND1",
 C2 = "ND2",
 C3
};

It is possible to get an element of the enumeration coverage only by specification this element using
coverage name and element name (possibly complex name for derived coverage), separated by a
dot.

Explicit specification of coverage element. There is possibility to explicit specify necessary
coverage element at any moment using coverage name and element name (possibly complex name
for derived coverage) separated by a dot.

// drop to trace indicated element of enumeration coverage
trace (Cov.C1);

// drop to trace indicated element of product-coverage
trace (ProdCov.C1.C2);

5.1.2 Computable coverage

Computable coverage is used for realization of certain algorithms for computing achieved coverage
element depending on some parameters. Computable coverage is coverage accessibility of the
elements of which can be compute using algorithm defined by author of the test.

Computable coverage besides attributes general for all coverages – name and set of elements, has
explicit function of computation of elements. Computation function returns coverage element and
receives parameters, which can characterize state of the system under test or mark branch of
functionality as argument.

// definition of not previously declared computable coverage
coverage AuxCoverage (int i)
{
 /*
 * element name can be absent,
 * if it doesn't require access from program -
 * numerical value and description drop to trace.
 */
 if (i <= 0) return { "Incomprehensible number" };
 if (i > 3) return { MNOGO, "Very large number" };

 /*
 * element description also can be absent,
 * in this case it equals to name

 */
 return { MALO };
}

It is possible to get an element of the computable coverage by specification of necessary element
(the same as for enumerable coverage) or by computation of achieved elements..

Explicit specification of coverage element. There is possibility to explicit specify necessary
coverage element at any moment using coverage name and element name (possibly complex name
for derived coverage) separated by a dot.

// drop to trace indicated element of enumeration coverage
trace (Cov.C1);

// drop to trace indicated element of product-coverage
trace (ProdCov.C1.C2);

Computation of achieved coverage element. Computation of coverage element is possible only for
computable coverage.

// check of achieved element of computable coverage
if (CalcCov.POZ == CalcCov (i));
{ ... }

5.1.3 Enum-coverage

Enum-coverage are used for easy creation of coverages based on enumerable types.

Coverage can be defined on the basis of an enumerated type (enum). Elements of such coverage

correspond to enumeration type constants and computation function is determined automatically.
This function has only on parameter of using enumeration type. Corresponding element of coverage
returns for each value of enumeration type.

typedef enum { RED, GREEN, BLUE } Color;

/*
 * declaration of coverage based on enumerable type,
 * with computable function on default
 */
extern coverage enum ColorCoverage(Color color);

/*
 * definition of previously declared coverage
 * on basis of enumerable type
 */
coverage ColorCoverage;

5.1.4 Derived coverage

Derived coverages are used when reuse of elements and functions of coverages computation are
needed.

Coverages, elements and computation function of which are given directly, are called primary
coverage.
Coverages built on basic of other coverages which are basic in this context called derived coverage.
Definition of derived coverage must describe method of its building on basis of the basic coverages;

primary or derived coverage can be basic coverage.

Coverage order is number of basic coverages, elements combination of which are elements of given
coverage. Coverage order of any primary coverage is 1. Coverage order of derived coverage

is equal to sum of orders of all basic coverages.

For any coverage it's possible to built list of primary coverages on which derived coverage is based.
Length of this list is equal to coverage order. This list is formed from list containing only given
coverage in the following way: cyclically passing from the beginning to the end, substitute
coverages for basic coverages (products become sequences of multiplied coverages). Eventually
only primary coverages remain in list, number of which is equal to order of initial coverage.

There are two ways to create derived coverage:

• change of coverage domain (inheritance of elements set and computation functions);

• coverage product (combination of elements of basic coverages and computation functions).

Access to elements of derived coverage depends on its type.

Computable coverage is result of change of coverage domain and product of computable coverage.

Element which is part of it can be gotten by explicit indication of necessary element or by
computation of achieved element by giving parameter to computation function. The product of an
enumerable coverage on enumerable one is enumerable coverage. Element of such coverage can be
gotten by only explicit indication of this element. Thus, access to the elements of derived coverage
is not principle differ from access to the elements of the primary coverage.

Operation of getting of coverage element component is specific for derived coverages. This
operation is available for coverages of order higher 1 – i.e. for product-coverage derived from them:
then the element of given coverage is combination of elements of other coverages and it's possible to get its
component. Element components of other coverages are forbidden to get.

5.1.5 Product-coverage

Product-coverages are used when sets of elements of several coverages are necessary to be
combined. Elements of product-coverages are combination of elements of basic coverages, every of
which is called coverage product element component. Coverage product element is considered as
achieved one, if all its components are achieved simultaneously.

// definition of product-coverage for enumerable coverage
coverage ProdCovNF = ConstCovND * ConstCovD;
// definition of product-coverage for computable coverage
coverage ProdCovF (Color color, char ch, int in)
 = AlphaCoverage (ch) * ColorCoverage (color) * AuxCoverage (in);

Operation of getting of coverage element component is available for coverages of order higher then
one – i.e. for product-coverages or derived coverages: then element of given coverage is
combination of elements of other coverages and it's possible to get its component. Components of
elements of other coverages are forbidden to get.

Getting of coverage element component

// AlphaCoverage and AuxCoverage – computable coverages

// ColorCoverage - enum-coverage based on Color type

// definition of product-coverage of computable coverage

coverage ProdCovF (Color color, char ch, int in)
 = ColorCoverage (color) * AlphaCoverage (ch) * AuxCoverage (in);

// drop to trace of component of coverage element
trace (ProdCovF(i, (char) i, i)[1]);

5.1.6 Change of coverage domain

Change of coverage domain allows to use function of computation of basic coverage in derived
coverage indicated only variable which will be parameter of this function.

Change of domain is applicable to only computable coverages; gotten derived coverage is
computable also. Such derived coverage use function of computation of basic coverage specified
expressions used as factual parameters. Parameter of derived coverage and variables visible for it
can be used in these expressions

// basic computable coverage
coverage AlphaCoverage(char c)
{
 if ('a' <= c && c <= 'z') return LOWER;
 if ('A' <= c && c <= 'Z') return UPPER;
 /*
 * if execution flow reaches this point,
 * then coverage isn't complete.
 */
}

// variable, which will be parameter of new coverage
extern char charState;

// (void) said about availability of computation function for this
coverage
extern coverage StateCoverage (void) = AlphaCoverage(charState);
coverage StateCoverage;

5.1.7 Local coverage

It makes sense to define coverage as local, if it is used by singular specification function. When
states of system under test, which identify coverage elements, achieved within the bounds of one
specification function, it's convenient to make this coverage as local coverage. Local coverage is
coverage which defined within some specification function; this function is called enclosing to this
coverage.

Coverages defined within specification function are called local as contrasted to coverages, declared
on global level. The structure of the specification function prototype includes local variables
declaration, belonging to its, and the body of specification function includes declaration of this
coverages.

The intensional part of local coverage declaration is coverage name. Local coverages must be
computable, i.e. they can be initialized by computation function or coverages product. The set of
parameters of computation function of local coverage coincide with set of parameter of
specification function.

The scope of local coverages is block containing their definition. Local coverages names should not
coincide with names of specification function arguments and its names, and also with names of

other local coverages.

specification foo (int a, int b, char h)
{
 coverage aCov
 {
 if (a > 0)
 return {a_poz, "a is pozitive"};
 if ((a < 0) && (b > 0))
 return {a_b_oppoz, "a and b are oppozite"};
 if ((a == 0) && (h > a))
 return {a_null_proof, "a is null, approved."};
 }
 post { ... }
}

Access to the elements of local coverages can be obtain from postcondition or computable function
of local coverages defined after given one.

It is sufficient to specify the coverage name: it will indicate element achieved in the process of
execution of function under the test. Also for local coverage the operation of getting coverage
element is available, but computation of coverage element is forbidden.

coverage CharCmd (char c)
{
 if (c == 'e')
 return {exit, "exit command entered"};
 else if (c == 'h')
 return {help, "help command entered"};
 else
 return {nocmd, "no command or unknown"};
}

specification foo (int a, int b, char h)
{
 coverage hCov = CharCmd (h);
 coverage aCov
 {
 if (hCov == hCov.exit)
 return {abort, "Program terminated"};
 else if (hCov == hCov.help)
 return {pause, "Program standby"};
 else
 {
 if (a > 0)
 return {a_poz, "a is pozitive"};
 if ((a < 0) && (b > 0))
 return {a_b_oppoz, "a and b are oppozite"};
 if ((a == 0) && (h > a))
 return {a_null_proof, "a is null, approved."};
 }
 }
 post
 {
 if (aCov != aCov.a_null_proof)
 {
 //... }
 }
 }
}

5.2 Operations on coverages elements
Operations on coverages elements implement basic opportunities of control of testing and reflecting
its results in the report.

Basic operations of coverage elements interaction are:

1. getting coverage element (for example, computation of achieved element);

2. comparison with other elements (for example, achieved element with expected one);

3. entering of information about coverage element achievement to report.

By combining these operation it's possible to control testing subject to achievement one element or
the other and enter information about achieved elements to report.

It should be noted that only first operation from list depends on signs of the coverage
type(computable function, belonging to specification function): getting, computation of coverage
element.

Comparison and tracing operators require only rightly gotten coverages elements as arguments and
don't depend on coverages declaration and definition.

The only especially specified SeC combination of basic operations is operation of coverage
elements iteration, which becomes easier implementation of bypass of all necessary state of system
under the test, i.e. some coverage elements.

5.2.1 Getting of coverage element

Access to coverage elements is used for entering information about achieved element and
comparison elements against each other to testing report.

Different forms of access to element are provided for different types of global coverages.

1. Explicit indication of coverage element. There is opportunity to exact indicate necessary
coverage element at any moment, using coverage name and element name (possibly
complex name for derived coverage), separated by point.

// drop to trace indicated element of enumerable coverage
trace (Cov.C1);

// drop to trace indicated element of product-coverage
trace (ProdCov.C1.C2);
2. Computation of achieved coverage element. Computation of coverage element is possible

only for computable coverages.

// checking of achieved element of computable coverage
if (CalcCov.POZ == CalcCov (i))

Access to elements of local coverage can be obtained from postcondition or from computable
function of local coverages defined after given one. Suffice it to indicate coverage name: it will
designate element achieved in the process of execution of function under the test.

Also operation of getting of coverage element is available, but computation of coverage element is
forbidden.

coverage CharCmd (char c)
{
 if (c == 'e')
 return {exit, "exit command entered"};
 else if (c == 'h')
 return {help, "help command enterd"};
 else
 return {nocmd, "no command or unknown"};
}

specification foo (int a, int b, char h)
{
 coverage hCov = CharCmd (h);
 coverage aCov
 {
 if (hCov == hCov.exit)
 return {abort, "Program terminated"};
 else if (hCov == hCov.help)
 return {pause, "Program standby"};
 else
 {
 if (a > 0)
 return {a_poz, "a is pozitive"};
 if ((a < 0) && (b > 0))
 return {a_b_oppoz, "a and b are oppozite"};
 if ((a == 0) && (h > a))
 return {a_null_proof, "a is null, approved."};
 }
 }
 post
 {
 if (aCov != aCov.a_null_proof)
 {
 //...
 }
 }
}

5.2.2 Coverage element iteration

Coverage element iteration is contraction helping to bypass all branches of functionality describing
by coverage. Parameters of iteration are name of invoked function and coverage name. Coverage
elements bypass of which is not desirable for some reason can be sieved using filter.

 iterate coverage operator of coverage elements iteration is similar with iterate operation of
iteration: value of iteration variable is global with respect to scenario containing operator.

iterate coverage
 (f.PointCoverage : f.PointCoverage[0] != IntCoverage.ZERO)
{
 //...

}
In contrast to iterate operator construction of control of iteration variable is absent: in coverages
iteration accounting of processed coverage elements is realized by system under the test.

5.2.3 Entering of information about coverage element to report

Operations on coverage elements realize opportunities of control of testing and mapping its results
to report.

Parameter of trace predefined function, which is tool of gathering of information about coverage
elements, must be the coverage element specified by one of following methods:

• explicit indicated by user;

• getting as result of activities of function of coverage computation;

• getting as result of activities of operation of getting of coverage element.

// drop to trace of indicated element of enumerable coverage
trace (Cov.C1);

// drop to trace of indicated element of product-coverage
trace (ProdCov.C1.C2);

5.2.4 Storage of coverage elements in variables of CoverageElement type

SeC allows to store coverage elements in variables of CoverageElement special type.

Declaration of variable-element of coverage

coverage IntCoverage zero = IntCoverage(0);
After coverage keyword coverage name is specified, elements of which can contain variable
declared in such manner

Declaration of variable-element of coverage can contain initializer: expression returning element of
indicated coverage. In other cases, these variables conform to the rules of using of variables of C.

6 Mediators
Mediators are intended for binding specification to implementation of the system under test, or to

specification of another level of abstraction.

Mediators do task of synchronization of specification data model state with the system under test
state.

Conversion of model representation of a test action into implementation representation and
conversion of implementation representation of reaction into model representation task matters only
for stimulus mediators.

In SeC language mediators are implemented as mediator functions and catchers.

In mediator functions code blocks which are responsible for state synchronization and conversion
implementation and model representation are mark out.

6.1 Mediator function
Mediator functions are implementation of mediators. Each mediator function binds specification
function or deferred reaction to a part of implementation of the system under test or to its
specification of another level of abstraction.

Mediator functions are marked by mediator for SeC keywords. An unique identifier—name of

the mediator function—must reside between these words. Each mediator function corresponds to a
specification function or deferred reaction. Signature and access constraints of this function or
reaction must be specified in declarations and definition of the mediator function.

Mediator function can contain:

1. Call block. Within call-block, testing interaction is executed along with conversion of data
from model into implementation presentation and back. Call-block is necessary for
mediators of the specification functions and is not present in the mediators of deferred
reactions (for interaction is initiated by the system under test in the case of deferred
reactions).

2. State-block brings the model state in compliance with the state of the system under test
implementation. State-block may be omitted in the mediators of the specification functions
and is mandatory for the mediators of deferred reactions.

3. Auxiliary code before first or after the second special block. Auxiliary code may not have
any side effects: apparent data must not be altered; the dynamic memory allocated in the
code block, must be deallocated either in the same place, or in the block paired to it.

Mediator function bind to the specification function (or deferred reaction) using the function
set_mediator_specification_function_name()
(set_mediator_deferred_reaction_name()), which assumes the pointer to the mediator
function. Normally, binding is executed in the initialization function of scenario:

set_mediator_push_spec(push_media);

6.1.1 Call-block of mediator function

Call blocks of mediator specification functions are intended for implement behavior, described in
corresponding specification functions, by means of impact on the system under test.

In call-block testing interaction with data conversion from model into implementation presentation
and back is implemented.

Call-block is used only in the mediators of specification functions. The following operations are
performed in it:

• the parameters of the specification function are converted into implementation presentation

• interface function (or several functions) of the system under test is invoked

• the result of the interface function and its output parameters are converted from
implementation presentation into model one

• model presentation of the result is returned from the call-block

Call-block is written in the form of instructions in curly braces and marked with call keyword.

These instructions represent the body of the function, which has the same parameters and type of
result as the appropriate specification function.

Mediator for function of selection of stack element

stack *stack_impl;
List* stack_model;

int push(stack*, int);
specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates
stack_model
{
 call {
 return (bool)push(stack_impl, value_Integer(i));
 }
 //...
}

6.1.2 State-block of mediator function

State-block brings the model state in compliance with the state of the system under test
implementation after executing of interaction or emerging of deferred reaction.

State-block is written in a form of instructions in curly braces and marked with state keyword.
Such instructions represent the body of the function without a return value, which has the same
parameters as the relevant specification function or deferred reaction has.

If the relevant specification function or deferred reaction has the return value type other than void,
then the access to this value can be obtained through the identifier of such function (reaction).

When a system with open state is tested (i.e. when the testing system has the access to internal data
of the implementation), the state-block must bring the model state in compliance with the
implementation state:

stack *stack_impl;
List* stack_model;

int push(stack*, int);
specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
specification bool push_spec(Integer* i) reads i updates stack_model
{
 ...
 state {
 int k;
 clear_List(stack_model);
 for(k = stack_impl->size;
 k > 0;
 append_List(stack_model
 , create_Integer(stack_impl->elems[--k])
)
);
 }
}

As far as building of the model state according to internal implementation state is similar for all
specification functions, it is convenient to do it in a separate function.

When a system with hidden state is tested (i.e. when the testing system has no access to internal
data of the implementation), the call-block should operate in the assumption that the
implementation completes without errors in compliance with the specification, and then bring the
model state to one that is expected in the result of interaction:

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates
stack_model
{
 ...
 state {
 add_List(stack_model, 0, create_Integer(push_spec));
 }
}

State-block of specification functions is executed by the testing system immediately after the call-
block and prior to checking of postcondition in the specification function.

State-block of deferred reactions is executed after appearing of a deferred reaction prior to checking
of postcondition.

6.2 Catcher
Catcher is intended to receive the result of deferred reactions.

Catchers are implementation-dependent components. Their purpose is to assemble all deferred
reactions of the target system and register them in the interaction registrar.

7 Test scenarios
Test scenarios define source data for tests building. Each test is a sequence of test actions,
designed to solve some testing problem. Usually such problem is formulated as testing of a
system under test behavior by performing test actions through a set of interface functions, until
succeeding a given level of coverage in accordance with criteria of specification coverage.

A usual task of testing consists in checking of the system behavior when interacting with it through
the set of interface functions until the specified level of coverage is achieved. The sequence of
testing interactions for the purpose of solving such task is named a test.

Invocations of one or more specification functions and the method of enumerating of its parameters
are specified in a scenario functions. In the process of testing, the testing system is in one of states
that are called scenario states. Every invocation of a scenario functions transits the testing system
from one state to another. All parameters are automatically enumerated in each achieved scenario
state.

Test scenario consists of several scenario functions indicating a mechanism of building a test, the
function of scenario state evaluation, the function defining the ways to initialization and finalization
of test system and system under test. A proper test is automatically generated on the basis of the
data contained in a testing scenario.

7.1 Creation of test scenario and its call parameters
Test scenario provides all information necessary to automatically generate a test. It corresponds

to a variable (scenario variable) of a special structural type with the name dfsm or ndfsm,

marked with the modifier scenario:

scenario dfsm testScenario;
The name of the test engine which defines the technique of test generation is used as the name of

the type:

• dfsm — Deterministic Finite State Machine;

• ndfsm — Nondeterministic Finite State Machine;

During test run dfsm applies the test actions that can change scenario state. Dfsm automatically
keeps track of all state changes and constructs a finite state machine in accordance to test process.
All reaches scenario states become the states of the machine, and transitions of the machine are
marked by appropriate test actions. dfsm testing mechanism finishes the testing when it performed
all test actions, defined by the user, in all states of the machine reachable from the starting state. For
this condition to be possible, the following constraints must be satisfied:

Finiteness. Number of states, reachable from the starting state by performing test actions from the
defined set, must be finite.

Determinancy. Performing the same test action in any state of the system must lead the system to
the same state.

Strong connectivity. Any scenario state is reachable from any other scenario state by performing
test actions.

The ndfsm test engine as compared with dfsm allow works correctly with a wider class of finite
state machines, in particular, with finite state machines having deterministic strongly connected
complete spanning submachine:

Spanning submachine. A spanning submachine contains all reachable scenario states.

Complete submachine. For each scenario state and an allowable test action a complete submachine
either contains all transitions from this state marked by this test action or does not contain such
transition at all.

The ndfsm test engine does not intended for testing systems with deferred reactions.

Definition of a scenario variable should contain the initializer of the following form:

scenario dfsm testScenario = {
 .init = init,
 .getState = getState,
 .actions = {
 f_scen,
 g_scen,
 NULL
 },
 .finish = finish
};

In the init field, the name of the function of initialization is specified. The field may be omitted,

but normally, a function of initialization is used at least for the purpose of setting up mediators.

In the getState field the function of evaluating scenario state is specified. If the field is omitted,
testing is executed in a single state.

In the actions field the list of the scenario functions which are included in a given test, is

specified. The list finishes with the value NULL. This field is obligatory.

In the finish field, the name of the function of finalization is specified. The field may be omitted.

A test scenario is invoked as a function with an identifier of the scenario variable with two
parameters, which are the same as ones of the function main, and without a return value. Usually,
invocation is executed in the function main:

int main(int argc, char **argv) {
 testScenario(argc,argv);
 return 0;
}

As a test scenario is invoked, the parameters that have been passed to it are parsed. The test system
processes the following standard parameters:

-tc

Send tracing to the console.

-tt

Send tracing to the file with a unique name, composed of the scenario name and current time.

Starting a test without any of the command line parameters described above has the same effect
as starting with the –tt parameter.

-t file_name

Send tracing to the file with specified name.

-nt

Disables tracing.

--trace-accidental

Enables tracing of the accidental transitions.

-uerr

Execute testing until the first error appears (by default).

-uerr=number

Execute testing until number errors appear (for ndfsm only).

-uend

Execute testing until complete despite errors.

--find-first-series-only, -ffso

Find only first success series.

--trace-format

Format of drop frame to trace.

--disabled-actions

Ignored scenario function list.

Standard parameters processed are deleted from the parameters list, and the updated list is passed

to the function of initialization of scenario.

Several invocations of scenarios from the same program are acceptable. Note that, if the parameters
passed to the executable test file from the command line, are simply sent to all invoked scenarios,
then as soon as tracing is sent to the file, the trace of a successive scenario will overwrite the trace
of the previous scenario. In order to provide that traces of all scenarios get in the same file, it is
necessary to use functions addTraceToFile and removeTraceToFile.

int main(int argc, char **argv) {
 addTraceToFile("trace.utt");
 testScenario1(argc,argv);
 testScenario2(argc,argv);
 removeTraceToFile("trace.utt");
 return 0;
}

In the case of testing of the systems with deferred reactions, greater number of fields should be
specified in the definition of the test scenario: :

scenario dfsm testScenario = {
 .init = init,
 .getState = getState,
 .isStationaryState = isStationaryState,
 .saveModelState = saveModelState,
 .restoreModelState = restoreModelState,
 .actions = {
 f_scen,
 g_scen,
 NULL
 },
 .finish = finish
};

Three extra fields for scenarios with deferred reaction are mandatory.

In the isStationaryState field, the name of the function of determining state stationarity is
specified.

In the saveModelState field, the name of the function of saving specification model state is
specified.

In the restoreModelState field, the name of the function of restoring model state is specified.

7.1.1 Function of initialization

The function of initialization is intended to perform preliminary work prior to testing. The function
assumes two parameters similar to those of the function main, and returns a logical value that
indicates whether initialization has been successful:

typedef bool (*PtrInit)(int, char**);

Usually function of initialization do next actions:

• initialization of the system under test;

• initialization of the specification data model;

• initialization of scenario data;

• setting up mediators for specification functions and reactions used in the given test scenario;

Whenever necessary, the function of initializing can use the initialization parameters passed to it.

char *impl_data;
String* model_data;

specification void f_spec(int a);
mediator f_media for specification void f_spec(int a);

bool init(int argc, char **argv) {
 impl_data = (char*)malloc(SIZE);
 model_data = create_String("");
 set_mediator_f_spec(f_media);
 return (impl_date != NULL && model_data != NULL);
}

In the case of testing of the systems with deferred reactions, the function is additionally used to:

• define the time of expecting of deferred reactions

• if necessary, allocate channels for processing of the immediate and deferred reactions.

ChannelID chid;
bool init(int argc, char **argv) {
 chid = getChannelID();
 setStimulusChannel(chid);
 setWTime(1);
 ...
}

7.1.2 Function of evaluating scenario state

Within the process of performing, the testing system is in one of the states. The function of
evaluating a scenario state shall normally compute such state on the basis of the values of variables
which define the model state. A scenario state shall often represent a generalization of the model
state, however, it also may coincide with the model state and on the other hand it may be totally not
associated with it.

The function has no parameters and returns a reference to the value of a specification type.

typedef Object* (*PtrGetState)(void);
An example of function that generalizes the model state, representing a list, as its length:

List* l;

Object* getState(void) {
 return create_Integer(size_List(l));
}

7.1.3 Function of finalization

The function of finalization is intended to execute concluding operations after executing of test. The
function has no parameters and no return value.

typedef void (*PtrFinish)(void);
Normally, the function of finalization deallocates resources, allocated in the function of
initialization.

char *impl_data;
String* model_data;

void finish(void) {
 free(impl_data);
 model_data = NULL;
 releaseChannelID(chid);
}

7.1.4 Function of determining state stationarity

The function of determining state stationarity is only used in testing of the systems with deferred

reactions.

The function has no parameters and returns a logical value that indicates whether the current
specification model state is stationary or not (the specification model state is a stationary state if

no deferred reactions are expected in this state).

typedef bool (*PtrIsStationaryState)(void);
If model state presented as variable of nonspecification type or several variables, new specification
type included all necessary data is need to be defined. .

List* expectedReactions;
...
bool isStationaryState() {
 return empty_List(expectedReactions);
}

7.1.5 Function of saving state stationarity

The function of saving state stationarity is only used in testing of the systems with deferred
reactions.

The function has no parameters and returns logical value that indicate whether the current model
state is stationarity or not (The state is stationarity state if no deferred reactions are expected in this
state).

typedef Object* (*PtrSaveModelState)(void);

Example:

List* modelList;
int modelInt;
specification typedef struct {

 List* a;
 int b;
} ModelState = {};
...
Object* saveModelState() {
 return create(&type_ModelState, clone(modelList), modelInt);
}

7.1.6 Function of restoring model state

The function of restoring model state is only used in testing of the systems with deferred reactions.

The function has as its input a reference to the value of a specification type:

typedef void (*PtrRestoreModelState)(Object*);
The value returned by the function of saving model state is input to the function of restoring model
state. The purpose of the function is to restore the current specification model state of the system in
compliance with this value.

List* modelList;
int modelInt;

specification typedef struct {
 List* a;
 int b;
} ModelState = {};

...

void restoreModelState(Object* modelState) {
 ModelState* s = (ModelState*)modelState;
 modelList = clone(s->a);
 modelInt = s->b;
}

7.2 Scenario function
Scenario functions describe sets of testing interactions. For this purpose, scenario function defines
interactions (invocations of specification functions) and the way to enumerate their parameters. All
interactions are automatically executed in every scenario state achieved in the process of testing.
Scenario functions are able to execute extra check for correctness of behavior of the functions
invoked.

A scenario function is defined as a function without parameters, which returns a value of the type
bool and is marked with scenario keyword:

scenario bool f_scen();

In the plainest case, every scenario function corresponds to exactly one specification function. If a
specification function has no arguments, then the scenario function body should contain a single
invocation of a specification function. Enumeration of possibilities of specification function
argument is convenient to do use iteration statement .

The scenario function must return false, if the system behavior is incorrect, and true in a normal
situation. It must be noted, that a check of postconditions of invoked specification functions goes
automatically and its results shall not be taken in account, i.e. check operation in a scenario function
is of an extra nature. .

specification int f_spec(void);
scenario bool f_scen() {
 f_spec();
 return true;
}

7.2.1 Iteration statement

An iteration statement is used in a scenario function only and is intended for parameterized
enumerating of testing interactions.

From the syntax perspective, an iteration statement is similar to the for cycle:

iterate (continuation_cond; increment; filtration_cond) body;
A declaration is a mandatory expression and represents a declaration of an iteration variable and its
initialization (unlike C, where a variable is declared beyond a cycle). The iteration variable must be
of an allowable type.

As invocation of a scenario functions is executed in each new model state, then life time iteration
variable goes beyond the scope of the execute time of scenario function in which it was declared.
Each model state of the system must be correspond to own copy iteration variable to provide
efficiency of increment. When scenario function is invoked in a certain state, the value, which the
iteration variable has received in the previous invocation within the same state, will be used as a
value of such variable.

Continuation condition and increment perform in the same way as similar expressions of the for
cycle do.

Filtration condition represents a logical expression. If it is false, then a transition to the next value
of the iteration variable occurs. Filtration condition may be omitted, and in this case it is equivalent
to the expression true, i.e. none of the iteration variable values will be rejected.

Therefore, the following construction:

iterate (int i=0; i<10; i++;i&1==0) { ... }
to a certain sense is similar to the for cycle:

int i;
for (i=0; i<10; i++) {
 if (!(i&1==0)) continue;
 ...
}

This model may be used in order to represent a sequence of invocations that will be generated
within a single scenario state. However, a distinction should be recognized between an iteration
statement and a cycle. First, a value of the iteration variable depends on a scenario state, while a
value of the cycle variable does not. Second, at a single scenario function invoking, only a single
iteration is executed; it defines transition from one scenario state to another. In the case that a usual
cycle is used within a scenario function, all the invocations enumerated by the cycle will be
executed within the same transition.

Nested iteration statements are acceptable. However, successive iteration statements may not be
used.

Iteration statement by coverage is specially intended to enumeration of all elements of any
coverage.

In the process of testing without deferred reactions, a scenario state alters together with the process
of testing interaction that occurs at the moment of invoking of a specification function. Therefore, if
in the result of the specification function performance global variables change, then already updated
values will be accessible within a scenario function after it has been invoked. But the state variables
as well as iteration variables will preserve their values that correspond to the previous scenario
state, until the scenario function finishes.

In the process of testing with deferred reactions, a scenario state does not alter within the scenario
function performance. Such alteration occurs in the end of performance of the scenariofunction, as
soon as all deferred reactions have been caught.

7.2.2 Scenario state variables

Along with iteration variables, there is another type of variables the value of which depends upon
the scenario state—scenario state variables. For every scenario state, there is a copy of such a
variable proper to it, with its individual value. If a scenario function is invoked in a certain scenario
state, the value which has been received by the variable during the previous invocation in the same
state will be used as the variable value.

Declaration of the scenario state variables starts with the modifier stable and must contain
initialization. The scenario state variables should be of the allowable type.

stable int i = 0;

The location where such variables are declared in the scenario function, will affect only their
visibility scope, not the functionality.

8 Additional facilities

8.1 String and XML representations of non-specification
types.

CTESK toolkit allows to define user functions of forming string and XML representation not only
for specification types but also for any types of C, built using typedef construction, and also for
types with invariants. Format and rules of forming XML representation values the same as
specification types.

User functions of forming string and XML type representation specify in the following way.

Let there be declaration of type T

typedef struct { int x; int y } T;
For redefining of standard method of string representation construction is necessary to define
function

String* to_String_T(T*);
For redefining of standard method of XML representation construction is necessary to define
function

String* to_XML_T(T*);
It's important keep in mind that given functions will be used for tracing not only T type objects but
also:

• “pointer to T” object type (any level):

specification void f(T *t);
• arrays, element of which are T or pointer to T:

specification void f(T t[10]);
• type-invariant objects, built on T type bases:

invariant typedef T InvT;

specification void f(InvT *it);
In addition, user function of non specification types representation will be invoked during tracing of
type fields values, base for specification types:

specification typedef struct { String *str; T t; } S;
specification void f(S *s);

But user functions will not invoked for non invariant types, built using typedef construction
“over” the types, for which these functions are not defined:

typedef T T2;
specification void f(T2 *t2);

During tracing of t2 value of to_string_T and to_XML_T functions will not be used.

9 SeC Semantic
SeC is the extension of C programming language, for test development on the base of formal
specifications.There are special constructions, introduced to describe requirements to a system under
test and other components of the test system in a compact and convenient manner in SeC. This makes
test development maximally comfortable, and allows reduction of training costs for specialists who are
already be aware of C.

SeC language introduce the specification data types (see Specification data types), data types and
global variables invariants, test scenario (see Test scenario) and tree kinds of functions: specification
(see Specification functions, Deferred reactions), mediator(see Mediator functions) and scenario(see
Scenario functions)functions. These types, invariants and functions are defined in specification files
with .sec extension. Specification header files are included to specification files by means of #include
C preprocessor command. Specification files may also contain usual C functions, required for various
auxiliary purposes. When use of data types, and functions is necessary, usual C header files are
included.

For the convenience of writing and reading of logical expressions, the implication operator => is
additionally introduced in SeC, which is a binary infix operator, whose priority is below that of the
disjunction operator ||, but is above the priority of the conditional operator ?:. The expression x => y
is equivalent to the expression !x || y, and in the process of its evaluation, similar to evaluation of
other logical operators, the rules of short logic are applied. The implication operator is associative from
left to right, i.e. the expression x => y => z is equivalent to the expression (x => y) => z.

9.1 Specification
Specifications represent a formal description of requirements to a system under test in form of data
invariants and specifications of a system under test's behavior. Specifications can use both data of a
system under test and it's own specification data model for description of requirements.

9.1.1 Specification functions

Specification functions are intended for describing behavior of the system under test, experiencing
external actions throw a part of its interface.

Specification function defines:

• constraints of access to data;

• precondition;

• local coverage criteria;

• postcondition;

Specification functions are declared and defined in specification files and are marked by
specification SeC keyword. They can contain the following elements:

• Description of access constraints of the specification function to global variables and
parameters.

• Description of local coverages (only inside the functions prototypes).

• Precondition, describing when behavior of the system under test is defined.

• Local coverage criteria , describing partition of the system under test behavior into functional
branches, when interaction is fulfilling throw a part of interface described by the
specification function.

• Postcondition , describing constraints of results of the system under test functioning,
described by the specification function.

• Auxiliary SeC code outside precondition, coverage criteria, and postcondition.

Specification functions are called in the same way as the usual functions. In the invocation point of
a specification function the following is performed in the specified order during a test run: check for
data type invariants for expressions with reads or updates access, check for variables with
reads or updates access, check for precondition, determining coverage elements for values of
passed argument, call for mediator set for this specification function, check for immutability of
expressions with reads access, check for data type invariants for expressions with writes or
updates access, check for variables with writes or updates access, check for postcondition .

Syntax

(declaration_specifiers)?
"specification"
(declaration_specifiers)?
declarator
(declaration)*
compound_statement
;

Semantic rules

1. Names of specification functions belong to the same namespace as names of usual C
functions.

2. Specification function must be defined exactly once within all translation units
(translation_unit).

3. Not allowed to add any entity with the names which concur with the name of this
specification function in declaration or specification of specification function

4. For every global variable and parameter (or their parts), used in a specification function, all
declarations and declaration of the function must contain appropriate access constraints
(se_access_description).

5. In all declarations and declaration of the function the access constraints must be the same.

6. Compound statement of a specification function must contain exactly one postcondition
(se_post_block_statement) after coverage criteria and precondition blocks, if they present.

7. Compound statement of a specification function can contain no more than one precondition
(se_pre_block_statemen) before coverage criteria (it they present) and postcondition blocks;
after precondition must be followed by compound statement, or first coverage criterion, or
postcondition.

8. Compound statement of a specification function can contain several local coverage criteria
(se_coverage_block_statement with initializer
se_coverage_derivation_initializer or
se_coverage_function_initializer) following one after another, after precondition
(if it present) and before postcondition; after last coverage criterion must be followed by
compound statement or postcondition.

9. There can be no other constructions between se_coverage_statement constructions.

10. Constructions se_pre_block_statement, se_coverage_statement and
se_post_block_statement may be putted in syntax nodes block_item (code blocks are
limited by curly brackets).

11. With a glance of auxiliary code the specification function's body must have the following structure:

{
 auxiliary_code_1_1
 pre { ... }
 {
 auxiliary_code_2_1
 coverage name_1 { ... }
 ...
 coverage name_n { ... }
 {

 auxiliary_code_3_1
 post { ... }
 auxiliary_code_3_2
 }
 auxiliary_code_2_2
 }
 auxiliary_code_1_2
}

12. Any one of auxiliary code's blocks may be absent.

13. On conditions that a couple auxiliary_code_2_1 and auxiliary_code_2_2 or auxiliary_code_3_1 and
auxiliary_code_3_2 is absent, it is allowed don't writing the curly brackets which consist the
missing couple of an auxiliary code.

14. Specification function must have no side effects:

14.1. values of global variables and data, passed by reference, must not change;

14.2. dynamic storage, allocated in a specification function, must be freed at the same
nesting level (in the same compound statement):

14.2.1. storage, allocated in precondition, coverage criteria, or postcondition, must
be freed in the same block;

14.2.2. storage, allocated in the beginning of specification function, must be freed in
its ending after precondition, coverage criteria, postcondition, and compound
statements containing coverage criteria and postcondition;

14.2.3. storage, allocated in compound statement after precondition, must be freed in
the end of this compound statement after coverage criteria, postcondition, and
compound statement containing postcondition;

14.2.4. storage, allocated in compound statement before postcondition, must be freed
in the end of this compound statement after postcondition.

9.1.2 Deferred reactions

Deferred reactions are declared and defined in specification files as functions without parameters,
marked by reactions SeC keyword, and returning pointers to specifications data types. They
can contain the following elements:

• Description of access constraints of the deferred reaction to global variables.

• Precondition , describing when appearance of such reactions is possible.

• Postcondition , describing constraints of global variables that must be satisfied after
occurrence of this deferred reaction.

• Auxiliary SeC code outside precondition and postcondition.

Syntax

(declaration_specifiers)?
"reaction"
(declaration_specifiers)?
declarator
(declaration)*
compound_statement
;

Semantic rules
1. Names of deferred reactions belong to the same namespace as names of usual C functions.

2. Deferred reactions must be defined exactly once within all translation units
(translation_unit).

3. Deferred reactions must not contain parameters which type of return value may be only a
pointer on specification type.

4. Not allowed to add any entity with the names which concur with the name of this
specification function in declaration or specification of deferred reactions.

5. For every global variable and parameter (or their parts), used in reactions, all declarations
and declaration of the function must contain appropriate access constraints
(se_access_description).

6. In all declarations and declaration of the reactions the access constraints must be the same.

7. Compound statement of a deferred reaction must contain exactly one postcondition
(se_post_block_statement) after precondition block, if it presents.

8. Compound statement of a deferred reaction can contain no more than one precondition
(se_pre_block_statemen) before postcondition blocks; after precondition must be followed
by compound statement or postcondition.

9. With a glance of auxiliary code the deferred reaction's body must have the following
structure:

{
auxiliary_code_1_1
pre { ... }
 { auxiliary_code_2_1
 post { ... }
 auxiliary_code_2_2
 }
 auxiliary_code_1_2
}

10. Any one of auxiliary code's blocks may be absent.

11. On conditions that a couple auxiliary_code_2_1 and auxiliary_code_2_2 is absent, it is
allowed don't writing the curly brackets which consist it.

12. Deferred reaction must have no side effects:

12.1. values of global variables must not change;

12.2. dynamic storage, allocated in a reaction, must be freed at the same nesting level
(in the same compound statement):

12.2.1. storage, allocated in precondition, or postcondition, must be freed in the
same block;

12.2.2. storage, allocated in the beginning of reaction, must be freed in its ending
after precondition, postcondition, and compound statements containing
postcondition;

12.2.3. storage, allocated in compound statement after precondition, must be freed in
the end of this compound statement after postcondition.

9.1.3 Access constraints

Access constraints are described after specification function or deferred reaction signature. Modifier
reads is used to indicate read-only access, writes—write access, and updates—update access.
Access modifier affects all identifiers listed after it until next modifier or beginning of function or
reaction body. Aliases for constrained expressions can be defined in access constraints.

If an expression has update access (updates modifier), it possesses prevalue before post keyword,
i.e. value before interaction with system under test, described by the given specification function, or
value before occurrence of the given reaction. After post keyword the expression possesses
postvalue, i.e. value after interaction with system under test or after occurrence of the reaction;
prevalue after post keyword can be accessed via @ SeC operator.

Syntax

se_access_description ::= se_access_specifier se_access
 ("," se_access)*
 ;

se_access_specifier ::= "reads" | "writes" | "updates" ;
se_access ::= (se_access_alias)? assignment_expr ;

Semantic rules
1. In access constraints for a function or reaction the same expression cannot be used several

times with different access modifiers.

2. If an expression has write access (writes modifier), it cannot be used in function or
reaction before post keyword.

3. Parameters of a function cannot be used as expressions with a write access(writes
modifier).

4. If an expression has read-only access (reads modifier), its value is accessible everywhere
inside function or reaction, and cannot change.

9.1.4 Aliases

Aliases are defined by a mere assignment in access constraints. In a specification function or
deferred reaction aliases can be used in the same way as local variables.

Syntax

se_access_alias ::= <ID> "=" ;

Semantic rules
1. Alias identifier cannot coincide with parameters identifiers, local coverages names and must

be unique within access constraints of specification function or deferred reaction.

9.1.5 Precondition

Precondition of a deferred reaction describes when appearance of such a reaction is possible.
During test run precondition of deferred reaction is checked every time when the reaction occurs.

Violation of precondition indicates inconsistency between behavior of the system under test and its
specification.

Precondition in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same parameters as the specification function (deferred reactions have no
parameters) and returning a boole an value. These instructions must be enclosed in curly braces
and marked by pre keyword.

Syntax

se_pre_block_statement ::= "pre" compound_statement ;

Semantic rules

1. Specification function or deferred reaction can contain no more than one precondition,
defined before coverage criteria (if they present) and postcondition.

2. Precondition can be omitted, that is equal to precondition, always returning true.

3. Precondition must have no side effects, i.e. it cannot change values of global variables and
data, passed by reference.

4. Instructions in precondition must be syntactically and semantically equal to a function body
with the same signature as the specification function or deferred reaction and returning a
boolean value.

5. Precondition cannot use expressions with write access (i.e. defined in access constraints with
writes specifier).

9.1.6 Postcondition

Postcondition of specification function is intended for description of constraints of results of the
system under test functioning during interactions with it through a part of the interface, described
by the specification function. During test run postcondition is checked every time after appropriate
interaction with the system under test. Violation of postcondition indicates inconsistency between
behavior of the system under test and its specification.

Postcondition of deferred reaction is intended for description of constraints of values of the reaction
and global variables after occurrence of this reaction. Violation of postcondition after occurrence of
the reaction and its mediator completion indicates inconsistency between behavior of the system
under test and its specification.

Postcondition in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same parameters as the specification function (deferred reactions have no
parameters) and returning a boolean value. These instructions must be enclosed in curly braces and
marked by post keyword.

Syntax
se_post_block_statement ::= "post" compound_statement ;

Semantic rules
1. Specification function or deferred reaction must have exactly one postcondition.

2. Postcondition must be defined after precondition (if it presents) and after the last local

coverage criterion (if coverage criteria present).

3. Instructions in postcondition must be syntactically and semantically equal to a function
body with the same signature as the specification function or deferred reaction and returning
a boolean value.

4. Postcondition must have no side effects, i.e. it cannot change values of global variables and
data, passed by reference.

5. Postcondition and code after postcondition can use the following additional constructions:

5.1. Preexpressions with @ operator (see Preexpressions);

5.2. Value returned by the specification function (or value of the occurred reaction) is
accessible via identifier of this function (or reaction), with the exception of void
functions.

5.3. Access to elements of local coverage which were computed early (If local
coverages are defined in a specification function).

5.4. Pseudovariable timestamp of TimeInterval type contains start and finish time
marks for invocation of mediator of the specification function, or time marks supplied
on deferred reaction registration.

9.1.7 Pre-expressions

Pre-expressions are used for specification of constraints of the system under test state before and
after test action, or before and after occurrence of deferred reaction.

Syntax
"@" cast_expr ;

unary_expr ::= postfix_expr
 | "++" unary_expr
 | "--" unary_expr
 | unary_operator cast_expr
 | "sizeof" unary_expr
 | "sizeof" "(" type_name ")"
 | gcc_extension_specifier cast_expr
 ;

unary_operator ::= "&" | "*" | "+" | "-" | "~" | "!" | "@" ;

cast_expr ::= unary_expr
 | "(" type_name ")" cast_expr
 ;

Semantic rules
1. @ operator can be used only after post keyword in the thread of execution.

2. Preexpression that is used in a postcondition, must be computable before this postcondition
in the thread of execution.

3. Preexpression must not be embedded into each other.

9.2 Specification data types
Specification data types are defined by usual C-like typedef construction marked by
specification SeC keyword. This construction can contain several declarations with initializers.
If initializer is omitted, it declares new specification data type, otherwise it defines new
specification data type with its own name.

Values of specification data types are located in a dynamic storage with automatic management. It
maintains reference counters for each specification data type object and automatically destroys
objects when there are no references to them.

Specification extension of C contains built-in incomplete specification data type Object. It is the
base data type of all specification objects but no objects can be of this type. Type of reference to
Object (i. e. Object*) is used in the same way as void*. Reference to any specification data type
can be casted to reference to Object and vice versa. Note that behavior is not defined when object,
referenced as Object*, is casted to incompatible data type.

Syntax
declaration ::= (((declaration_specifiers)?
 "specification"
 (declaration_specifiers)?
 "typedef"
 (declaration_specifiers)?
)
 | ((declaration_specifiers)?
 "typedef"
 (declaration_specifiers)?
 "specification"
 (declaration_specifiers)?
)
)
 (init_declarator ("," init_declarator)*)?
 ";"
 ;

Semantic rules
1. Specification data types cannot be local.

2. Names of specification data types belong to the same namespace as typedef-names.

3. Definition of specification data type with a given name (declarator with initializer) can occur
only once in all translation units (translation_unit).

4. Initializer in definition of specification data type must look like the following: = {
.<field(1)> = <expr>, .<field(2)> = <expr>, ... }. Inside the curly braces there
must a list (possibly empty) of constructions like .<field(i)> = <expr>, separated by
commas. <field(i)> can possesses one of the values: init, copy, compare, to_string,
enumerate, or destroy. <expr> must have appropriate data type according to the field
specified:
/* Object initializer type
 (object initialization by pointer 'ref') */

typedef void (*Init)(void* ref, va_list* arg_list);

 /* Object copier type (copy <data> from 'src' to 'dst')

*/

typedef void (*Copy)(void* src, void* dst);

 /* Object comparer type (compare <data> of 'left' and
'right') */

typedef int (*Compare)(void* left, void* right);

/* Object stringifier type (make string representation of
<data>) */

typedef String* (*ToString)(void* obj);

typedef String* (*to_XML)(void* ref);

/* Subobjects enumerator type (enumerate objects belonging to
the given one) */

typedef void (*Enumerate)
 (void* obj, void (*callback)(void* ref, void* par),
 void* par
);

/* Object destructor type (free resources allocated by object)
*/

typedef void (*Destroy)(void* obj);
Detailed information on functions to be used in an initializer can be found in “Library of
specification data types” section.

5. If field initializer is omitted in a specification data type definition, appropriate default function
is used.

In default functions pointer to any data type (except specification, functional, and void data
types) are treated as pointer to a single value of this data type. It means that all functions should
be provided by the user when base data type is a pointer to several values (examples are array or
character string).

6. The following data types are prohibited to be used as base types for specification data types:

6.1. specification, functional, and incomplete;

6.2. unions, arrays, and structures, containing above-listed data types.

The following data types are prohibited too if one or more field initializers are omitted in
a specification data type definition:

6.3. unions and arrays of variable length;

6.4. structures and arrays, containing all above-listed data typed

6.5. pointers to unions, arrays and other structures.

7. If specification data type declaration contains keyword invariant, an invariant must be
declared for this data type.

8. All base types are mentioned in the declarations and specification data type definition must
be compatible against each other.

9. If at least one specification data type declaration contains invariant keyword, all declarations
and definition must contain this keyword.

10. Specification data types can be used only by reference, like incomplete data types of C. The
following are prohibited:

10.1. declarations of variables of specification data types;

10.2. unions, structures, and arrays, containing fields or elements of specification data
types; and so on.

9.3 Invariants of types
Invariants of data types are declared by C-like typedef construction, marked by invariant SeC
keyword. This construction defines new data types names, like usual typedef. But as distinct from
typedef, range of defined data type not equals to range of the base data type, its a subrange of base
data type range. Thus invariant typedef defines not a synonym for base data type expression, but a
new data type with its own range.

Constraints of base data type range are described in a compound statement (compound_statement)
that syntactically and semantically equals to a function body without side effects, returning a
boolean value, and having one parameter of:

• defined subtype, if the base type is usual C data type,

• pointer to defined subtype, if the base type is specification data type.

Compound statement of invariant is marked by invariant modifier followed by the formal
parameter of appropriate type in parentheses. Type of returning value is fixed and thus not indicated
directly.

Invariant of data type can be checked for an expression of appropriate data type. Expression of
invariant call consists of invariant keyword followed by an expression to check in parenthesis.
Invariant call evaluates to true if a value of the expression to test satisfies invariant constraints, and
to false otherwise.

Syntax

declaration ::= ((declaration_specifiers)?
 "invariant"
 (declaration_specifiers)?
 "typedef"
 (declaration_specifiers)?
)
 | ((declaration_specifiers)?
 "typedef"
 (declaration_specifiers)?
 "invariant"
 (declaration_specifiers)?
)
 (init_declarator ("," init_declarator)*)?
 ";"
 ;

"invariant" "(" parameter_declaration ")" compound_statement
"invariant" "(" assignment_expr ")"

Semantic rules
1. Data type invariant cannot be defined for a local data type.

2. Data type must be defined by typedef construction before definition or call of this data type
invariant, and its declaration specifiers (declaration_specifiers) must include invariant SeC
specifier (se_declaration_specifiers).

3. If at least one declaration of data type in a translation unit (translation_unit) contains
invariant SeC specifier (se_declaration_specifiers), all declarations and definition of this

data type in all translation units must contains invariant specifier, and definition of
appropriate data type invariant must occurs once in all translation units (translation_unit).

4. Specification of this type invariant must occurs once in all translation units
(translation_unit) which are gathered in one system.

5. During the type with invariant definition using of functional types and void as a base data
type are prohibited.

If base data type in definition of data type with invariant is a specification type, parameter in
invariant definition is declared as pointer to defined data type. User can be sure that inside invariant
body this pointer is not NULL. For invariants of other data types (including pointer to specification
type) parameter in invariant definition is declared as defined data type.

6. If in the capacity of base data type with invariant is used a specification type,then the
parameter in the expression of invariant call must have a type which conforms a
specification reference. Otherwise there is the expression of the type which invariant is
checking in the expression of type invariant call in parenthesis.

7. Data type invariant call expression must contains in parenthesis an l-value expression .

9.4 Variable invariant
If a global variable cannot possess all values of its data type range, the range should be constrained
by variable invariant. For that all declarations of such variables must be marked by invariant SeC
keyword to indicate that the declared variables have constrained range.

Range constraints are described in a compound statement (compound_statement) that syntactically
and semantically equals to a function body without side effects, without parameters, and returning a
boolean value.

Compound statement of invariant is marked by invariant modifier followed by the variable
identifier in parentheses. Type of returning value is fixed and thus not indicated directly.

Invariant of a variable can be checked for this variable value. If a variable has a type with a
determined invariant, type invariant will be checked before the checking of the variable invariant .

Expression of invariant call consists of invariant keyword followed by variable name in parenthesis.
Invariant call evaluates to true if a value of the variable satisfies invariant constraints, and to false
otherwise.

Syntax

(declaration_specifiers)? "invariant" (declaration_specifiers)?
(init_declarator ("," init_declarator)*)? ";"
;

"invariant" "(" <ID> ")" compound_statement ;
"invariant" "(" <ID> ")"

Sematic rules

1. Variable invariants can be defined only for global variables.

2. Variable must be declared before definition or call of this variable invariant, and its
declaration specifiers (declaration_specifiers) must include invariant SeC specifier
(se_declaration_specifier).

3. If definition or at least one declaration of variable contains invariant SeC specifier
(se_declaration_specifier), all declarations and definition of this variable in all translation
units (translation_unit) must contains invariant specifier, and definition of this variable
invariant must occurs once in all translation units.

4. Variable invariant definition and call expression must contain in parenthesis the name of the
appropriate variable as the only parameter.

5. Invariant body must syntactically and semantically be equal to a function body without side
effects, without parameters, and returning a boolean value.

9.5 Test scenario
In SeC language test scenario is defined in the same way as global variable which specifiers contain
scenario keyword. Type of test scenario specifies test engine and is indicated by an identifier, defined
in typedef construction. The following corresponds to each test engine:

• data type of information, necessary for test building, which is the base type in typedef
construction that defines test scenario type,

• function to run the test built by this test engine.

Test scenario is initialized in its definition by a value, appropriate for the given test engine.

Test is run by a function call construction, where the name of a function is the name of the test scenario,
and parameters are semantically equal to parameters of standard function main(int argc, char**
argv).Test run construction evaluates to true, if the test completed correctly and no errors were found
during testing, and to false otherwise.

Syntax

(decl_specifiers)?
"scenario"
(decl_specifiers)?
(init_declarator ("," init_declarator)*)? ";"
;

Semantic rules
1. Names of test scenarios belong to the same namespace as names of usual global variable of

C language.

2. Test scenario must be defines exactly once within all translation units (translation_unit).

3. Test scenario cannot be defined locally.

4. Type of test scenario must be specified by an identifier defined by typedef construction.

5. Identifier of test scenario type is a name of a test engine.

6. Initializer data type must be compatible with test scenario type.

7. If scenario type is a structure, it is possible to use dereferencing syntax of C99 standard in
spite of actually used C standard.

8. Test scenario call looks like a call of a function with two parameters of int and char** types
respectively. Second parameter must point to an array of character strings, terminated by
zero character; the last element of this array (and only last) must be a null pointer. First
parameter must be equal to size of the array without last element.

9. Test scenario call evaluates to boolean value.

10. Full definition of a test engine requires definition of a function to run tests built by the
engine. This function must have the following signature.

bool start_<test_engine>(int argc
 , char** argv
 , <test_engine>* td
)

9.6 Scenario functions
In SeC language scenario function is specified as a function without parameters, returning a boolean
value, and marked by scenario keyword. Scenario functions can perform additional checks on basis
of results of system under test functions execution. Scenario function must evaluate to true, if the
system under test behaves correctly, and to false otherwise. Test system automatically takes into
account postcondition checks of executed specification functions or occurred deferred reactions, so
scenario functions should not consider them.

Syntax
(decl_specifiers)?
"scenario"
(decl_specifiers)?
declarator
(declaration)*
compound_statement ;

Semantic rules
1. Names of scenario functions belong to the same namespace as names of usual functions of C

language.

2. Scenario function must be defined exactly once within all translation units
(translation_unit).

3. Scenario functions must have no parameters and must return a boolean value.

4. Scenario functions cannot be invoked directly.

5. Scenario functions can contain iteration statement, iteration statement by coverages, state
variables.

9.6.1 Iteration statement

Two types of iteration statements can be used in scenario functions: the usual iterator and the
iteration statement by coverage elements. The description of the latter strongly connects with
terminology of coverages, therefore it is taken out to the relevant part.

Iteration statement starts with iterate keyword followed by the following list in parenthesis,
separated by semicolon:

• Declaration and initialization of iteration variable;

• Controlling expression;

• Iteration expression;

• Filter expression;

All parts except first are not mandatory and can be omitted. Note that filter expression without
iteration expression can lead to infinite looping. Declaration are finished by the iteration body.

Therefore, the following construction:

iterate (int i=0; i<10; i++;i&1==0) { ... }
to a certain sense is similar to the for cycle:

int i;
for (i=0; i<10; i++) {
 if (!(i&1==0)) continue;
 ...
}

Iteration variable are not local variables, they are a kind of state variables. Their values are
remembered in a special data structure, associated with the current generalized model state. These
values become accessible as the model falls within the same generalized state.

Syntax

se_iteration_statement ::= "iterate"
 "("
 declaration
 (expression)?
 ";"
 (expression)?
 ";"
 (expression)?
 ")"
 statement
 ;

Semantic rules
1. Iteration statements can be used only in scenario functions.

2. Controlling expression and filter expression must have bool data type, if they present.

3. One and only one iteration variable can be declared in the start declaration.

4. Iteration variable cannot be of incomplete or local data type and must be initialized.

9.6.2 State variables

State variables are intended to store data, associated with generalized model state. Values of such
variables become accessible as the model falls within the same generalized state. Declaration of a
state variable starts with stable modifier followed by declaration of local variables. The following
code:

operator_1;

stable int i = 1;

operator_2;

equals to the following:

operator_1;

iterate(int i = 1; false ;;)
{
 operator_2;
}

Syntax

(declaration_specifiers)?

"stable"
(declaration_specifiers)?
(init_declarator ("," init_declarator)*)? ";" ;

Semantic rules
1. State variables can be used only in scenario functions.

2. State variables cannot be of incomplete or local data type and must be initialized.

9.7 Coverages
Complete information about a coverage (accessible within the bounds of the test) can be broken up:

1. Name of a coverage

2. Elements of a coverage

3. For computable coverages - function of coverage's element computation.

Specification of these coverage's characteristics can take place inside the compilation module in
accordance with the rules: using the different kinds of specifications and declarations. Inside the
compilation module the full information about each coverage must be presented for the correct
work of operation of access to the coverage and his elements.

Each coverage can belong to the specification function or to be independent. That way, coverages
are divided into local and global ones:

• Global coverages aren't attached to the specification functions. Their visibility scope is the
compilation module. They are declared and specified on a global basis.

• Each local coverage is attached to the specification function; they are considered the
specified on this function's layer and they have the visibility scope which is a interval
between own specification and the end of function's body. Specifications and declarations
of local coverages are contained in the prototype and determining a specification function;

Also the coverages are divided by means of setting elements and the method of computing an
achieved element:

• If the author of the test immediate specifies the collection of the elements for coverage and
marks on his own the achieved element then this coverage is a enumerable one.

• If the author of the test immediate specifies the collection of the elements for coverage and
defines the function of computation the achieved element then this coverage is a computable
one. Computation function is a indispensable part of such coverage.

• If the author of the test defines some enum-type in the capacity of the collection of the
coverage's elements then Computation function is generated on basis of this type's structure
and the coverage is called enum-coverage.

With the operations on the coverages' elements capabilities of using information about coverage's
elements are realized for controlling of the test's course and recording data in the report.

9.8 Declarations and specifications of coverages
There are five kinds of coverages declarations and specifications:

1. shortcut declaration;

2. full declarations;

3. declarations of the primary computable coverages;

4. specification of the primary computable coverages;

5. shortcut specification.

The following kinds of constructions are the coverages specifications:

• full declaration, which doesn't contain extern;

• specification of the primary computable coverages;

• shortcut specification.

All other kinds of constructions are the coverages declarations. Declarations and specifications of
the same coverage in the context of one compilation module must follow one be one in such a way
that a quantity of known information about a coverage increases strictly with each declaration (each
coverage has only one specification).References to the semantic rules of location for the concrete
declaration type can be found in the end of the rule set which are general for all declarations and
specifications.

Syntax

se_coverage_declaration ::= ("extern")? "coverage" ("enum")? <ID>
 ("(" (parameter_type_list)? ")")?
 (se_coverage_initializer
 | ";"
)
 ;

se_coverage_initializer ::= se_coverage_elements_initializer
 | se_coverage_derivation_initializer
 | se_coverage_function_initializer
 ;

statement ::= ...
 | se_coverage_statement
 ;

se_coverage_statement ::= se_coverage_declaration ;

Semantic rules
1. General requirements to coverages declarations and specifications.

1.1. The names of global coverages enter into the file visibility scope.

1.2. The names of local coverages have the visibility scope, which is limited by
specification function much as the visibility scope of structure fields is limited by the
structure.

1.3. For every coverage within the one translation_unit may be no more then one

declaration or specification for every kind. (for example, it can't be two complete
declarations for the same coverage).

1.4. Names of coverages elements have the visibility scope,which is limited the
coverage much as he visibility scope of structure fields is limited by the structure.

1.5. As a whole the dependent files which compose one program must be exactly one
specification for every declared coverage.

2. se_coverage_declaration requirements.

2.1. First construction identifier se_coverage_declaration sets the coverage's name.

2.2. Construction se_coverage_declaration can be nested direct in

2.2.1. translation_unit;

2.2.2. se_coverage_statement.

3. se_coverage_declaration of global coverages requirements:

3.1. If there isn't extern, then se_coverage_declaration is a coverage
specification always.

3.2. If declaration or specification of global coverage has parentheses then set a
computable or enum- coverage in it.

3.3. If se_coverage_declaration, which set a global coverage has enum, then
enum- coverage is specified.

4. Requirements to se_coverage_declaration of local coverages:

4.1. Construction se_coverage_statement can be present only at the definition
of specification function's body between pre- and postcondition.

4.2. extern specificator is forbidden.

4.3. Enum is forbidden (can't be local coverages).

4.4. Parentheses are forbidden (list of parameters for local coverages is predeclared
by embedding specification function).

4.5. Only such kinds of initializers are permitted:
se_coverage_derivation_initializer or
se_coverage_function_initializer.

4.6. se_coverage_declaration which nested in s se_coverage_statement
always must be a coverage specification.

5. General requirements to se_local_coverage_description.

Syntax

direct_declarator ::= // ...
 | direct_declarator
 "("
 parameter_type_list
 ")"
 (se_access_description)*
 (se_local_coverage_description)*
 | direct_declarator
 "("
 (<ID> ("," <ID>)*)?
 ")"

 (se_access_description)*
 (se_local_coverage_description)*
 ;

se_local_coverage_description ::= "coverage"
 se_local_coverage
 (
 ","
 se_local_coverage
)*
 ;

se_local_coverage ::= <ID>
 (se_coverage_elements_initializer
 | se_coverage_derivation_initializer
)?

5.1. Identifier in se_local_coverage sets a name of local coverage.

5.2. Construction se_local_coverage_description can be present at
external_declaration only and if only embedding external_declaration is a
prototype of specification function.

5.3. If translation_unit has some prototypes of the same specification
function, then only one of them can contain the local coverage description.

5.4. se_local_coverage is a coverage declaration always.

6. General requirements to the global computable coverage (including enum-coverage)

6.1. Types and names of the coverage parameters must satisfy the requirements to the
types and names of C-function declarations or specifications parameters depending on
whether se_coverage_declaration is a coverage declarations or specifications.

6.2. Parameters' names must not coincide with the name of declarations or
specifications coverage.

6.3. Under the translation_unit lists of parameters all declarations and
specifications of the same global computable coverage(including enum-coverage) must
be equal. That is must coincide:

6.3.1. quantity of parameters;

6.3.2. types of parameters;

6.3.3. names of parameters.

7. General requirements to local coverages.

7.1. Local coverage is a coverage with the function of elements computation. The
collection of coverage parameters coincide with the collection of embedding
specification function parameters.

7.2. Names of all local coverages which are declared and specified for one
specification function must be different.

7.3. Names of local coverages mustn't coincide with:

7.3.1. name of embedding specification function;

7.3.2. names of its parameters;

7.3.3. alias from the access constraints.

7.4. More precise to foregoing requirements: under the definition of specification
function local coverages are parts of visibility scope corresponding to the block which
contains the coverage definitions.

7.5. For each local coverage which is announced in local coverage description the
definition of the same specification function must contain the coverage definition with
the same name.

7.6. There are local coverages must be defined in the same way they were defined in
local coverages description of prototypes this specification function in the description of
a specification function.

9.8.1 Shortcut declaration

Shortcut coverage allows to declare the coverage having set only its name.

 Shortcut definition of global coverage is used for using in one file of a compilation module the
coverage's definition which is in the another file. Shortcut specifications of local coverage must be
parts of a prototype of an embedding specification function. A coverage can't be defined in a
shortcut declaration (initializer is invalid).

Similarly to declarations of variables in C language shortcut declaration is specified by extern
keyword for the global coverages; also for the global coverages enum keyword is invalid. These
constrains are set by requirements to se_local_coverage_description for the local
coverages.

Shortcut declaration of a global coverage.

extern coverage C(int x, int y);

Shortcut declaration of a local coverage.

specification void f(int x) coverage C;

Semantic rules
1. No one declaration or specification of the same coverage mustn't precede the shortcut

declaration of the coverage.

2. The shortcut declaration of the coverage can precede any other form of the same coverage
declaration or specification except that shortcut declaration.

9.8.2 Full declaration

Full declaration is destined for specify all necessary information about a coverage – name, elements
and probably computation function.

Full declaration is the syntactical structure giving all necessary information about the described
coverage.

1. If the full declaration hasn't extern specifier then full declaration is a coverage's
specification .

2. If the full declaration of a local coverage is present in specification function's definition it is
a specification, if it is present in prototype then it's declaration .

Full declaration are allowable one for following kind of coverages:

1. enumerable coverage;

2. derived coverage;

3. enum- coverage's.

Semantic rules
1. Before full coverage declaration The translation_unit text can contain only shortcut

declaration of the same coverage.

2. If the full declaration of the global coverage hasn't extern,then this declaration is a
coverage's specif.

9.8.3 Full declaration of enumerable coverage

The full declaration of an enumerable coverage sets its name and also the names and the textual
description of its elements.

The full declaration of a coverage is governed by the specification and declaration syntax.

Since enumerable coverages can be only the global ones full specification of an enumerable
coverage is set by the construction se_coverage_declaration only.
The construction se_coverage_declaration is a full declaration of an enumerable coverage
on conditions that:

1. There isn't enum;

2. There aren't parentheses;

3. There is an initializer in the form of se_coverage_elements_initializer.

Full declaration of enumerable coverage

extern coverage C
 = { C1 = "first element", C2, C3 = "third element" };

Syntax

se_coverage_elements_initializer ::= "="
 "{"
 se_coverage_element_declaration
 (","
se_coverage_element_declaration)*
 "}"
 ";"
 ;
se_coverage_element_declaration ::= <ID>
 ("=" <STRING_LITERAL>)?
 ;

Optional string literals set the textual presentation of the corresponded elements. If string literal is
omitted, identifier of coverage element is used as textual representation.

Semantic rules
1. The identifier in se_coverage_element_declaration set the names of coverage's

elements.

2. Names of coverage's elements can be different.

9.8.4 Full declaration of enum – coverage

Full declaration of enum – coverage sets primary coverage is constructed on basis of the
enumerable type with the computation function on default.

Construction se_coverage_declaration is a full declaration of an enum- coverage on conditions
that:

1. There is enum;

2. There are parentheses;

3. There isn't an initializer.

Full declaration of enum – coverage

extern coverage enum ColorsCoverage(enum Colors col);

Semantic rules
1. The coverage must have only one parameter whose type is a enumerable one.

2. The names of coverage's elements coincide with the names of this enumerable type's
constants.

9.8.5 Full declaration of derived coverage

Full declarations of derived coverages set derived enumerable and computable coverages.

Construction se_coverage_declaration is a full declaration of global derived coverage on
conditions that:

1. There isn't enum.

2. There is an initializer in the form of se_coverage_derivation_initializer.

Full declaration of a global product-coverage

extern coverage PointCoverage(int x, int y)
 = IntCoverage(x) * IntCoverage(y);

Construction se_local_coverage or se_coverage_statement is a full specification of
local derived coverage on conditions that there is an initializer of the form
se_coverage_derivation_initializer.

Full declaration of local coverage by se_coverage_statement instruction

// declaration

specification void f(int x, int y)

coverage PointCoverage = IntCoverage(x) * IntCoverage(y);

Full declaration of a local coverage by se_local_coverage instruction

specification void f(int x, int y)
{
 pre{ ... };
 coverage PointCoverage(int x, int y)
 = IntCoverage(x) * IntCoverage(y);
 post{ ... };
}

Syntax

se_coverage_derivation_initializer ::= "="
 se_base_coverage
 ("*" se_base_coverage)*
 (se_coverage_filter)?
 ;

se_base_coverage ::= se_coverage_name
 ("("
 (assignment_expr ("," assignment_expr)*)?
 ")"
)?
 ;

se_coverage_filter ::= ":" expression ;

All coverages are mentioned in se_base_coverage are called base coverages of current
declaration (specification) coverage. The initializer of the current type defines how the element of
declaration (specification) coverage is built on basis of the base coverage's elements.

Semantic rules
1. If a coverage is the coverage with the function of computation elements then the coverages

which are specified in the list se_base_coverage must be coverages with the
computation function.(Otherwise the specification coverage will be noncomputable one).

2. In a different way none of coverages are specified in the se_base_coverage list musn't
be a computable coverage.

3. se_base_coverage mustn't point at the coverage about which only the name is known
(there is nothing above the compilation module text except a shortcut definition)

4. If se_coverage_derivation_initializer is present at a local coverage declaration
or specification and se_coverage_name from se_base_coverage points at a local
coverage which is refer to the same function like the declaration (specification) coverage,
then se_base_coverage mustn't have parentheses. (se_coverage_name is interpret as
an element of local coverage wich is computed with the same values of specification
function's parameters).

5. Otherwise if se_coverage_name from se_base_coverage points at computable
coverage, then

5.1. se_base_coverage must have arguments of the call.

5.2. se_base_coverage subordinates to the rules of coverage's element
computation.

6. se_coverage_name from se_base_coverage mustn't poin at declaration

(specification) coverage. (Thereby when the coverage depends on oneself the situation is
forbidden)

7. If se_coverage_derivation_initializer contains exactly one
se_base_coverage and a primary coverage is used in se_base_coverage then the
derived coverage has the same elements like the primary based coverage.

9.8.6 Primary computable coverage declaration

Primary computable coverage declaration sets:

1. coverage name;

2. types and names of a computation function;

3. names and textual presentations of the elements.

Global coverages: se_coverage_declaration is a global primary computable coverage declaration on
conditions that:

1. There is extern.

2. There are parentheses.

3. There is an initializer in the form of se_coverage_elements_initializer.

Declaration of global primary computable coverage

extern coverage IntCoverage(int x)
 = { NEGATIVE = "negative"
 , ZERO = "zero"
 , POSITIVE = "positive"
 };

Local coverages: se_local_coverage is a local primary coverage declaration if an initializer in
the form of se_coverage_elements_initializer is.

Declaration of local primary computable coverage

specification void f(int x)
 coverage ArgCoverage = { NEGATIVE = "negative"
 , ZERO = "zero"
 , POSITIVE = "positive"
 };

Semantic rules
1. Before the primary computable coverage declaration the text translation_unit can contain

only the shortcut declaration of the same coverage.

2. All aforesaid requirements must be executed which cover to
se_coverage_elements_initializer.

9.8.7 Primary computable coverage definition

A primary computable coverage definition sets:

1. coverage name;

2. names and textual presentations of the elements;

3. algorithm for elements calculation.

Definition of global primary computable coverage

coverage IntCoverage(int x)
{
 if(x < 0)
 return { NEGATIVE, "negative" };
 else
 if(x == 0)
 return { ZERO, "zero" };
 else
 return { POSITIVE, "positive" };
}

Local coverages: se_coverage_declaration is a local primary coverage definition if an
initializer in the form of se_coverage_function_initializer.

Definition of local primary computable coverage

specification void sqrt(int x)
{
 pre{ ... }
 coverage ArgCoverage
 {
 if(x < 0)
 return;
 else
 if(x == 0)
 return { ZERO, "zero" };
 else
 return { POSITIVE, "positive" };
 }
 post{ ... }
}

Semantic rules
1. Global coverages: se_coverage_declaration is a global primary computable coverage

definition on conditions that:

1.1. There isn't extern;

1.2. There isn't enum;

1.3. There are parentheses.

1.4. There is an initializer in the form of se_coverage_function_initializer.

2. Before the primary computable coverage specification the text translation_unit can
contain:

2.1. primary computable coverage declaration;

2.2. shortcut declaration of this coverage.

3. Initializer se_coverage_function_initializer.

Syntax

se_coverage_function_initializer ::= compound_statement ;

se_return_expression ::= expression
 | se_coverage_element_return_expression
 ;

se_coverage_element_return_expression ::= "{"
 (<ID> ("," <STRING_LITERAL>)?
 | <STRING_LITERAL>
)
 "}"

3.1. Only following forms of return construction are acceptable in the
compound_statement:

3.1.1. the expression is absence.It means that this branch of agency the
computation function doesn't define an element.

3.1.2. se_return_expression is of the form
se_coverage_element_return_expression.

3.2. Even though one “nonempty” return construction must be inside
compound_statement.

3.3. If present coverage declaration were above the translation_unit text then

3.3.1. se_coverage_element_return_expression must contain only the
element's identifier (thereby not allowed to redefine the elements string
representation);

3.3.2. This identifier sets the name of a coverage's element.

3.3.3. For each declaration of coverage element the definition must contain
se_coverage_element_return_expression which defines the element with
the same name.

3.3.4. For each define identifier from
se_coverage_element_return_expression the definition must contain the
coverage's element with the same name.

3.4. Otherwise if the first se_coverage_element_return_expression
element is:

3.4.1. identifier, then:

3.4.1.1. it sets the name of coverage's element. If a string literal follows after the
identifier, then it set this element's textual representation.

3.4.1.2. Only one se_coverage_element_return_expression among all
the se_coverage_element_return_expression from
compound_statement which define one and the same coverage's element can
contain this element's textual representation;

3.4.1.3. If a string literal is in none of the
se_coverage_element_return_expression which define one and the
same coverage's element then this coverage's element textual representation
coincides with its name.

3.4.2. String literal, then define nameless coverage's element. All nameless

coverage's elements are considered different without distinction of coincidence or
noncoincidence of them descriptions. There is no way to refer to such element using
the operation of coverage's element derivation. String literal sets textual
representation of this nameless coverage's element.

9.8.8 Shortened definition

The construction se_coverage_declaration is a shortened definition of a coverage on conditions
that:

1. There isn't extern;

2. There isn't enum;

3. There aren't parentheses.

4. There isn't an initializer.

Global coverage shortened definition

extern coverage enum C(enum E e);

...

coverage C; // shortcut specification

Local coverage shortened definition

specification void f(int x, int y)
 coverage PointCoverage = IntCoverage(x) * IntCoverage(y);
// ...

specification void f(int x, int y)
{
 pre{ ... }
 coverage PointCoverage; // shortcut specification

 post{ ... }
}

Semantic rules
Above the shortcut specification the translation_unit text can contain:

1. full declaration;

2. shortcut declaration.

9.8.9 Common rules of coverage access

Global coverage access is realized after the first declaration by the name(see examples of the full
declarations of derived coverages).

Local coverage access allows three different contexts.

1. Outside a prototype or a function definition the local coverage access produces using the
chain of <name_of_function> “.” <name_of_coverage> terminals.

2. Inside a prototype of a specification function local coverage can be called both by name and
by qualification name of the coverage.

3. Inside a definition of a specification function in the definitions of local coverages the earlier
defined coverages of the same function can be called also by name or by qualification
name, as a local coverage's name has visibility scope limited by a specification function
body.

Access to the local coverage outside the function prototype or definition

coverage C(int x, int y) = f.ArgCoverage(x) * f.ArgCoverage(y);

Access to the local coverage inside the function prototype

specification void f(int x, int y)
 coverage X_Coverage
 coverage Y_Coverage
 coverage MutualCoverage = X_Coverage * f.Y_Coverage
 ;

Access to the local coverage inside the function definition

specification void f(int x, int y)
{
 coverage X_Coverage ... ;
 coverage Y_Coverage ... ;
 coverage MutualCoverage = f.X_Coverage * f.Y_Coverage
 post{ ... }
}

Semantic rules
1. The construction se_coverage_name, composed of an identifier, point to a coverage, if a

dereferencing using C language rules gives us a coverage with the same name.

2. The construction se_coverage_name of the form <ID> "." <ID> point to local coverages
if:

2.1. The first identifier refer to a name of a specification function;

2.2. to this function by the moment of the appearance of considered
se_coverage_name in code translation_unit defined the coverage, the name of
which is the same as the second identifier name.

9.9 Rules of performing operations on coverage elements
Variety of different types of coverages needs foresight of different contexts of performing
operations on coverages elements. So lets give some definitions to state the rules of access to
coverage elements.

Coverages, elements and computation functions of which are defined directly, are called primary.

Coverages are called derived if they are built on basis of other coverages, which are basic in this
context. The definition of a derived coverage should describe a method of it's building on the basis
of basic coverages; basic coverage can be both primary and derived coverage.

Coverage order is the number of primary coverages, combinations of elements of which are the
elements of this coverage. Coverage order of any primary coverage is 1. Coverage order of derived
coverage is the sum of orders of all its basic coverages.

For any coverage can be created the list of primary coverages. The derived coverage is based on
them finally. The length of this list is equal to the coverage order. This list is formed from the list
having only a current coverage in the following way :to substitute the basic coverages instead of
the coverages when pass cyclically from the beginning to the end of list (products become orders of
multiply coverages).Eventually only primary coverages will left over in the list, their quantity will
be equal to the order of the initial coverage.

It is evident that the same lists can be get for different coverages using this algorithm. Coverages
are called comparable if the list of primary based coverages is equal for them.

Operations on coverage elements are performed on special type objects - CoverageElement in the
context of sintax.For the operations giving the coverage element, a belonging processed or return
elements to the coverage is tracked unlike common C -language expressions where only the type of
thier result is tracked.

9.9.1 Getting of a constant coverage element

Syntax
This expression syntactically looks like an access to the element of a structure type object in C-
language.

 postfix-expression ::= // ...
 | postfix-expression
 "."
 identifier
 | // ...
 ;

Elements of primary coverages are numbered explicit on the basis of the coverage declaration.
Explicit numbering allows to use expressions of getting elements wherever the constant expression
is necessary for example into case- marks.

 For getting a coverage element need to use the special kind of such expression.

identifier ("." identifier)+
If the chain of identifiers begins with se_coverage_name which point to a coverage then whole the
chain of identifiers is viewed as an expression of coverage element getting. The value of this expression has
the CoverageElement type.

Getting of a constant primary coverage element

IntCoverage.POSITIVE
The similar expression for the derived coverage's element builds inclusive of its order and a list of
primary coverages.

Coverage order is the number of primary coverages, combinations of elements of which are the
elements of this coverage. Coverage order of any primary coverage is 1. Coverage order of derived
coverage is the sum of orders of all its basic coverages.

For any coverage can be created the list of primary coverages. The derived coverage is based on
them finally. The length of this list is equal to the coverage order. This list is formed from the list
having only a current coverage in the following way: to substitute the basic coverages instead of
the coverages when

pass cyclically from the beginning to the end of list (products become orders of multiply
coverages).Eventually only primary coverages will left over in the list, their quantity will be equal
to the order of the initial coverage.

As every derived coverage element has exactly one element from every coverage of this list and the
sequence order of coverages is unique then the getting of a constant derived coverage element is a
constant expression.

Getting of a constant element of the second order coverage

f.PointCoverage.ZERO.ZERO

Semantic rules
Lets se_coverage_name points at the Cov coverage(it doesn't matter wheter it has the elements
computation function or not)

1. The expression of coverage element getting must be viewed as integer constant expression.

2. If Cov is a primary coverage, then :

2.1. after the se_coverage_name point must be present exactly one identifier;

2.2. this identifier must coincide with the name of an Cov coverage element.

3. Otherwise Cov coverage is a derived coverage of order N. Following items must be
executed:

3.1. Number of identifiers must be equal to N after the se_coverage_name.

3.2. Every i-th (1<=i<=N) identifier standing after se_coverage_name must coincide
with an element of i-th primary coverage from the list which is build using the foregoing
method.

4. The result of the whole expression:

4.1. has the CoverageElement type;

4.2. is a element of Cov coverage.

9.9.2 Getting of a component of a derived coverage element

Formative element of any basic primary coverage can be gotten for the element of the derived
coverage of order bigger then one

Coverage order is the number of primary coverages, combinations of elements of which are the

elements of this coverage. Coverage order of any primary coverage is 1. Coverage order of derived
coverage is the sum of orders of all its basic coverages.

For any coverage can be created the list of primary coverages. The derived coverage is based on
them finally. The length of this list is equal to the coverage order. This list is formed from the list
having only a current coverage in the following way :to substitute the basic coverages instead of
the coverages when pass cyclically from the beginning to the end of list (products become orders of
multiply coverages).Eventually only primary coverages will left over in the list, their quantity will
be equal to the order of the initial coverage.

Syntax
For getting the component of the derived coverage element the expression which is syntax coincide
with the getting array element expression is used.

postfix-expression "[" expression "]"
If the CoverageElement expression is to the left of an opening bracket then all of it is considered
as the expression of getting of a component of a derived coverage element.

Getting of a component of a coverage element

coverage IntCoverage neg = f.PointCoverage.ZERO[0];

Semantic rules
Lets the result of the left part expression is an coverage element Covk

1. Coverage Cov must be derived coverage of order bigger then one.

2. Expression in square brackets must be an integer constant.

3. The value of this constant must be above or equal null and smaller then the coverage order
Cov.

4. Result of the whole expression:

4.1. has the CoverageElement type;

4.2. is the element of k-th coverage in the list of primary based coverages.

9.9.3 Coverage element computation

Syntax
This expression syntactically looks like an function call in C-language.

postfix_expression "(" (argument_expression-list)? ")"
Special view of this expression needs to use for coverage element computation :

(identifier ".")? identifier "(" (argument_expression_list)? ")"
If the left part of the expression of function call is se_coverage_name which is pointing at a
coverage then the whole expression is the expression of coverage element computation.

Global coverage element computation

IntCoverage(10)

Local coverage element computation

f.PointCoverage(-1, 1)

Semantic rules
1. se_coverage_name must point at the computable coverage.

2. Types of expressions-arguments must be consistent with the types of parameters in
coverage declaration according the same rules as the types of arguments function call and
parameters types from its declaration.

3. Result of the whole expression:

3.1. has the CoverageElement type;

3.2. is the element of the coverage and se_coverage_name points at this coverage.

9.9.4 Expression of a tracing of a coverage element

Expression of a tracing of a coverage element is intended for putting a coverage element is reached
in testing process on the report.

Syntax

se_primary_expr ::= ...
 | se_trace_expression
 ;

se_trace_expression ::= "trace"
 "("
 assignment_expr
 ")"
 ;

tracing of a coverage element

trace(f.PointCoverage(-10, 10));

Semantic rules
1. An argument must have CoverageElement type.

2. Result of the whole expression has the void type.

9.9.5 CoverageElement type

CoverageElement type is intended for the storing of information about individual coverage
elements. The every CoverageElement type expression connects with the coverage whose
element is the result of this expression.

Semantic rules
1. CoverageElement type objects can be used in the following contexts:

1.1. As a controlling expression in switch operator.

1.2. As a case-mark expression in switch operator.

1.3. As a parameter inside the parentheses trace-expression.

1.4. In the left and right parts of the equality comparison.

2. CoverageElement type is not compatible with any other types.

3. If inside the switch operator the CoverageElement type expression of C1 coverage is
used then for any case-mark referring to current operator the following conditions must
hold:

3.1. The expression inside the case-mark must be the constant CoverageElement
type expression. Just one kind of such expressions is expressions of getting of a constant
coverage element. Let the expression gives an element of C2 coverage.

3.2. The C1 and C2 coverages must be comparable among themselves.

3.3. For any two case-mark whose expressions have CoverageElement type this
expressions must give different coverage elements. (i.e. Mustn't the same order of
identifiers after the first dot in the expressions of getting of a coverage element).

4. (the expanshion of the requirements from 6.5.9 c99 standart) If one of the operands of
operator == (or !==) has CoverageElement type and belongs to C1 coverage, then:

4.1. The other operand has CoverageElement type also.

4.2. If the other operand belongs to C2 coverage, then coverages C1 and C2 must be
comparable among themselves.

9.9.6 Coverage elements iteration

Coverage elements iteration is a construction which helps to bypass all the functionality branches
set by coverage. It is a specific improvement of a simple iteration operator.

Iteration parameters are the name of the called specification function and the coverage name.
Coverage elements, which shouldn't be bypassed by any reason, can be sieved using the filter.

Syntax

se_iterate_coverage_statement ::= "iterate"
 "coverage"
 ("("
 se_coverage_name
 (se_coverage_filter)?
 ")"
 | se_coverage_name
)
 statement
 ;

Construction se_coverage_name in the iteration headline indicate the coverage, elemnts of
which will be looked through as the value of the iteration variable. Uninterestion by any reason
coverage elements values can be sieved by an optional filter.

Local coverage iteration with filtration

iterate coverage (f.PointCoverage : f.PointCoverage[0]
 != IntCoverage.ZERO

)
{
 ...
}

Semantic rules
1. Construction se_iterate_coverage_statement can be placed only inside of a scenario

method definition.

2. There can't be nested se_iterate_coverage_statement, which iterate the elements of
the same coverage.

3. All the above-stated requirements must be hold by se_coverage_filter (see
Construction se_coverage_filter).

Coverage elements filter construction
Filter-expression makes it possible to sieve the basic coverage elements combinations which are not
members of a resulting derived coverage. Filter is a predicate of the coverage element. If on any
specific element filter-expression returns 0,it means that the element sieves. In case of using
se_coverage_filter in the initializer of derived coverages elements of a resulting coverage are
sieved and in case of using the filter in the coverage elements iteration – coverage elements on
which the iteration is proceeded.

coverage NoZeroCoverage = IntCoverage(x)
 : NoZeroCoverage != IntCoverage.ZERO

Additional rules of writing filter-expressions are stated in the section Appeal to the earlier
calculated coverage element.

Semantic rules
1. If there is a coverage filter-expression, its result must be of scalar type.

2. There can be only such operations inside a filter-expression:

2.1. appeal to the earlier calculated coverage element;

2.2. getting a constant coverage element;

2.3. getting a component of coverage element where there are expressions from
subparagraphs 2.1 and 2.2 as the left part;

2.4. comparison of expressions of CoverageElement type;

2.5. logical expressions of C language.

9.9.7 Appeal to the earlier calculated coverage element

In some contexts an earlier calculated coverage element is defined. Such an element can be referred
to using either name_expr, or field_expr equivalent to se_coverage_name and pointed to the
appropriate coverage.

Such contexts are:

• filter-expression in the initiator of derived coverage;

• filter-expression in the coverage elements iteration;

• body of coverage elements iteration;

• post-condition of a specification function.

Inside se_iterate_coverage_statement the current element of the iterated coverage is
known (current value of iteration variable). Inside a post-condition elements of all the local
coverages of embedding function reached with the current parameters are known.

Using the earlier calculated coverage element in a body of coverages iteration

iterate coverage IntCoverage
{
 if(IntCoverage == IntCoverage.ZERO)
 f(0);
 else
 if(IntCoverage == IntCoverage.POSITIVE)
 f(10);
 else
 f(-10);
}

Global coverage iteration (there is an interpretation of name_expr C in the comments).

iterate coverage (C
 : C // element
 != C.C1 // coverage
)
{
 trace(C); // element
}

Local coverage iteration(there is an interpretation of field_expr f.C in the comments).

iterate coverage (f.C
 : f.C // element
 != f.C.C2 // coverage
)
{
 if(f.C(4) // coverage
 == f.C // element
)
 {...}
}

Semantic rules
1. In some contexts name_expr and field_expr, equivalent to se_coverage_name and

pointed to a specific coverage, indicate an element of the coverage:

1.1. Coverage declared (defined) in a filter-expression of initializer of derived
coverage.

1.2. Coverage iterated in a filter-expression of coverage elements iteration headline.

1.3. Coverage iterated in a coverage elments iteration body.

1.4. Local coverage in a post-condition of embedding specification function.

2. Meanwhile situations are mapped out where se_coverage_name is a coverage name in:

2.1. an expression of coverage element calculation;

2.2. an expression of getting a constant element of the coverage.

9.9.8 Coverage element-variable declaration

Coverage elements calculated during a test run can be saved in a variable of CoverageElement
type. Such variables are declared using a special specification type —
se_coverage_type_specifier.

se_coverage_type_specificer ::= "coverage" se_coverage_name ;

Coverage element-variable declaration

coverage IntCoverage zero = IntCoverage(0);

Semantic rules
1. Variables declared in such manner has type CoverageElement.

2. Values of these variables are coverage elements specified in
se_coverage_type_specifier.

3. If declaration (definition) of coverage element-variable has an initializer, then:

3.1. it must be a single expression of CoverageElement type;

3.2. a result of initializing expression must be an element of the coverage comparable
to the coverage specified in se_coverage_name.

4. Aside from that coverage elements-variables conform all the rules
of C language semantics.

9.10 Mediator function
Mediator functions are marked by mediator for SeC keywords. An unique identifier—name of the
mediator function—must reside between these words. Each mediator function corresponds to a
specification function or deferred reaction. Signature and access constraints of this function or reaction
must be specified in declarations and definition of the mediator function.

Mediator function can contain:

1. Call block (marked by call keyword), implementing behavior, described in the corresponding
specification function, by means of performing test action.

2. State block (marked by state keyword), implementing synchronization of specification data
model state with the system under test state after performed test action or occurred deferred
reaction.

3. Auxiliary code before first or after the last named block.

(declaration_specifiers)?
"mediator" <ID> "for"
(declaration_specifiers)?
declarator
(declaration)*
compound_statement
;

Semantic rules
1. Mediator function names belong to the same namespace as names of usual C functions.

2. Mediator function must be defined exactly once within all translation units
(translation_unit).

3. Specification function or deferred reaction must be declared before declaration or definition
of corresponding mediator function.

4. Declaration specifiers (declaration_specifiers) and declarators (declarator) of all
declarations and definition of a mediator function must contain signature and access constraints
of the corresponding specification function or deferred reaction.

5. Mediator of a specification function (compound_statement) must contain:

◦ auxiliary C-code;

◦ call block;

◦ state block (may be omitted);

◦ auxiliary C-code;

6. Mediator of a deferred reaction (compound_statement) must contain:

◦ auxiliary C-code;

◦ state block;

◦ auxiliary C-code;

9.11 Semantic of call block of mediator function
Call block in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same signature and return type as the corresponding specification function.
These instructions must be enclosed in curly braces and marked by call keyword.

se_call_block_statement ::= "call" compound_statement ;

Mediator for the function of the selection of stack element

stack *stack_impl;
List* stack_model;

int push(stack*, int);
specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
 specification bool push_spec(Integer* i) reads i updates
stack_model
{
 call {
 return (bool)push(stack_impl, value_Integer(i));
 }
 //...
}

Semantic rules
1. Call block is the mandatory block of mediators of specification functions.

2. Call block is not permitted in mediators of deferred reactions.

3. Instructions in call block must be syntactically and semantically equal to a function body
with the same signature and return type as the corresponding specification function.

4. Call of specification functions and reactions is prohibited in call-block.

9.12 State block of mediator function
State block in SeC language is a set of instructions that syntactically and semantically equals to a
function body with the same signature as the corresponding specification function, without return
value. These instructions must be enclosed in curly braces and marked by state keyword.

Syntax

se_state_block_statement ::= "state" compound_statement ;

Mediator for the function of element addition to the stack

stack *stack_impl;
List* stack_model;

int push(stack*, int);
specification bool push_spec(Integer* i) reads i updates stack_model;

mediator push_media for
 specification bool push_spec(Integer* i)
 reads i updates stack_model
{
 //...
 state {
 int k;
 clear_List(stack_model);
 for(k = stack_impl->size;
 k > 0;
 append_List(stack_model
 , create_Integer(stack_impl->elems[--k]))
);
 }
}

Semantic rules
1. Instructions in state block must be syntactically and semantically equal to a function body with

the same signature as the corresponding specification function or deferred reaction, without
return value.

2. Value returned by the specification function (or value of the occurred reaction) is accessible via
identifier of this function (or reaction), with the exception of void functions.

3. Pseudovariable timestamp of TimeInterval type contains start and finish time marks for
invocation of call block of this mediator function, or time marks supplied on deferred
reaction registration.

9.13 String and XML- view of non-specification types
There are SeC translator output warnings when checking the user's functions of creation string and
XML- view of non-specification types in this part.

In time of the declaration process or function definition (the name's prefix of this function is
to_string_ or to_XML_) the translator works in a certain way:

1. Compute the suffix <type's_name> - remainder of the function's name.

2. If <type's_name> equals to one of the strings spec, Default, Subtype, then such function is
ignored as these are service functions from the library.

3. Also the function is ignored if <type's_name> is a name of specification type.

4. If the type of returned value is not equal to String*, the function is ignored and return the
warning:

return type of '<function's complete name>' is not 'String *'

5. If the quantity of parameters aren't equal to 1, then such function is ignored and return the
warning:

size of parameters list in '<function's complete name>' is not one

6. If the type of parameter isn't <type's_name>, such function is ignored and return the
warning:

parameter of '<function's complete name>' is not '<type's_name> *'

If the concerned function wasn't ignored using the one of above mentioned reason then for the type
<type's_name> user function of forming string and XML- representation is set(it depends on a
prefix).

10 CTESK test system support library
CTESK includes a support library for tests being developed. The library provides an interface for
interaction with the test system as well as a set of additional data types and functions. Header files
of the library are located in the include directory of CTESK distributive.

This section describes a part of the library interface intended for test developers use. Another part of
the interface defined in header files is intended for generated components of CTESK test system
only.

10.1 Base services of the test system
Base services provided by the test system are used via constructions of specification extension of C
language.

Base services of CTESK test system included in the support library, consist of a set of data types
and functions defining test system time model, and of a small set of system functions of SeC
language.

10.1.1System functions

The following are system functions of SeC language:

• setBadVerdict
setBadVerdict function sets negative verdict of the current mediator call.

• assertion
assertion function examines the value of the specified expression and terminates execution of
the application if it evaluates to 0.

setBadVerdict
setBadVerdict function sets negative verdict of the current mediator call.

void setBadVerdict(const char* msg);

Parameters

Msg
Comment describing the reason of negative mediator verdict. This comment appears in test trace
and can be used for simplifying test results analysis.

The parameter can possess NULL value. No comment appears in test trace in this case.

Additional information
setBadVerdict function sets negative verdict of the current mediator call. Mediator must inform test
system by calling this function if it cannot perform its task due to some reason.

setBadVerdict function can be invoked several times during the execution of one mediator.

setBadVerdict function can be invoked out of mediator call. In this case a comment appears in test
trace as a user message without other side effects.

Header file: ts/ts.h

Assertion
assertion function examines the value of the specified expression and terminates execution of
the application if it evaluates to 0.

void assertion(int expr, const char* format, ...);

Parameters

expr
Expression that should not be equal to 0. Application is terminated if this condition is violated.
format
Format string for the message about violation of the condition. Message is constructed from the
format string and additional parameters in the same way as by printf function from C standard
library.

Additional information
assertion function examines the specified condition and terminates execution of the application if
the condition is violated.

In the case of violation, the specified message appears either in test trace (if the function is invoked
within test scenario) or in stderr stream otherwise. Test trace is closed correctly after the message
and the application is terminated by exit(1) system call.

Any abnormal test scenario termination must be performed via assertion call, otherwise test trace
integrity is not guaranteed.

Header file: utils/assertion.h

10.1.2Time model

CTESK test system supports three modes of time handling:

• Without accounting time,

• Linear time model,

• Distributed time model.

To define time points, the test system uses time marks. Time mark is an abstract value that can
either be associated with the real time in some way, or be used just to put time points to an order.

Each time mark belongs to a frame of time. All time marks within the same time frame are put in
linear order. Time marks of different time frames are not ordered.

In linear time mode, all time marks are considered to belong to the only time frame. Thus all time
marks are put in linear order.

In distributed time mode, time marks can belong to different time frames. This mode is the most
general, but at the price of the least efficient managing algorithms.

Time model managing in CTESK is performed by the following functions:

• setTSTimeModel

• getTSTimeModel

Time marks are defined with the following data types, constants, and functions:

Data types:

• LinearTimeMark

• TimeFrameOfReferenceID

• TimeMark

• TimeInterval

Constants:

• systemTimeFrameOfReferenceID

• minTimeMark

• maxTimeMark

Functins

• getTimeFrameOfReferenceID

• setSystemTimeFrameOfReferenceName

• createTimeMark

• createDistributedTimeMark

• createTimeInterval

• getCurrentTimeMark

• setDefaultCurrentTimeMarkFunction

setTSTimeModel
setTSTimeModel function changes the mode of time handling by CTESK test system.

TSTimeModel setTSTimeModel(TSTimeModel time_model);

Parameters
time_model

New time handling mode for the test system.

Return value
Previous time handling mode.

Additional information
When dfsm test engine is used, the test system by default:

 works without accounting time, if at least one of the saveModelState, restoreModelState, or
isStationaryState test scenario fields are not defined or initialized by a NULL pointer,

uses linear time model, if all of the saveModelState, restoreModelState, and isStationaryState test
scenario fields are defined by non-NULL pointers.

Time handling mode can be changed in scenario initialization function.

Header file: ts/timemark.h

GetTSTimeModel
getTSTimeModel function returns current time handling mode of CTESK test system.

TSTimeModel getTSTimeModel(void);

Return value
Current time handling mode of CTESK test system.

Header file: ts/timemark.h

LinearTimeMark
LinearTimeMark data type is used for identification of time marks within a time frame.

typedef unsigned long LinearTimeMark;
Additional information
Values of this data type can represent any characteristic of time points within a time frame. For
example, number of seconds (or milliseconds) from the given moment.

If one value of LinerTimeMark data type is greater than another value, the time point described
by the former time mark is guaranteed to be later than the time point described by the latter time
mark. If two values are equal, positional relationship of appropriate time points is unknown: time
points can either coincide or not.

Header file: ts/timemark.h

TimeFrameOfReferenceID
TimeFrameOfReferenceID type defines identifiers of time frames.

typedef int TimeFrameOfReferenceID;

Additional information
The test system is functioning in a dedicated time frame with predefined identifier
systemTimeFrameOfReferenceID. In a linear time mode this is the only permitted identifier of time
frame.

Other identifiers can be defined in distributed time mode by getTimeFrameOfReferenceID function.
The function returns an identifier of a time frame by its name. Two calls to this function with the
same name produces the same identifier. Call to this function with a NULL pointer returns an
unique time frame identifier, that is guaranteed not to be returned twice.

Header file: ts/timemark.h

TimeMark
TimeMark structure defines the type of time mark, used in the test system.

typedef struct TimeMark TimeMark;

struct TimeMark {
 TimeFrameOfReferenceID frame;
 LinearTimeMark timemark;
};

Additional information
Time mark is characterized by an identifier of time frame and a value indicating the time point
within this time frame.

One time mark is less than another time mark when and only when both time marks belong to the
same time frame and the value of timemark field of the former time mark is less than the value
of that field of the latter time mark.

Header file: ts/timemark.h

TimeInterval
TimeInterval data type defines time interval between the given two time marks.

typedef struct TimeInterval TimeInterval;

struct TimeInterval { TimeMark minMark; TimeMark maxMark; };
Additional information
TimeInterval data type defines time interval between minMark and maxMark time marks. Both time
marks are required to belong to the same time frame and minMark must be less or equal to
maxMark. Boundary time marks are included in the interval.

For indicating minimal or maximal possible time mark, special constants minTimeMark and
maxTimeMark must be used.

Header file: ts/timemark.h

systemTimeFrameOfReferenceID
constant defines an identifier of the time frame dedicated for the test system.

extern const TimeFrameOfReferenceID systemTimeFrameOfReferenceID;
Additional information
Identifier of the time frame dedicated to the test system, can be assigned a symbolic name by
setSystemTimeFrameOfReferenceName function. If a name was assigned to the dedicated time
frame of the test system, each call to getTimeFrameOfReferenceID with this name returns
systemTimeFrameOfReferenceID.

Header file: ts/timemark.h

minTimeMark
constant is guaranteed to be less than any other time mark of any time frame.

extern const TimeMark minTimeMark;
Additional information
minTimeMark constant is a dedicated value of TimeMark data type that is guaranteed to be less
than any other time mark regardless of its time frame. minTimeMark constant is equal to itself only.

Header file: ts/timemark.h

maxTimeMark
constant is guaranteed to be greater than any other time mark of any time frame.

extern const TimeMark maxTimeMark;

Additional information
maxTimeMark constant is a dedicated value of TimeMark data type that is guaranteed to be greater
than any other time mark regardless of its time frame. maxTimeMark constant is equal to itself only.

Header file: ts/timemark.h

getTimeFrameOfReferenceID
Function returns an identifier of a time frame that corresponds to the specified name.

TimeFrameOfReferenceID getTimeFrameOfReferenceID(const char* name);
Parameters

name

Name of the time frame.

The parameter can be a NULL pointer. If so, the function returns an unique time frame identifier that
is guaranteed not to be returned twice.

Return value
Identifier of the time frame with the given name. Repeated calls to this function with the same name
evaluates to the same identifier.
Additional information
getTimeFrameOfReferenceID function returns an identifier of a time frame by its name.
Two calls to this function with the same name produces the same identifier. Call to this function
with a NULL pointer returns an unique time frame identifier.

getTimeFrameOfReferenceID function can be invoked only in distributed time model
mode.

Usually each computer has its own time frame. In this case the network name of the computer can
be used as the name of its time frame.

For uniformity of handling time frames identifiers, a symbolic name can be assigned to the
predefined identifier by setSystemTimeFrameOfReferenceName function.

If a name was assigned to the dedicated time frame of the test system, each call to
getTimeFrameOfReferenceID with this name returns systemTimeFrameOfReferenceID .
Header file: ts/timemark.h

setSystemTimeFrameOfReferenceName
Function sets the name of the time frame dedicated for the test system.

bool setSystemTimeFrameOfReferenceName(const char* name);

Parameters

name

Name of the time frame dedicated for the test system.

The parameter cannot be a NULL pointer.

Return value

The function evaluates to false, if the given name was already used to identify other time frame,
and to true otherwise.

Additional information

setSystemTimeFrameOfReferenceName function sets the name of the time frame
dedicated for the test system. All subsequent calls to getTimeFrameOfReferenceID function returns
systemTimeFrameOfReferenceID .

Time frame dedicated to the test system can have several names simultaneously.
Header file: ts/timemark.h

createTimeMark
Function creates a time mark in the time frame dedicated for the test system.

TimeMark createTimeMark(LinearTimeMark timemark);

Parameters

timemark

Mark of a time point within the time frame dedicated for the test system.

Return value

The function returns a time mark within the time frame dedicated for the test system, identified by
timemark internal mark.

Additional information

createTimeMark function creates a time mark in the time frame identified by
systemTimeFrameOfReferenceID and with timemark internal mark.
Header file: ts/timemark.h

createDistributedTimeMark
Function creates a time mark in the specified time frame.

TimeMark createDistributedTimeMark
 (TimeFrameOfReferenceID frame, LinearTimeMark timemark);

Parameters

frame

Time frame identifier of a time mark being created.

timemark

Mark of a time point within the frame time frame.

Return value

The function returns a time mark in the time frame identified by frame and with timemark internal

mark.

Additional information

Header file: ts/timemark.h

createTimeInterval
Function creates a time interval with the specified bounds.

TimeInterval createTimeInterval(TimeMark minMark
 , TimeMark maxMark
);

Parameters

minMark

Time mark of the lower bound of the interval.

maxMark

Time mark of the upper bound of the interval.

Return value

The function returns a time interval with the specified bounds.

Additional information

createTimeInterval function creates a time interval between minMark and maxMark time marks.
Both time marks must belong to the same time frame and minMark must be less than maxMark.
Boundary time marks are included to the interval.

For indicating minimal or maximal possible time mark, special constants minTimeMark and
maxTimeMark must be used.
Header file: ts/timemark.h

getCurrentTimeMark
function returns a time mark corresponding to the current moment of time within the given process.

TimeMark getCurrentTimeMark(void);

Return value
The function returns a time mark corresponding to the current moment of time within the given process.

Additional information
The function returns a time mark corresponding to the current moment of time within the given process.
The function is used by the test system for automatic evaluation of a time interval, containing a
specification function call.

By default a current time mark belongs to the time frame dedicated for the test system. Mark within the
time frame is calculated as number of seconds since 00:00:00, January 1, 1970 (as value of time
system function).

This behavior can be redefined by setDefaultCurrentTimeMarkFunction function.
Header file: ts/timemark.h

setDefaultCurrentTimeMarkFunction
Function set up the user-defined function, evaluating time mark for the current moment of time within
the given process.

GetCurrentTimeMarkFuncType
setDefaultCurrentTimeMarkFunction
(GetCurrentTimeMarkFuncType new_func);

Parameters
new_func
Pointer to a function to use for time mark evaluation of the current moment of time within the given
process. The parameter must be not NULL.

Return value

The function returns a pointer to the previously used current time mark evaluating function.

Additional information

setDefaultCurrentTimeMarkFunction function set up the user-defined function,
evaluating time mark for the current moment of time within the given process. All subsequent calls
of getCurrentTimeMarkfunction return time marks, evaluated by that function.

The user-defined function is used for automatic evaluation of a time interval, containing a
specification function call.

Header file: ts/timemark.h

11 Standart test engines
CTESK 2.8 includes two test engines: dfsm and ndfsm. They allow to test a wide class of software
— from simple systems without internal state to distributes systems with asynchronous interfaces.

11.1 Dfsm
The dfsm test engine is based on traversal of finite state machine. Finite state machine, used for test
building, is defined explicitly by defining function to evaluate current scenario state and a set of test
actions.

During test run the dfsm applies the test actions that can change scenario state. The dfsm

automatically keeps track of all state changes and constructs a finite state machine in accordance to
test process. All reaches scenario states become the states of the machine, and transitions of the
machine are marked by appropriate test actions.

The dfsm test engine finishes the testing when it performed all test actions, defined by the user, in

all states of the machine reachable from the starting state.

For this condition to be possible, the following constraints must be satisfied:

• Finiteness. Number of states, reachable from the starting state by performing test actions
from the defined set, must be finite.

• Determinancy. Performing the same test action in any state of the system must lead the
system to the same state.

• Strong connectivity. Any scenario state is reachable from any other scenario state by
performing test actions.

A set of test actions is defined by scenario functions .

The dfsm data type of test scenario is used in initialization of a test scenario, based on the dfsm test
engine. Fields of this type are described on page «Fields of data types of test scenario»

Additional parameters of the dfsm test engine can be tuned by the following functions:

• setFinishMode

• setDeferredReactionsMode

• setWTime

• setFindFirstSeriesOnly

• setFindFirstSeriesOnlyBound

All functions, which can set or return test engine parameters are enumerates on page « Test engine
service function » .

A list of parameters is passed to the test scenario on its invocation. The dfsm test engine has several
standard parameters affected its behavior. Standard parameters must precede user parameters. The
dfsm test engine processes standard parameters and passes the rest of parameters to the scenario
initialization function.

11.2 Ndfsm
The ndfsm test engine, comparing with dfsm, works correctly with a wider class of finite state

machines, in particular, with finite state machines having deterministic strongly connected complete
spanning submachine:

• Spanning submachine. A spanning submachine contains all reachable scenario states.

• Complete submachine. For each scenario state and an allowable test action a complete
submachine either contains all transitions from this state marked by this test action or does
not contain such transions at all.

A set of test actions is defined by scenario functions .

The ndfsm data type of test scenario is used in initialization of a test scenario, based on the ndfsm
test engine. Fields of this type are described on page «Fields of data types of test scenario».

Additional parameters of the test engine can be tuned by the following functions:

• setFinishMode

• setDeferredReactionsMode

• setWTime

• setFindFirstSeriesOnly

• setFindFirstSeriesOnlyBound
All functions, which can set or return test engine parameters are enumerates on page « Test
engine service function » .

A list of parameters is passed to the test scenario on its invocation. The test engine has the

same standard parameters affected its behavior. Standard parameters must precede user parameters.
The test engine processes standard parameters and passes the rest of parameters to the scenario
initialization function.

11.3 Fields of data types of test scenario
The dfsm data type of test scenario is used in initialization of a test scenario, based on the dfsm test
engine. Correspondingly, the ndfsm data type of test scenario is used in initialization of a test
scenario, based on the ndfsm test engine. This data type is a structure; set of dfsm fields includes
set of nfdsm fields. These fields are in both structures:

• init (type PtrInit)

• finish (type PtrInit)

• getState (type PtrGetState)

• actions

The only mandatory field is actions, which contains array of scenario functions, defining test
actions. dfsm structure includes additional fields:

• saveModelState (type PtrSaveModelState)

• restoreModelState (type PtrRestoreModelState)

• isStationaryState (type PtrIsStationaryState)

• observeState (type PtrObserveState)

• ini t
init field contains a pointer to test scenario initialization function.

• finish
finish field contains a pointer to test scenario finalization function.

• getState

• getState field contains a pointer to a function, evaluating current test scenario state.

• actions
actions field contains an array of scenario functions, ended with a NULL pointer.

• saveModelState
saveModelState field contains a pointer to function for saving specification data model
state.

• restoreModelState
restoreModelState field contains a pointer to function, restoring specification data
model state.

• isStationaryState
isStationaryState field contains a pointer to function for checking model state
stationarity.

• observeState
observeState field contains a pointer to function for synchronization of model state with
state of the system under test after stabilization time.

init
init field contains a pointer to test scenario initialization function.

PtrInit init;

Additional information

Initialization function takes an array of parameters, semantically similar to argc and argv
parameters of main standard function. It can use them for test scenario tuning.

Normally initialization function performs the following actions:

• initialization of the system under test,

• initialization of specification data model,

• initialization of scenario data,

• setting mediators for specification functions and reactions used in this test scenario.

In the case of testing of the systems with deferred reactions, the function is additionally us

• define the time of expecting of deferred reactions;

• if necessary, allocate channels for processing of the immediate and deferred reactions.

Initialization function returns a boolean value. It must evaluate to true if initialization completed

successfully, and to false otherwise. In the latter case test scenario is terminated, and finalization

function is not invoked.

Initialization function can contain specification functions calls, performing initialization of

the system under test, specification or scenario. If deferred reactions support mode is set a test

engine makes serialization of all stimuli sent in the initialization function call and all reactions

received.

 init field can be initialized by a NULL pointer or can be not initialized at all. It equivalents to an
empty initialization function returning true.

Header file: ts/dfsm.h, ts/ndfsm.h

finish
finish field contains a pointer to test scenario finalization function.

PtrFinish finish;

Additional information

The function of finalization is intended to execute concluding operations after executing of test. The
function has no parameters and no return value.

Normally scenario finalization function performs the following actions:

• freeing resources of the system under test, allocated by the test scenario,

• freeing resources of specification data model,

• freeing resources of the test scenario.

Finalization function can contain specification functions call, realized freeing resources of the
system under test, freeing resources of specification data model or resources of the scenario. If
deferred reactions support mode is set a test engine makes serialization of all stimuli sent in the

initialization function call and all received reactions.

finish field can be initialized by a NULL pointer or can be not initialized at all. It this case no
actions to scenario completion execute.

Header file: ts/dfsm.h, ts/ndfsm.h

getState
getState field contains a pointer to a function, evaluating current test scenario state.

PtrGetState getState;

Additional information

Evaluation test scenario state function has no parameters and returns an object of a specification
data type.

It is important to take into account determinancy constraint of dfsm test engine or presence of
deterministic strongly connected complete spanning submachine of ndfsm test engine when
evaluating test scenario state.

getState field can be initialized by a NULL pointer or can be not initialized at all. The dfsm
and ndfsm test engines consider this as scenario with a single state.

Header file: ts/dfsm.h, ts/ndfsm.h

actions
actions field contains an array of scenario functions, ended with a NULL
pointer.

ScenarioFunctionID actions[];

Additional information

actions field contains an array of scenario functions, ended with a NULL pointer.

actions field is mandatory for initialization. Last element of the array must be a NULL
pointer.

Header file: ts/dfsm.h, ts/ndfsm.h

saveModelState
saveModelState field contains a pointer to function for saving specification data model state.

PtrSaveModelState saveModelState;

Additional information

Function for saving specification data model state has no parameters and returns an object of a
specification data type. The object must contain the whole state of specification data model. This
object is used then by a function for restoring specification data model state to completely restore
the state.

saveModelState field can be initialized by a NULL pointer or can be not initialized at all. It

makes testing with deferred reactions impossible.

Header file: ts/dfsm.h, ts/ndfsm.h

restoreModelState
restoreModelState field contains a pointer to function, restoring specification data model state.

PtrRestoreModelState restoreModelState;

Additional information

Function for restoring specification data model state takes an object of a specification data type and

restores the state of specification data model using this object. The object is guaranteed to be
previously constructed by a function for saving specification data model state.
The function for restoring state does not return a value.

restoreModelState field can be initialized by a NULL pointer or can be not initialized at all.
It makes testing with deferred reactions impossible.

Header file: ts/dfsm.h, ts/ndfsm.h

IsStationaryState
isStationaryState field contains a pointer to function for checking model state stationarity.

PtrIsStationaryState isStationaryState;

Additional information

Function for checking model state stationarity has no parameter and evaluates to true, if current
model state is stationary, and to false otherwise.

Model state is called stationary, if the target system that meets the model cannot initiate interaction
in this state.

isStationaryState field can be initialized by a NULL pointer or can be not initialized at all.
It makes testing with deferred reactions impossible.

Header file: ts/dfsm.h, ts/ndfsm.h

ObserveState
observeState field contains a pointer to function for synchronization of model state with state of the
system under test after stabilization time.

PtrObserveState observeState;

Additional information

Model state synchronization function has no parameters and no return value. It is invoked in the end
of stabilization time after the test system initiates next test action and the target system comes to a
stationary state. Synchronization function can invoke one or more specification functions that read
state of the system under test but not change it. Interactions initiated during synchronization counts
in serialization process as well as previous test actions.

observeState field can be initialized by a NULL pointer or can be not initialized at all. No
synchronization is performed in this case.

Header file: ts/dfsm.h, ts/ndfsm.h

11.4 Data types used by test engine
Data types in the following list are intended for storing values of test scenario fields and references
of user service function.

• FinishMode
FinishMode enumeration data type defines possible modes of dfsm test engine finalizing.

• PtrFinish
PtrFinish field specifies test scenario finalization function type.

• PtrGetState
PtrGetState data type specifies type of function, evaluating current test scenario state.

• PtrInit
PtrInit data type specifies test scenario initialization function type.

• PtrIsStationaryState
PtrIsStationaryState data type specifies type of a function for checking model state
stationarity.

• PtrObserveState
PtrObserveState data type specifies type of a function which synchronizes model state
with the state of system under test on the expiry of stabilization time.

• PtrRestoreModelState
PtrRestoreModelState data type specifies type of a function to restore specification
data model state.

• PtrSaveModelState
PtrSaveModelState data type specifies type of function, returning specification data
model state.

FinishMode
FinishMode enumeration data type defines possible modes of dfsm test engine finalizing.

typedef enum { UNTIL_ERROR, UNTIL_END } FinishMode;

Additional information

FinishMode enumeration data type defines possible modes of test engine finalizing.

First mode - UNTIL_ERROR indicates that testing is finished immediately after first error
detection.

Second mode – UNTIL_END indicates that testing is continued after detection of non-critical
error and is finished just on reaching desired coverage criteria.

By default test engines are operating in UNTIL_ERROR mode.

Header file: ts/engine.h

PtrFinish
PtrFinish field specifies test scenario finalization function type.

typedef void (*PtrFinish)(void);

Additional information

Scenario finalization function has no parameters and no return value. It intended for freeing
resources after scenario completion.

Header file: ts/engine.h

PtrGetState
PtrGetState data type specifies type of function, evaluating current test scenario state.

typedef Object* (*PtrGetState)(void);

Additional information

Evaluation test scenario state function has no parameters and returns an object of a specification
type.

Header file: ts/engine.h

PtrInit
PtrInit data type specifies test scenario initialization function type.

typedef bool (*PtrInit)(int, char**);

Additional information

Initialization function takes an array of parameters, semantically similar to argc and argv
parameters of main standard function, and returns a boolean value. It evaluates to true if
initialization completed successfully, and to false otherwise.

Header file: ts/engine.h

PtrIsStationaryState
PtrIsStationaryState data type specifies type of a function for checking model state
stationarity.

typedef bool (*PtrIsStationaryState)(void);

Additional information

Function for checking model state stationarity has no parameters and returning a boolean value.

Header file: ts/engine.h

PtrObserveState
PtrObserveState data type specifies type of function for synchronization of model state with
state of the system under test after stabilization time.

typedef void (*PtrObserveState)(void);

Additional information

Model state synchronization function has no parameters and no return value.

Header file: ts/engine.h

PtrRestoreModelState
PtrRestoreModelState data type specifies type of a function to restore specification data model

state.

typedef void (*PtrSaveModelState)(Object*);

Additional information

The function takes an object of a specification data type and restores the state of specification data
model using this object. The function does not return a value.

Header file: ts/engine.h

PtrSaveModelState
PtrSaveModelState data type specifies type of function, returning specification data model state.

typedef Object* (*PtrSaveModelState)(void);

Additional information

Function for saving specification data model state has no parameters and returns an object of a
specification data type.

Header file: ts/engine.h

11.5 Test engine service function
Test engine can be ruled by functions from following list:

• areDeferredReactionsEnabled
areDeferredReactionsEnabled function returns current deferred reactions support
mode of test engine.

• getFindFirstSeriesOnlyBound
getFindFirstSeriesOnlyBound function returns current value of
FindFirstSeriesOnlyBound.

• getFinishMode
getFinishMode function returns test engine current finalization mode.

• getWTime
getWTime function returns waiting period of a test engine for a target system stabilization.

• isFindFirstSeriesOnly
isFindFirstSeriesOnly function returns current value of FindFirstSeriesOnly
property of a test system.

• setDeferredReactionsMode
setDeferredReactionsMode function sets deferred reactions support mode of test
engine.

• setFindFirstSeriesOnly
setFindFirstSeriesOnly function sets FindFirstSeriesOnly property of a
test system.

• setFindFirstSeriesOnlyBound
setFindFirstSeriesOnlyBound function sets FindFirstSeriesOnlyBound
property of a test system.

• setFinishMode
setFinishMode sets value of test engine finalization mode.

• setWTime
setWTime function sets waiting period of a test engine for a target system to stabilize.

areDeferredReactionsEnabled
areDeferredReactionsEnabled function returns current deferred reactions support mode of test
engine.

bool areDeferredReactionsEnabled(void);

finish_mode

New mode of test scenario finalization.

Return value
Current deferred reactions support mode of test engine.

Additional information

setDeferredReactionsMode is intended for change deferred reactions support mode.

Header file: ts/engine.h

getFindFirstSeriesOnlyBound
getFindFirstSeriesOnlyBound function returns current value of FindFirstSeriesOnlyBound

property.

int getFindFirstSeriesOnlyBound(void);

Return value
Current value of FindFirstSeriesOnlyBound property.

Additional information

setFindFirstSeriesOnlyBound function can be used to change value of the
FindFirstSeriesOnlyBound property.

Header file:ts/engine.h

getFinishMode
getFinishMode function returns test engine current finalization mode.

FinishMode getFinishMode(void);

Return value

Current test engine finalization mode.

Additional information

getFinishMode function returns current test engine finalization mode.

setFinishMode function can be used to change the value of current finalization mode.

Header file: ts/engine.h

getWTime
The function returns waiting period of a test engine for a target system stabilization.

time_t getWTime(void);

Return value

Waiting period of a test engine for a target system stabilization.

Additional information

getWTime function returns waiting period of a test engine for a target system stabilization.

setWTime function can be used to change waiting period for the target system stabilization.

Header file: ts/engine.h

isFindFirstSeriesOnly
isFindFirstSeriesOnly function returns current value of FindFirstSeriesOnly property of a

test system.

bool setFindFirstSeriesOnly(void);

Return value

Current value of FindFirstSeriesOnly property.

Additional information

setFindFirstSeriesOnly function can be used to change value of the FindFirstSeriesOnly

property.

Header file: ts/engine.h

setDeferredReactionsMode
setDeferredReactionsMode function sets deferred reactions support mode of test engine.

bool setDeferredReactionsMode(bool enable);
Parameters

enable

If this parameters is true, support for deferred reactions is turned on, otherwise off.

Return value

The function returns previous value of support mode for deferred reactions of test engine.

Additional information

setDeferredReactionsMode function sets deferred reactions support mode of test engine. Support for
deferred reactions cannot be turned on if some of the saveModelState , restoreModelState, or
isStationaryState fields of test scenario are not defined or are initialized by a NULL pointer. If all
of these fields are initialized by a non-NULL pointer, mode for deferred reactions of test engine is
turn on default.

Deferred reactions support mode can be changed only within test scenario initialization function.

areDeferredReactionsEnabled function can be used to access current value of deferred reactions
support mode.

Header file: ts/engine.h

setFindFirstSeriesOnly
setFindFirstSeriesOnly function sets FindFirstSeriesOnly property of a test system.

bool setFindFirstSeriesOnly(bool new_value);

Paremeters

new_value

Value of FindFirstSeriesOnly property of the test system.

Return value
The function returns previous value of FindFirstSeriesOnly property of the test system.

Additional information

setFindFirstSeriesOnly function sets FindFirstSeriesOnly property of the testing
system. During serialization, if the property is false, the test system constructs all possible
sequences of interactions and checks whether they all lead to the same specification data model
state. In other words, it checks for determinancy of the model. When it is known (for some reason)
that all allowable sequences of interactions lead to the same state, it is possible to set
FindFirstSeriesOnly property to true, thus optimizing test system operation. For example,
when the model consists the only stationary state, the indicated above condition is certainly satisfied
and it is possible to set FindFirstSeriesOnly property to true.

By default the property is false.

FindFirstSeriesOnly property can be changed only during test scenario operation, including
test scenario initialization function. Changes of this property before test scenario start will not affect
its behavior.

isFindFirstSeriesOnly function can be used to get current value of the property.

Header file: ts/engine.h

SetFindFirstSeriesOnlyBound
Function sets FindFirstSeriesOnlyBound property of a test system.

int setFindFirstSeriesOnlyBound(int bound);

Parameters

bound

Value of FindFirstSeriesOnlyBound property of the test system.

Return value

The function returns previous value of FindFirstSeriesOnlyBound property of the test
system.

Additional information

During serialization, if the property FindFirstSeriesOnlyBound is zero, the test system
constructs all possible sequences of interactions and checks whether they all lead to the same
specification data model state.

During serialization, if the property FindFirstSeriesOnlyBound is positive and the number

of interactions is less than FindFirstSeriesOnlyBound, the test system constructs all
possible sequences of interactions and checks whether they all lead to the same specification data
model state. If the number of interactions is greater than or equal to
FindFirstSeriesOnlyBound, the test system considers the only possible sequence of
interations.

By default the property is 0.

setFindFirstSeriesOnlyBound(0) call is equal to setFindFirstSeriesOnly(false)
call.

setFindFirstSeriesOnlyBound(1) call is equal to setFindFirstSeriesOnly(true)
call.

FindFirstSeriesOnlyBound property can be changed only during test scenario operation, including
test scenario initialization function. Changes of this property before test scenario start will not affect
its behavior.

getFindFirstSeriesOnlyBound function can be used to get current value of the property.

Header file: ts/engine.h

setFinishMode
setFinishMode function sets test engine finalization mode.

FinishMode setFinishMode(FinishMode finish_mode);
Parameters
finish_mode

New test engine finalization mode.
Return value

Previous test engine finalization mode.

Additional information

SetFinishMode function sets test engine finalization mode. By default test engine is operating
in UNTIL_ERROR mode.

Finalization mode can be changed at any moment during test system operation. Mode change
affects only following errors and does not affect previous ones.

getFinishMode function can be used to access the value of current finalization mode.

Header file: ts/engine.h
setWTime
setWTime function sets waiting period of a test engine for a target system to stabilize.

time_t setWTime(time_t secs);

Parameters

secs

Waiting period for the target system stabilization, in seconds. Value of the parameter must be
non-negative integer number.

Return value

The function returns previous value of waiting period for the target system stabilization.

Additional information

setWTime function sets waiting period for the target system stabilization. The test engine waits
specified time after each test action for all information about deferred reactions to be gathered
and the target system to stabilize.

By default waiting period is equal to 0.

Waiting period ca be changed only within initialization function. getWTime function can be
used to get current value of waiting period.

Header file: ts/engine.h

11.6 Standard parameters of test scenario
A list of parameters is passed to the test scenario on its invocation. The test engine has several
standard parameters affected its behavior. Standard parameters must precede user parameters. The
test engine processes standard parameters and passes the rest of parameters to the scenario
initialization.

In CTESK 2.8 test engine supports the standard parameters, given in list.

• --ffso
--find-first-series-only
Indicate to fine only first successful series.

• -nt
--no-trace
Disables tracing.

• -t
Send tracing to file with specifies name.

• -tc
Send tracing to the console.

• --trace-accidental
Turns tracing of information about uncertain transitions on.

• -tt
Send tracing to the file with unique name compose from scenario name and current time.

• -uend
Indicate to execute test to end in spite of errors.

• -uerr
Indicate to execute test before first error appear. (by default).

• --trace-format
Indicate format of data drop to trace.

• --disabled-actions
Indicate file name with list of scenario functions, which will not be invoked.

--find-first-series-only
-ffso
Indicate to fine only first successful series.

Additional information

--find-first-series-only standard parameter (-ffso for short) sets true value of
FindFirstSeriesOnly property. It means that during serialization the test system does not construct
all possible sequences of interactions and checks whether they all lead to the same specification
data model state, but uses the only allowable sequence of interactions.

The value of FindFirstSeriesOnly property can be changed by the setFindFirstSeriesOnly function
at test scenario initialization and during its operation.

By default the property if false.

-nt
--no-trace
Disables tracing

Additional information

--no-trace standard parameter (–nt for short) disables tracing. This parameter can not be used
with ‘–t’, ‘–tt’ or ‘–tc’ standard parameters.

-t
Send tracing to file with specifies name.

Additional information

‘–t <file-name>’ standard parameter adds the specified file to the set of devices for receiving test
trace. If file name is not specified or the file cannot be opened for write, test scenario is abnormally
terminated.

-tc
Send tracing to the console.

Additional information

–tc standard parameter adds console to the list of devices for receiving test trace. Console means
standard output stream of the process the test system operates in.

--trace-accidental
Turns tracing of information about uncertain transitions on.

Additional information

‘–-trace-accidental’ standard parameter turns tracing of information about uncertain
transitions on. The tracing information about uncertain transitions can be changed by the
setTraceAccidental function at test scenario initialization and during its operation. By
default the tracing information about uncertain transitions is turned off.

-tt
Send tracing to the file with unique name compose from scenario name and current time.

Additional information

–tt standard parameter adds a file with the automatically generated name <scenario_name>-
YYYY-MM-DD--HH-MM-SS.utt to the list of devices for receiving test trace. If the file with that
name cannot be opened for write, test scenario is abnormally terminated.

-tt parameter is default parameter: test launch without command line parameters is equivalent
test launch with -tt parameter.

-uend
Indicate to execute test to end in spite of errors.

Additional information

‘–uend’ standard parameter sets the value of scenario finalization mode. The value can be
changed by setFinishMode at test scenario initialization and during its operation.

If scenario parameters contain several standard parameters for scenario initialization mode, only last
of them will be taken into account by the test engine.

-uerr
Indicate to execute test before first error appear. (by default).

Additional information

–uerr standard parameter sets the value of scenario finalization mode. The value can be changed
by setFinishMode at test scenario initialization and during its operation.

If scenario parameters contain several standard parameters for scenario initialization mode, only last
of them will be taken into account by the test engine.

The ndfsm test engine allows to set the value of the –uerr standard parameter, which stands for
the maximum permitted number of the errors. The format -uerr=number_of_errors is used
for this purpose.

--trace-format
Indicate format of data drop to trace.

Additional information

--trace-format standard parameter sets format, in which complex data type data is dropped to
trace. This parameter influences on dropping to trace view (in the sequel to the report) of values of
iteration variables values of scenario, scenario state, values of method invocation parameters and
return values of these methods. Two values of parameter are acceptable:

--trace-format=xml (on default) and —trace-format=string. In the first case
trace saving information about complex data types(if these types were used in the scenario) which
transform into expand tree in report is turn out. In the second case trace of smaller volume,
demanding less resources for report generation is turn out.

--disabled-actions
Indicate file name with list of scenario functions, which will not be invoked.

Additional information

--disabled-actions=file_name standard parameter value specifies file name with list
of scenario functions names, which are not invoke by test engine. File must exist and contains list of
scenario functions names separated by a line feed.

12 Tracing services
Tracer of CTESK test system provides a possibility to store information about test process for its
subsequent analysis. For that all components of the test system automatically traces information
about their work in a special format. Then report generator uses the test trace for testing results
analysis and to building different kinds of reports.

For a user the tracer provides tracing control interface and message tracing interface.

12.1 Tracing control
Tracing control functions are divided into two classes: trace saving control functions and trace

contents control functions.

Trace saving control functions are operates as follows. Test trace can be simultaneously saved to
several devices. CTESK 2.8 supports two kinds of devices—console (as standard output stream of
the process the test system operates within) and file.

The tracer saves test trace to devices included in the set of devices for trace saving. To add a device
in the set, functions from addTraceTo... group are used. If the specified device already belongs to
the set, its entry counter is incremented.

To remove a device from the set of devices for trace saving, functions from removeTraceTo...

group are used. If the specified device was added to set several times, the operation just decrements
its entry counter. The device will be actually removed from the set only when its entry counter
becomes equal to zero.

The set of devices for trace saving can be changed when no one test scenario is running. In
particular, the set cannot be changed within test scenario initialization function.

Trace saving control functions:

• addTraceToConsole
• removeTraceToConsole

• addTraceToFile
• removeTraceToFile

Trace contents control functions specify set of the tracer’s messages and their format. In CTESK 2.8
next trace contents control function are available trace contents control function is:

• setTraceAccidental
setTraceUserEnv
Function to set trace character encoding is:

• setTraceEncoding
addTraceToConsole
Function adds the console to the set of devices for trace saving.

void addTraceToConsole(void);

Additional information

addTraceToConsole function adds the console to the set of devices for trace saving. If the
console already belongs to the set, its entry counter is incremented.

Console is the standard output stream of the process the test system operates within.

addTraceToConsole function can be invoked only when no one test scenario is running.

Header file: ts/c_tracer.h
removeTraceToConsole

Function removes the console from the set of devices for trace saving.

void removeTraceToConsole(void);

Additional information

removeTraceToConsole function removes the console from the set of devices for trace saving. If its
entry counter is greater than unit, the counter is decremented and console will not be actually
removed from the set. Console is the standard output stream of the process the test system operates
within.

removeTraceToConsole function can be invoked only when no one test scenario is running.

Header file: ts/c_tracer.h

addTraceToFile
Function adds the specified file to the set of devices for trace saving.

bool addTraceToFile(const char* name);

Parameters

name

Name of the file to be added to the set of devices for trace saving.

The parameter cannot be a NULL pointer.

Return value

The function returns true if the file was added successfully, and false otherwise. A reason for a false
result, for example, can be impossibility to open a file with the specified name to write.

Additional information

addTraceToFile function adds the specified file to the set of devices for trace saving. If the file
already belongs to the set, its entry counter is incremented.

The function return false if the file cannot be opened to write. addTraceToFile function can be
invoked only when no one test scenario is running.

Header file: ts/c_tracer.h

removeTraceToFile
Function removes the specified file from the set of devices for trace saving.

bool removeTraceToFile(const char* name);

Parameters

name

Name of the file to be removed from the set of devices for trace saving.

The parameter cannot be a NULL pointer.

Return value

The function returns false if a file with the specified name does not belong to the set of devices for
trace saving, and true in case of successful file deletion.

Additional information

removeTraceToFile function removes the specified file from the set of devices for trace saving.
If its entry counter is greater than unit, the counter is decremented and the file will not be actually

removed from the set.

removeTraceToFile function can be invoked only when no one test scenario is running.

Header file: ts/c_tracer.h
setTraceAccidental
setTraceAccidental function turns tracing of information about uncertain transitions on or off.

Uncertain transitions are transitions corresponding to those scenario functions calls, which does not
produce specification calls.

bool setTraceAccidental(bool enable);

Parameters

enable

The function turns uncertain transitions tracing on if the parameter equals to true, and off
otherwise.

Return value

The function returns previous value of the property of uncertain transitions tracing.

Additional information

By default the tracer does not save information about uncertain transitions, therefore
setTraceAccidental function

can be used when it necessary. setTraceAccidental function can be invoked only when no
one test scenario is running.

Header file: ts/c_tracer.h

setTraceUserEnv
SetTraceUserEnv sets value of user environment variables. Values of these variables with
information about system drop in the beginning of the trace.

void setTraceUserEnv(const char* name, const char* value);

Parameters

name

Name of the user environment variable.

Value

Value of variable.

Additional information

Value of variables, which are set by setTraceUserEnv function, can describe, for example,
remote system parameters, which test can not define automatically. They are seen in report, and also
can be used for detected errors identification in known errors DB.

Function must be invoked before scenario.

Header file: ts/c_tracer.h

setTraceEncoding
setTraceEncoding function sets trace character encoding.

void setTraceAccidental(const char* encoding);

Parameters

encoding

The identifier of the trace character encoding.

Additional information

setTraceEncoding function sets trace character encoding. By default, character encoding of the
trace is UTF-8.

Setting of trace character encoding is necessary for correct representation in reports of local string,
used in the capacity of functionality branches names, subsystems names or user messages.

Function must be invoked before scenario.

Header file: ts/c_tracer.h

12.2 Message tracing
CTESK 2.8 includes the only kind of tracer messages, available to the user. These messages are
called user messages. They play an auxiliary part and are used mainly for manual test trace analysis.

But some error reports show user messages to simplify analysis.

The following functions are used for tracing user messages:

• traceUserInfo
• traceFormattedUserInfo

traceUserInfo
traceUserInfo function saves the user message in the test trace.

void addTraceToConsole(const char* info);

Parameters

info

Pointer to a character string, followed by a zero character, which contains a user message.

Additional information

traceUserInfo function saves the user message in the test trace. User messages play an
auxiliary part and are used mainly for manual test trace analysis. But some error reports show user
messages to simplify analysis.

Header file: ts/c_tracer.h

traceFormattedUserInfo
Function saves the formatted user message in the test trace.

void addTraceToConsole(const char* format, ...);

Parameters

format

Pointer to a character string, followed by a zero character, which contains a format of a user

message. The string can contain any of the conversion specifiers supported by the standard

function printf and the special specifier $(obj) to convert a specification object into a

string. All the $(obj)specifiers shall precede the printf specifiers.

Additional information

traceFormattedUserInfo function formats and saves user message in the test trace. User

messages play an auxiliary part and are used mainly for manual test trace analysis. But some error

reports show user messages to simplify analysis.

Header file: ts/c_tracer.h

13 Deferred reactions registration services
CTESK test system supports testing of systems with deferred reactions. Systems with deferred
reactions are systems which can participate in several interactions simultaneously or can initiate
interactions with their environment themselves.

One of the important task when testing systems with deferred reactions is gaining all necessary

information about interactions with the target system. This information is requested by CTESK test
system to check whether the target system behavior conforms to its specification, because these are
the interactions which reflect behavior of the target system with deferred reactions.

The test system automatically registers all interactions initiated by calls of specification functions
within the test system process. All other interactions must be registered by the test developer in a
special test system component—interactions registrar.

Each interaction with the target system is characterized by the channel, in which it occurs. The test
system uses identifiers of interaction channels to identify them.

For father convenience of deferred reactions registration, the test system provides catcher
functions registering service.

13.1 Interaction channels
Each interaction with the target system is characterized by the channel, in which it occurs. All
interactions within the same channel are linearly ordered. Thus the test system assumes that within
the same channel the first registered interaction has occurred earlier than the second one.

Identifiers of interaction channels, used for identifying channels within the test system, has
ChannelID data type.

There are two predefined constants of this data type:

• WrongChannel
• UniqueChannel

To allocate a channel identifier and then free it, the following functions are intended:

• getChannelID

• releaseChannelID
ChannelID
ChannelID data type is used for identification of interaction channels within the test system.

typedef long ChannelID;

Additional information

ChannelID data type is used for identification of interaction channels within the test system.
There are two constants of this data type: WrongChannel and UniqueChannel.
getChannelID function returns a newly allocated channel identifier. When the identifier becomes
unnecessary, it can be freed by releaseChannelID function.

A channel identifier is correct when it is equal to UniqueChannel constant, or it was returned by
getChannelID function and is not equal to WrongChannel.

Header file: ts/register.h

WrongChannel
WrongChannel constant indicates an incorrect interactions channel identifier.

extern const ChannelID WrongChannel;

Additional information

WrongChannel constant indicates an incorrect interactions channel identifier. This constant is
playing an auxiliary part, for example, getChannelID function returns the constant if it cannot
allocate new channel identifier.

Header file: ts/register.h

UniqueChannel
UniqueChannel constant indicates an unique channel. Only one interaction

can occur in a unique channel, and other interactions cannot occur in it
channel in principle.

extern const ChannelID UniqueChannel;

Additional information

UniqueChannel constant indicates an unique channel. Only one interaction can occur in a unique

channel, and other interactions cannot occur in it channel in principle. This constant is frequently
used when interaction channels have no sense for the target system modeling.

Header file: ts/register.h
getChannelID
getChannelID function returns a newly allocated interactions channel identifier.

ChannelID getChannelID(void);

Return value

Function returns a newly allocated interactions channel identifier if it can, or WrongChannel
otherwise.

Additional information

No longer necessary channel identifier can be freed by releaseChannelID function.

Header file: ts/register.h

releaseChannelID
releaseChannelID function frees the specified interactions channel identifier.

void getChannelID(ChannelID chid);

Parameters

chid

Channel identifier to be freed.
The parameter must be a channel identifier, returned previously by
getChannelID function.

Additional information

Header file: ts/register.h

13.2 Interactions registrar
The test system automatically registers all interactions initiated by means of specification functions
calls within the test system process. Interactions are considered to occur in a channel specified by
StimulusChannel property. To control the property the following functions are intended:

• setStimulusChannel
• getStimulusChannel

By default the property is equal to UniqueChannel.
All other interactions must be registered by the test developer in the interaction registrar by means
of the following functions:

• registerReaction
• registerReactionWithTimeMark
• registerReactionWithTimeInterval
• registerWrongReaction
• registerStimulusWithTimeInterval

setStimulusChannel
setStimulusChannel function set the value of StimulusChannel property.

ChannelID setChannelID(ChannelID chid);

Parameters

Chid

Interactions channel identifier to be used by the test system when
automatically registering interactions.
The parameter must be a correct channel identifier.

Return value

The function returns previous value of StimulusChannel property.

Additional information

StimulusChannel property contains a channel identifier to be used by the test system for
identifying a channel for interactions, initiated by means of specification function calls within the
test system process. By default this property is equal to UniqueChannel.
To access current value of StimulusChannel property, getStimulusChannel function is
intended.

Header file: ts/register.h
getStimulusChannel
getStimulusChannel function returns the value of StimulusChannel property.

ChannelID getChannelID(void);

Return value

The function returns the value of StimulusChannel property.

Additional information

StimulusChannel property contains a channel identifier to be used by the test system for
identifying a channel for interactions, initiated by means of specification function calls within the
test system process. By default this property is equal to UniqueChannel.
To change the value of StimulusChannel property, setStimulusChannel function is
intended.

Header file: ts/register.h

registerReaction
registerReaction function is intended for registration of reactions, received from the target
system.

void registerReaction(ChannelID chid, const char* name,
SpecificationID reactionID, Object* data);

Parameters

chid

Interactions channel identifier to be used by the test system when automatically registering

interactions. The parameter must be a correct channel identifier.

name

Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionID.

reactionID

Reaction identifier of the registered interaction.

data

Data from the target system in model representation.

Data type of the parameter must coincide with data type of reactionID reaction return value.

Additional information

The main properties of interaction are reaction name reactionID and data data, received during
the interaction. Data type of the received data must coincide with data type of the reaction return
value.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system

must be informed about receiving incorrect reaction by means of registerWrongReaction
function.

Header file: ts/register.h
registerReactionWithTimeMark
registerReactionWithTimeMark function is intended for registration of reactions, received from
the target system, specifying time mark of occurrence moment.

void registerReactionWithTimeMark(ChannelID chid, const char* name,
SpecificationID reactionID, Object* data, TimeMark mark);

Parameters
chid
Interactions channel identifier to be used by the test system when automatically registering
interactions. The parameter must be a correct channel identifier.

name

Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionID.

reactionID

Reaction identifier of the registered interaction.

data

Data from the target system in model representation.

Data type of the parameter must coincide with data type of reactionID reaction return value.

mark
Time mark of occurrence moment.

Additional information

The main properties of interaction are reaction name reactionID and data data, received during the
interaction. Data type of the received data must coincide with data type of the reaction return value.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system
must be informed about receiving incorrect reaction by means of registerWrongReaction
function.

Header file: ts/register.h

registerReactionWithTimeInterval
registerReactionWithTimeInterval function is intended for registration of reactions, received
from the target system, specifying time interval of its occurrence.

void registerReactionWithTimeInterval
 (ChannelID chid
 , const char* name
 , SpecificationID reactionID
 , Object* data
 , TimeInterval interval
);

Parameters
chid

Interactions channel identifier to be used by the test system when automatically registering

interactions. The parameter must be a correct channel identifier.

name

Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionID.

reactionID

Reaction identifier of the registered interaction.

data

Data from the target system in model representation.

Data type of the parameter must coincide with data type of reactionID reaction return value.

interval

Time interval of interaction occurrence. The interaction is considered to be occurred somewhere
within the interval, not occupied the whole interval.

Additional information

The main properties of interaction are reaction name reactionID and data data, received during
the interaction. Data type of the received data must coincide with data type of the reaction
return value.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test
system must be informed about receiving incorrect reaction by means of
registerWrongReaction function.

Header file: ts/register.h

registerWrongReaction
registerWrongReaction function is intended to notify the test system about receiving incorrect
reaction, that cannot be converted to model representation. Reaction is an interaction initiated by the
target system.

void registerWrongReaction(const char* info);

Parameters

info

Description of incorrect reaction, used when analyzing test results.

The parameter can be a NULL pointer.

Additional information

registerWrongReaction function is intended to notify the test system about receiving
incorrect reaction, that cannot be converted to model representation. Reaction is an interaction
initiated by the target system.

After registering incorrect reaction, the test system terminates analysis of current test action with
negative verdict.

Header file: ts/register.h

registerStimulusWithTimeInterval
registerStimulusWithTimeInterval function is intended for registering stimulus that
was not registered automatically by the test system. Stimulus is an interaction with the target system
initiated by the test.

void registerReactionWithTimeInterval
 (ChannelID chid
 , const char* name
 , SpecificationID stimulusID
 , TimeInterval interval
 , ...
);

Parameters
chid

Interactions channel identifier to be used by the test system when automatically registering
interactions. The parameter must be a correct channel identifier.

name

Name of the reaction. Used only for tracing.

The parameter can be a NULL pointer. If so, name of the interaction is considered to be equal to
the reaction name reactionID.

stimulusID

Identifier of the specification function registered interaction corresponds to.

interval

Time interval of interaction occurrence. The interaction is considered to be occurred

somewhere within the interval, not occupied the whole interval.

arguments

Additional arguments strictly in the following order:

1. List of specification function parameters values before its invocation.

2. List of specification function parameters values after its invocation.

3. Value returned by the specification function (if data type of result value is not void).

Additional information

registerStimulusWithTimeInterval function is intended for registering stimulus that
was not registered automatically by the test system. All stimuli, initiated by means of specification
functions calls within the test system process, are registered automatically. Thus the only stimuli to
be registered manually, are those initiated outside the test system process or by other means than
specification function call.

The main properties of interaction are reaction name reactionID and data, passed via additional
arguments.

Time marks, time intervals, and interactions channels are used by the test system for ordering
registered interactions.

If data received from the target system cannot be converted to model representation, the test system
must be informed about incorrect behavior during interaction by means of
registerWrongReaction function within the test system main process.

Header file: ts/register.h

13.3 Catcher functions registering service
For the convenience of registering deferred reactions, the test system provides catcher functions
registering service. The service is organized as follows. Special catcher functions are registered in
the test system, to be invoked after stabilization period of each test action. Till the stabilization
period the target system must initiate all requested reactions and come to a stable state. Catcher
functions must then gather all information about received reactions and register them in
interaction registrar.
To register catcher functions the following functions are intended:

• registerReactionCatcher
• unregisterReactionCatcher
• unregisterReactionCatchers

Catcher function is parameter of each of these functions, ReactionCatcherFuncType is type
of these functions.

ReactionCatcherFuncType
ReactionCatcherFuncType data type is used for registration of catcher functions in the test

system. .

typedef bool (*ReactionCatcherFuncType)(void*);

Additional information

Header file: ts/timemark.h

registerReactionCatcher
RegisterReactionCatcher function registers the catcher function in the test system along with
its auxiliary data.

void registerReactionCatcher(
 ReactionCatcherFuncType catcher,
 void* par
);

Parameters

catcher

Pointer to a catcher function.

The parameter must not be a NULL pointer.

par

Auxiliary data of the function being registe. The parameter can be a NULL pointer.

Additional information

registerReactionCatcher function registers the catcher function in the test system along with

its auxiliary data.

When the test system invokes the catcher function, it passes the auxiliary data to it as its parameter.
The sane catcher function can be registered in the test system several times with different data. If
so, the function will be invoked appropriate number of times with different parameter value.

Header file: ts/register.h

unregisterReactionCatcher
unregisterReactionCatcher function removes a record of the specified catcher function with the
specified auxiliary data from the test system.

bool unregisterReactionCatcher(
 ReactionCatcherFuncType catcher,
 void* par
);

Parameters

catcher

Pointer to a catcher function.

The parameter must not be a NULL pointer.

par

Auxiliary data of the function being registe. The parameter can be a NULL pointer.

Return value

The function returns false if the specified function with the specified auxiliary data was not
registered before, and true otherwise.

Additional information

unregisterReactionCatcher function removes a record of the specified catcher function
with the specified auxiliary data from the test system.

To remove all registration records about the specified catcher
function,unregisterReactionCatchers function is intended.

Header file: ts/register.h

UnregisterReactionCatchers
unregisterReactionCatchers function removes all records of the specified catcher function
from the test system.

bool unregisterReactionCatchers(ReactionCatcherFuncType catcher);

Parameters

catcher

Pointer to a catcher function.

The parameter must not be a NULL pointer.

Return value

The function returns false if the specified function was not registered before, and true otherwise.

Additional information

unregisterReactionCatchers function removes all records of the specified catcher function
from the test system.

To remove a records about the catcher function with specific auxiliary data,
unregisterReactionCatcher function is intended.

Header file: ts/register.h

14 Library of specification data types
Library of specification data types contains standard functions for dealing with specification data
types (creation, copying, comparing, stringifying) as well as predefined specification data types for
standard data types of C language (char, short, int, long, float, double, void*, strings
char*), for complex numbers, for data type with a single value, and for container data types (list,
set, map).

14.1 Standard functions
Standard functions can be used for any specification references. The result of function execution
depends on specification reference data type. For example, result of comparing two specification
references of different data types is always negative, and result of comparing two specification
references of the same data type is defined by comparing function, specified in the data type
definition.

Data type of specification reference is defined by a pointer to specification data type descriptor.
Descriptor constant always has the name, consisting of the name of specification data type and a
prefix type_:
const Type type_specification_data_type_name;

• Function of Creating references
The function creates object of the passed type and returns a pointer to it.

• Function of getting reference's type
The function identifies the type of the specification reference and returns a descriptor of this
type.

• Function of copying values by references
The function copies the content of the object by reference src to the content of the object
by reference dst.

• Function of cloning object
The function helps to get a new object with the same content – to clone the object.

• Function of comparing values by references
The function compares object passed to it by specification references returning an integer
result.

• Function of detecting equivalence of values by references
The function compares objects passed to it by specification references returning a logical
value.

• Function of building a string representation of value by reference
The function returns a pointer to a String type value – a string representation of
specification type.

• Function of building XML representation of value by reference|outline
The function returns a pointer to a String type value – XML representation of specification
type.

14.1.1Function of Creating references

The function creates object of the passed type and returns a pointer to it.
Object* create(const Type *type, …)

Parameters

type

A pointers to specification data type descriptor.

file:///C:/H:CodingCVSCTesK	argetctesk-2.5.241-alpha-071220docsliblibtypestand_funcstand_func_copy.html

...

Data type initialization parameters

Return value

The function returns a specification reference to the created object.

Additional information

Initialization parameters must meet the type: parameters for all predefined data types are described
in the relevant part, and the parameters for user-defined data types are specified in the data type
definition.

Integer* ref = create(&type_Integer, 28); // ref → 28
In the above example a reference to library type Integer (specification analogue of int data type) is
created and initialized.

The usage of function create can cause errors because of the usage of not typified argument list....
To except such errors it is recommended to create function create_
name_of_specifiction_type for each specification data type and to call create out of it.

specification typedef struct {int a; int b;} IntPair ={};

IntPair* create_IntPair(int a, int b)
{
 return create(&type_IntPair, a, b);
}

If you use create out of function the name of which has create_ prefix, the compiler gives out
warning:

warning: call create() out of create_... function

14.1.2Function of getting reference's type

The function identifies the type of the specification reference and returns a descriptor of this type.

const Type *type(Object* ref)

Parameters

ref

A specification reference to specification type object

Return value

The function returns a pointer to the descriptor constant of the specification data type, referenced by
ref pointer.

Integer* ref = create(&type_Integer, 28);

if (type(ref) == &type_Integer) // true

14.1.3Function of copying values by references

The function copies the content of the object by reference src to the content of the object by
reference dst.

void copy(Object* src, Object* dst)

Parameters

src

Reference to the object for coping.

dst

Reference to the object in which to copy.

Additional information

References must be of the same data type, i.e. they must have equal data type descriptors. Otherwise
the application will be terminated in run time with an error message.

Integer* ref1 = create(&type_Integer, 28); // ref1 → 28

Integer* ref2 = create(&type_Integer, 47); // ref2 → 47

copy(ref1,ref2); // ref1 → 28, ref2 → 28
In the above example references ref1 and ref2 are referencing to different values of Integer
specification data type after their initialization. After invocation of copy() function, value,
referenced by ref2 pointer, become equal to value, referenced by ref1 pointer.

14.1.4Function of cloning object

The function helps to get a new object with the same content – to clone the object.

Object* clone(Object* ref)

Parameters

ref

A reference to the object for cloning.

Additional information

The function allocates memory for data type value, referenced by ref pointer, initializes the
allocated memory by a value, equal to value referenced by ref pointer, and returns a pointer to the
allocated and initialized memory.

Integer* ref1 = create(&type_Integer, 28);

String* ref2 = clone(ref1);
ref1 is initialized to value 28. Values, referenced by ref1 and ref2 pointers, become equal after
invocation of clone() function.

14.1.5Function of comparing values by references

The function compares object passed to it by specification references returning an integer result.

int compare(Object* left, Object* right)

Parameters

left

A specification reference to the first compared object.

right

A specification reference to the second compared object.

Return value

The function returns zero if the values, referenced by the given references, are equal.

If the values are not equal, the function returns a nonzero value, that can be interpreted
differently depending on the data type. For example, for String library data type, the result
has the same meaning as strcmp() function for char* C data type.

If the parameters have incomparable data types (i.e. the references have different data types and
data type of one reference is not a subtype of another (see Invariants of data types)), the
function returns nonzero value.

If one of the references is NULL, and the other is not, the function returns a nonzero value.

If both references are NULL, the function returns zero.

if (!compare(ref1,ref2)) {/* values are equal */
...
}
else {/* values are not equal */

...
}

14.1.6Function of detecting equivalence of values by references

The function compares objects passed to it by specification references returning a logical value.

bool equals(Object* self, Object* ref)

Parameters

self

A specification reference to the first comparing object.

ref

A specification reference to the second comparing object.

Return value

The function returns true if the values, referenced by the given references, are equal, and false
otherwise.

If the parameters has different data type, the function returns false.

If one of the references is NULL, and the other is not, the function returns false.

If the both references are NULL, the function returns true.

if (equals(ref1,ref2)) {/* values are equal */

...
}
else {/* values are not equal */
...
}

14.1.7Function of building a string representation of value by reference

The function returns a pointer to a String type value – a string representation of specification type.

String* toString(Object* ref)

Parameters

ref

A reference to the specification type object.

Return value

The function returns a pointer to the value of String data type—specification representation of
character string data type.

Integer* ref = create(&type_Integer, 28); // ref → 28

String* str = toString(ref); // str → "28"

printf("*ref == '%s'\n", toCharArray_String(str));

14.1.8Function of building XML representation of value by reference

The function returns a pointer to a String type value – XML representation of specification type.

String* toXML(Object* ref)

Parameters

ref

A reference to the specification type object.

Return value

The function returns a reference to the String type object, which contain XML representation of

passed to the function object.

Integer* ref = create(&type_Integer, 28); // ref → 28

String* str = toXML(ref);

// str → "<object kind=\"spec\" type=\"Integer\" text=\"28\"/>"

printf("*ref == '%s'\n", toCharArray_String(str));

14.2 Predefined specification types
Predefined data types are convenient in specifications (for example, for implementation state
modeling) as they provide ready for use, universal, guaranteed faultless functionality.

14.2.1Char

Type Char is a specification analogue of C build-in data type char.

Additional information
Functions, defined for the type Char:

• creating specification reference ;

• getting a value of the type char .

Header file: atl/char.h

create_Char
The function creates a specification reference of the type Char.

Char* create_Char(char c)

Parametrs

c

Initializing value.

Return value

A specification reference of the type Char to the created object.

Additional information

This function is defined along with the standard function create.

Char* ch1 = create(&type_Char, 'a');

Char* ch2 = create_Char('a');
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_Char
The function gets a char value, contained in a specification type.

char value_Char(Char* c)

Parametrs

c

A specification reference to the value of the type Char.

Return value

A symbol, which is a value of specification reference c.

Additional information

This value can be also referred to using dereferencing of specification reference:

Char* ch = create_Char('a');

char val = *ch;
Function value_Char() ensures a run-time type control and a pointer Object* can be passed to it
without preliminary casting:

List* l;

char val;

...

val = value_Char(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed reference an explicit checking with
a standard function type()can be needed:

Object* o = get_List(l,0));

if (type(o) == &type_Char) {
 val = value_Char(o);
}

14.2.2Integer and UInteger

Types Integer and UInteger are specification analogues of C built-in data types int and
unsigned int.

Additional information
The functions, defined for the types Integer and UInteger:

• creating specification reference;

• getting a value of the type int or unsigned int .

Header file: atl/Integer.h

create_Integer, create_UInteger
The functions creates specification references of the types Integer and UInteger.

Integer* create_Integer(int i)

UInteger* create_UInteger(unsigned int i)

Parametrs

i

Initializing value.

Return value

A specification reference of the type Integer (UInteger) to the created object.

Additional information

This function is defined along with the standard function create.

Integer* i1 = create(&type_Integer, -28);

Integer* i2 = create_Integer(-28);

UInteger* i1 = create(&type_UInteger, 28);

UInteger* i2 = create_UInteger(28);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_Integer, value_UInteger
The function gets an int value, contained in a specification type.

int value_Integer (Integer* i)

unsigned int value_UInteger (UInteger* i)

Parametrs

i

A specification reference to the value of the type Integer or UInteger.

Additional information

This value can be also referred to using dereferencing of specification reference:

Integer* i = create_Integer(-28);

int val = *i;
Function value_Integer() ensures a run-time type control and a pointer Object* can be passed to
it without preliminary casting:

List* l;

int val;

...

val = value_Integer(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed
reference an explicit checking with a standard function type()can be
needed:

Object* o = get_List(l,0));

if (type(o) == &type_Integer) {
 val = value_Integer(o);
}

14.2.3Short and Ushort

Types Short and UShort are specification analogues of C built-in data types short and
unsigned short.

Additional information
The functions, defined for the types Short and UShort:

creating specification reference;

getting a value of the type short or unsigned short .

Header file: atl/short.h

create_Short, create_UShort
The functions creates specification references of the types Short and UShort.

Short* create_Short (short i)

UShort* create_UShort (unsigned short i)

Parametrs

i

Initializing value.

Return value

A specification reference of the type Short (UShort) to the created object.

Additional information

This function is defined along with the standard function create.

Short* i1 = create(&type_Short, -28);

Short* i2 = create_Short(-28);

UShort* i1 = create(&type_UShort, 28);

UShort* i2 = create_UShort(28);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_Short, value_UShort
The function gets a short value, contained in a specification type.

short value_Short (Short* i)

unsigned short value_UShort (UShort* i)

Parametrs

i

A specification reference to the value of the type Short or UShort.

Additional information

This value can be also referred to using dereferencing of specification reference:

Short* i = create_Short(-28);

short val = *i;
Function value_Short() ensures a run-time type control and a pointer Object* can be passed to it
without preliminary casting:

List* l;

short val;

...

val = value_Short(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed
reference an explicit checking with a standard function type()can be
needed:

Object* o = get_List(l,0));

if (type(o) == &type_Short) {
 val = value_Short(o);
}

14.2.4Long and Ulong

Types Long and ULong are specification analogues of C built-in data types long int and
unsigned long int.

Additional information
Functions, defined for the type Long:

• creating specification reference;

• getting a value of the type long int or unsigned long int .

Header file: atl/long.h

create_Long, create_ULong
The functions creates specification references of the types Long and ULong.

Long* create_Long(long i)

ULong* create_ULong (unsigned long i)

Parametrs

i

Initializing value.

Return value

A specification reference of the type Long (ULong) to the created object.

Additional information

This function is defined along with the standard function create.

Long* i1 = create(&type_Long, -28);

Long* i2 = create_Long(-28);

ULong* i1 = create(&type_ULong, 28);

ULong* i2 = create_ULong(28);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_Long, value_ULong
The function gets a long value, contained in a specification type.

long value_Long (Long* i)

unsigned long value_ULong (ULong* i)

Parametrs

i

A specification reference to the value of the type Long or ULong.

Additional information

This value can be also referred to using dereferencing of specification reference:

Long* i = create_Long(-28);

long val = *i;
Function value_Long() ensures a run-time type control and a pointer Object* can be passed to it
without preliminary casting:

List* l;

long val;

...

val = value_Long(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed
reference an explicit checking with a standard function type()can be
needed:

Object* o = get_List(l,0));

if (type(o) == &type_Long) {
 val = value_Long(o);
}

14.2.5Float

Type Float is a specification analogue of C built-in data type float.

Additional information
Functions, defined for the type Float:

• creating specification reference;

• getting a value of the type float .

Header file: atl/float.h

create_Float
The function creates a specification reference of the type Float.

Float* create_Float(float f)

Parametrs

f

Initializing value.

Return value

A specification reference of the type Float to the created object.

Additional information

This function is defined along with the standard function create.

Float* f1 = create(&type_Float, 3.14);

Float* f2 = create_Float(3.14);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_Float
The function gets a float value, contained in a specification type.

float value_Float(Float* f)

Parametrs

f

A specification reference to the value of the type Float.

Additional information

This value can be also referred to using dereferencing of specification reference:

Float* f = create_Float(3.14);

float val = *f;
Function value_Float() ensures a run-time type control and a pointer Object* can be passed to it
without preliminary casting:

List* l;

float val;

...

val = value_Float(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed
reference an explicit checking with a standard function type()can be
needed:

Object* o = get_List(l,0));

if (type(o) == &type_Float) {
 val = value_Float(o);
}

14.2.6Double

Type Double is a specification analogue of C built-in data type double.

Additional information
Functions, defined for the type Double:

• creating specification reference;

• getting a value of the type double .

Header file: atl/double.h

create_Double
The function creates a specification reference of the type Double.

Double* create_Double(double d)

Parametrs

d

Initializing value.

Return value

A specification reference of the type Double to the created object.

Additional information

This function is defined along with the standard function create.

Double* d1 = create(&type_Double, 3.14);

Double* d2 = create_Double(3.14);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_Double
The function gets a double value, contained in a specification type.

double value_Double(Double* d)

Parametrs

d

A specification reference to the value of the type Double.

Additional information

This value can be also referred to using dereferencing of specification reference:

Double* d = create_Double(3.14);

double *p = (double*)d;
Function value_Double() ensures a run-time type control and a pointer Object* can be passed to it
without preliminary casting:

List* l;

double val;

...

val = value_Double(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed
reference an explicit checking with a standard function type()can be
needed:

Object* o = get_List(l,0));

if (type(o) == &type_Double) {
 val = value_Double(o);
}

14.2.7VoidAst

Type VoidAst is a specification analogue of C built-in data type void.

Additional information
Functions, defined for the type VoidAst:

• creating specification reference;

• getting a value of the type v oid .

Header file: atl/voidast.h

create_VoidAst
The function creates a specification reference of the type VoidAst.

VoidAst* create_VoidAst(void* v)

Parametrs

v

Initializing value.

Return value

A specification reference of the type VoidAst to the created object.

Additional information

This function is defined along with the standard function create.

VoidAst* v1 = create(&type_VoidAst, NULL);

VoidAst* v2 = create_VoidAst(NULL);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

value_VoidAst
The function gets a void* value, contained in a specification type.

void* value_VoidAst(VoidAst* v)

Parametrs

v

A specification reference to the value of the type VoidAst.

Additional information

This value can be also referred to using dereferencing of specification reference:

VoidAst* v = create_VoidAst(NULL);

voidast val = *v;
Function value_VoidAst ensures a run-time type control and a pointer Object* can be passed to it
without preliminary casting:

List* l;

void* val;

...

val = value_VoidAst(get_List(l,0)); // Object* get_List(List*,int)
However if there is no confidence in the right type of the passed
reference an explicit checking with a standard function type()can be
needed:

Object* o = get_List(l,0));

if (type(o) == &type_VoidAst) {
 val = value_VoidAst(o);
}

14.2.8Unit

Type Unit is a specification data type with the only one value : two nonzero specification references
of Unit data type are always equal.

Additional information
Functions, defined for the type Unit:

• creating specification reference

Header file: atl/unit.h

create_Unit
The function creates a specification reference of the type Unit.

Unit* create_Unit(void)

Return value
A specification reference of the type Unit to the created object.

Additional information
This function is defined along with the standard function create.

Unit* u1 = create(&type_Unit);

Unit* u2 = create_Unit();
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

14.2.9BigInteger

Type BigInteger is used for representation of integers of any size

Header file: atl/bigint.h
add_BigInteger
The function returns a sum of two BigInteger numbers.
create_BigInteger
The function creates a BigInteger specification reference, which represents input integer.
divide_BigInteger
The function returns a result of division of two BigInteger numbers.
intValue_BigInteger
The function returns int value, contained in a specification type c).
longValue_BigInteger
The function returns long value, contained in a specification type (if this value can be put in
long).
multiply_BigInteger
The function returns a result of multiplication of two BigInteger numbers.
negate_BigInteger
The function returns a negation of BigInteger number.
power_BigInteger
The function returns a result of integer involution of BigInteger number.
remainder_BigInteger
The function returns a remainder in division of two BigInteger numbers.
subtract_BigInteger
The function returns a result of subtraction of two BigInteger numbers.
valueOf_BigInteger
The function creates a BigInteger specification reference, which represents an integer in a form
string.

add_BigInteger
The function returns a sum of two BigInteger numbers.

BigInteger* add_BigInteger(BigInteger* n1, BigInteger* n2)

Parametrs

n1

First summand.

n2

Second summand.

Return value

A specification reference of the type BigInteger to a new object — a sum.

create_BigInteger
The function creates a specification reference of the type BigInteger, which represents input
integer.

BigInteger* create_BigInteger(int i)

Parametrs

i

Initializing value.

Return value

A specification reference of the type BigInteger to the created object.

Additional information

This function is defined along with the standard function create.

BigInteger* i1 = create(&type_BigInteger, -28);

BigInteger* i2 = create_BigInteger(-28);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

divide_BigInteger
The function returns a result of division of two BigInteger numbers.

BigInteger* divide_BigInteger(BigInteger* n1, BigInteger* n2)

Parametrs

n1

Dividend.

n2

Divisor.

Return value

A specification reference of the type BigInteger to a new object — a quotient.

intValue_BigInteger
The function returns an int value, contained in a specification type (if this value can be put in
int).

int intValue_BigInteger (BigInteger* i)

Parametrs

i

A specification reference to the value of the type BigInteger.

Additional information

If BigInteger value can't be put in int, program stop running using assertion.

longValue_BigInteger
The function returns long value, contained in a specification type (if this value can be put
in long).

long value_BigInteger (BigInteger* i)

Parametrs

i

A specification reference to the value of the type BigInteger.

Additional information

If BigInteger value can't be put in int, program stop running using assertion.

multiply_BigInteger
The function returns a result of multiplication of two BigInteger numbers.

BigInteger* multiply_BigInteger(BigInteger* n1, BigInteger* n2)

Parametrs

n1

First factor.

n2

Second factor.

Return value

A specification reference of the type BigInteger to a new object — a product.

negate_BigInteger
The function returns a negation of BigInteger number.

BigInteger* negate_BigInteger(BigInteger* n)

Parametrs

n

Argument of negation.

Return value

A specification reference of the type BigInteger to a new object — a negation.

power_BigInteger
The function returns a result of integer involution of BigInteger number.

BigInteger* divide_BigInteger(BigInteger* n1, int n2)

Parametrs

n1

Base of power.

n2

Exponent.

Return value

A specification reference of the type BigInteger to a new object — a result of involution.

remainder_BigInteger
The function returns a remainder in division of two BigInteger numbers.

BigInteger* remainder_BigInteger(BigInteger* n1, BigInteger* n2)

Parametrs

n1

Dividend.

n2

Divisor.

Return value

A specification reference of the type BigInteger to a new object — a remainder.

subtract_BigInteger
The function returns a result of subtraction of two BigInteger numbers.

BigInteger* subtract_BigInteger(BigInteger* n1, BigInteger* n2)

Parametrs

n1

Minuend.

n2

Deduction.

Return value

A specification reference of the type BigInteger to a new object — a difference.

valueOf_BigInteger
The function creates a specification reference of the type BigInteger, which represents an integer
in a string form.

BigInteger* valueOf_BigInteger(String* str)

Parametrs

str

String type value of the number.

Return value

A specification reference of the type BigInteger to the created object.

14.2.10 Complex

Type Complex is intended for representation of complex numbers.

Additional information

The usual comparing rules are applied to specification references of Complex data type ((re1, im1) =
(re2, im2) ↔ re1 = re2, im1 = im2). String representation looks like (re + im*i).
The base type of type Complex is the following structure:

struct {

 double re;

 double im;

};
There are no special functions to access real and imaginary parts of the complex number; dereferencing
should be used:

Complex* с = create_Complex(1.4, -0.6);

double re = c->re;

double im = c->im;
The functions, defined for the type Complex:

creating specification reference;

Header file: atl/complex.h

create_Complex
The function creates a specification reference of the type Complex.

Complex* create_Complex (double re, double im)

Parametrs

re

Real part of complex number.

im

Imaginary part of complex number.

Return value

A specification reference of the type Complex to the created object.

Additional information

This function is defined along with the standard function create.

Complex* c1 = create(&type_Complex, 1.4, -0.6);

Complex* c2 = create_Complex(1.4, -0.6);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

14.2.11 String

Type String is intended for representation of string characters.

Additional information

The way strings are represented in C language, as array of char, cannot be kept within the concept
of allowable data type. Thus, strings can be conveniently represented by this specification data
type everywhere the allowable data type is required.

Specification references to String data type are compared by normal rules (the same way as
strcmp function does). Character positions are numbered from 0.

Specification strings can be handled like usual C strings, taking into account that the value of the
string should not be changed. To access C string value, toCharArray_String function is used.
This function returns a pointer to character array within the specification data type.

At the same time specification strings provides a lot of convenient functions themselves. All that
functions can accept only non-zero String references.

Header file: atl/string.h
create_String
The function creates a specification reference of the type String.
charAt_String
The function returns a character in the given index position.
concat_String
The function returns a String specification reference to a concatenation of two strings.
startsWith_String
The function checks if the string self begins with suffix.
startsWithOffset_String
The function checks if the sub-string fix contained in the string self in the given
position.
endsWith_String
The function checks if the string self ends with the string suffix.
indexOfChar_String
The function searches the given character in the string and returns a number of the first found
position.
indexOfCharFrom_String
The function searches the given symbol in the string starting from fromIndex position and
return a number of the first found position.
indexOfString_String
Searches the given sub-string in a string and returns a number of the first found position.
indexOfStringFrom_String
Searches the given sub-string in a string beginning from fromIndex position and returns a number
of the first found position.
lastIndexOfChar_String
Searches the given symbol in the string right to left and returns a number of the first found position.
lastIndexOfCharFrom_String

Searches the given symbol in the string right to left starting from the fromIndex position and
returns a number of the first found position.
lastIndexOfString_String
Searches the given sub-string in the string right to left and returns a number of the first found
position.
lastIndexOfStringFrom_String
Searches the given sub-string in a string right to left starting from the fromIndex position and
returns a number of the first found position.
length_String
The function returns the length of a string.

regionMatches_String , regionMatchesCase_String
Checks whether the sub-string of string self matches the sub-string of the string other. The
function regionMatchesCase_String takes letters case into account, the function
regionMatches_String has an additional parameter ignoreCase, which let to ignore letters
case or to take it into account.
replace_String
Replaces in the given string all the oldChar symbols to the newChar symbols.
substringFrom_String
The function returns sub-string with all the symbols from the beginIndex position to the end.
substring _String
The function returns sub-string with all the symbols from the beginIndex position to the
endIndex inclusive.
toLowerCase_String
The function converts letters to the lower case.
toUpperCase_String
The function converts letters to the upper case.
toCharArray_String
The function returns a C-string corresponding to the given specification string.
trim_String
The function returns a string, constructed from a self string by removing space characters from the
beginning and the ending of the string.
format_String
The function returns a specification string, corresponding to output of printf function, invoked with
the same parameters
vformat_String
The function returns a specification string, corresponding to output of vprintf function, invoked
with the same parameters.
valueOfBool_String
The function returns a string representation of bool value.
valueOfChar_String
The function returns a string representation of char value.
valueOfShort_String
The function returns a string representation of short value.
valueOfUShort_String
The function returns a string representation of unsigned short value .
valueOfInt_String

The function returns a string representation of int value.
valueOfUInt_String
The function returns a string representation of unsigned int value.
valueOfLong_String
The function returns a string representation of long value.
valueOfULong_String
The function returns a string representation of unsigned long value.
valueOfFloat_String
The function returns a string representation of float value.
valueOfDouble_String
The function returns a string representation of double value.
valueOfPtr_String
The function returns a string representation of void* value.
valueOfObject_String
The function returns a string representation of a specification type.
valueOfBytes_String
The function returns a string hexadecimal representation of p byte array of l length.

create_String
The function creates a specification reference of the type String.

String* create_String (const char *cstr)

Parametrs

cstr

Initializing value.

Return value

A specification reference of the type String to the created object.

Additional information

This function is defined along with the standard function create.

String* s1 = create(&type_String, "a string");

String* s2 = create_String("a string");
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

charAt_String
The function returns a character in the given index position.

char charAt_String(String* self, int index)

Parametrs

self

A string a character of which is needed to be defined.

index

A number of the position inside the string.

Return value

A character found in the self string in the index position.

Additional information

A number of the position must be within the string. A numeration starts with 0; A position of the last
meaningful symbol determined with the function length_String as length_String(self)
– 1.

String* s = create_String("abracadabra");

printf("%c\n", charAt_String(s,5));

c

concat_String
The function returns a String specification reference to a concatenation of two strings.

String *concat_String(String* str1, String* str2)

Parametrs

str1

A first part of concatenation.

str2

A second part of concatenation.

Return value

A specification string get by a concatenation of two strings str1 and str2.

Additional information

String* s1 = create_String("abra");

String* s2 = create_String("cadabra");

String* s = concat_String(s1,s2);

printf("%s\n", toCharArray_String(s));

abracadabra

startsWith_String
The function checks if one string begins with the other.

bool startsWith_String(String *self, String *prefix)

Parametrs

self

A string the beginning of which is needed to be checked.

prefix

A sought-for beginning of a string.

Return value

True, if a self string begins with a prefix sub-string. false in any other case

Additional information

If a prefix string is empty, true is returned. If the length of a prefix string is bigger than the
length of self then false is returned.

String* s = create_String("abracadabra");

String* s1 = create_String("abra");

String* s2 = create_String("cadabra");

printf("1) %d\n2) %d\n ",

 startsWith_String(s,s1),

 startsWith_String(s,s2)

);

1) 1
2) 0

startsWithOffset_String
The function checks if the sub-string fix contained in the string self in the given
position.

bool startsWithOffset_String
 (String *self, String *fix, int toffset)

Parametrs

self

A string where sub-string should be searched.

fix

A sought-for sub-string.

toffset

A position in the given string.

Return value

true, if in the string self in the position toffset begins the sub_string prefix. false in any
other case.

Additional information

If the position is negative or is greater than the self string's length, false is returned.If string
prefix is empty, true is returned. If the length of string prefix is greater than the length of
self, false is returned.

String* s = create_String("abracadabra");

String* s1 = create_String("abra");

printf("1) %d\n2) %d\n",

 startsWithOffset_String(s,s1,7),

 startsWithOffset_String(s,s2,8)

);

1) 1
2) 0

endsWith_String
The function checks if the string self ends with the string suffix.

bool endsWith_String(String *self, String *suffix)

Parametrs

self

A string the end of which is needed to be checked.

suffix

A sought-for ending of a string.

Return value

true, if the string self ends with the string suffix. false in any other case.

Additional information

If the string suffix is empty, the function returns true. If the length of the string suffix is greater
than the length of self, the function returns false.

String* s = create_String("abracadabra");

String* s1 = create_String("abr");

String* s2 = create_String("cadabra");

printf("1) %d\n2) %d\n "
 , endsWith_String(s,s1)
 , endsWith_String(s,s2)
);

1) 0
2) 1

indexOfChar_String
The function searches the given character in the string and returns a number of the first found
position.

int indexOfChar_String(String* self, int ch)

Parametrs

self

A string where a symbol should be searched.

ch

A sought-for symbol.

Return value

A number of the first symbol ch in a string self. If the symbol isn't found -1 is returned. For
symbols with code 0 the function always returns –1.

Additional information

String* s = create_String("abracadabra");

printf("1) %d\n2) %d\n"

 , indexOfChar_String(s,'b')

 , indexOfChar_String(s,'z')

);

1) 1
2) -1

indexOfCharFrom_String
The function searches the given symbol in the string starting from fromIndex position and
return a number of the first found position.

int indexOfCharFrom_String(String* self, int ch, int fromIndex)

Parametrs

self

A string where a symbol should be searched.

ch

A sought-for symbol.

fromIndex

A beginning positin of the search.

Return value

A number of the first symbol ch in a string self, beginning from fromIndex position. If
fromIndex position is greater than length of self, i.e. fromIndex > length_String(self),
–1 is returned. Is a symbol couldn't be found -1 is returned. For symbols with the code
0 the function always returns –1.

Additional information

If fromIndex < 0, the position is considered to be 0.

String* s = create_String("abracadabra");

printf("1) %d\n2) %d\n"
 , indexOfCharFrom_String(s,'b',5)
 , indexOfCharFrom_String(s,'b',9)
);

1) 8
2) -1

indexOfString_String
Searches the given sub-string in a string and returns a number of the first found position.

int indexOfString_String(String* self, String* str)

Parametrs

self

A string where sub-string should be searched.

str

A sought-for sub-string.

Return value

If sub-string str is found in self, then a position in the string self, from which str
begins, is returned. If sub-string isn't found, -1 is returned.

Additional information

If sub-string is empty, it considers to be a part of any string (including empty one) from 0 position.

String* s = create_String("abracadabra");

String* s1 = create_String("abra");

String* s2 = create_String("cdbr");

printf("1) %d\n2) %d\n"
 , indexOfString_String(s,s1)
 , indexOfString_String(s,s2)
);

1) 0
2) -1

indexOfStringFrom_String
Searches the given sub-string in a string beginning from fromIndex position and returns a number
of the first found position.

int indexOfStringFrom_String
 (String* self, String* str, int fromIndex)

Parametrs

self

A given string.

str

A sought-for sub-string.

fromIndex

A beginning positin of the search.

Return value

If sub-string str is found in the string self, beginning from fromIndex position, then a
position in the string self, from which str begins, is returned. If fromIndex position is greater
than length of self, i.e. fromIndex > length_String(self), –1 is returned. If a symbol
couldn't be found -1 is returned.

Additional information

If fromIndex < 0, then fromIndex is considered to be 0. If sub-string is empty, it considers to
be a part of any string (including empty one) from fromIndex position.

String* s = create_String("abracadabra");

String* s1 = create_String("abra");

printf("1) %d\n2) %d\n"
 , indexOfString_String(s,s1,5)
 , indexOfString_String(s,s1,8)
);

1) 7

2) -1

lastIndexOfChar_String
Searches the given symbol in the string right to left and returns a number of the first found position.

int lastIndexOfChar_String(String* self, int ch)

Parametrs

self

A given string.

ch

A sought-for symbol.

Return value

The position of the last symbol ch in the string self. If the symbol isn't found – 1 is returned. For a
symbol with the code 0, -1 is always returned.

Additional information

String* s = create_String("abracadabra");

printf("1) %d\n2) %d\n"
 , lastIndexOfChar_String(s,'b')
 , lastIndexOfChar_String(s,'z')
);

1) 8
2) -1

lastIndexOfCharFrom_String
Searches the given symbol in the string right to left starting from the given position and returns a
number of the first found position.

int lastIndexOfCharFrom_String(String* self, int ch, int fromIndex)

Parametrs

self

A given string.

ch

A sought-for symbol.

fromIndex

A beginning positin of the search.

Return value

A position of the symbol ch in the string self. If fromIndex < 0, – 1 is returned. If the symbol

isn't found, the function returns -1. For a symbol with the code 0, -1 is always returned.

Additional information

If fromIndex position is greater than length of self, i.e. fromIndex > length_String(self),
then the last symbol position of the string is the position of the search beginning.

String* s = create_String("abracadabra");

printf("1) %d\n2) %d\n"
 , lastIndexOfCharFrom_String(s,'b',5)
 , lastIndexOfCharFrom_String(s,'b',0)
);

1) 1
2) -1

lastIndexOfString_String
Searches the given sub-string in the string right to left and returns a number of the first found
position.

int lastIndexOfString_String(String* self, String* str)

Parametrs

self

A given string.

str

A sought-for sub-string.

Return value

If sub-string isn't found -1 is returned.

Additional information

If sub-string is empty, it considers to be a part of any string (including empty one) from
length_String(self) position.

String* s = create_String("abracadabra");

String* s1 = create_String("abra");

String* s2 = create_String("cdbr");

printf("1) %d\n2) %d\n"
 , indexOfString_String(s,s1)
 , indexOfString_String(s,s2)
);

1) 7
2) -1

lastIndexOfStringFrom_String
Searches the given sub-string in a string right to left starting from the fromIndex position and
returns a number of the first found position.

int lastIndexOfStringFrom_String(String* self,
 String* str,
 int fromIndex
)

Parametrs

self

A given string.

str

A sought-for sub-string.

fromIndex

A beginning positin of the search.

Return value

The position of the sub-string str in the string self. If fromIndex < 0, –1 is returned.

Additional information

If fromIndex position is greater than length of self, i.e. fromIndex > length_String(self),
then length_String(self)is the position of the search beginning. If sub-string is empty, it
considers to be a part of any string (including empty one) from length_String(self) position.

String* s = create_String("abracadabra");

String* s1 = create_String("abra");

printf("1) %d\n2) %d\n"
 , lastIndexOfString_String(s,s1,3)
 , lastIndexOfString_String(s,s1,2)
);

1) 0
2) -1

length_String
The function returns the length of a string.

int length_String(String* self)

Parametrs

self

A string the length of which is to be found.

Return value

The exact number of symbols in the string self.

Additional information

This function is defined along with the standard function create.

String* s = create_String("abracadabra");

printf("%d\n", length_String(s));

11

regionMatches_String, regionMatchesCase_String
Checks whether the sub-string of string self matches the sub-string of the string other. The
function regionMatchesCase_String takes letters case into account, the function
regionMatches_String has an additional parameter ignoreCase, which let to ignore letters
case or to take it into account.

bool regionMatches_String
 (String* self, bool ignoreCase, int toffset, String* other, int
ooffset, int len)

bool regionMatchesCase_String
 (String* self, int toffset, String* other, int ooffset, int len)

Parametrs

self

A first string.

toffset

A position of the fragment in the first string.

other

A second string.

ooffset

A position of the fragment in the second string.

len

A length of compared objects.

ignoreCase

If the parameter is true then case is ignored, if false then it takes into account.

Return value

true, if the given segments coincide and false in any other case.

Additional information

The length of the fragments must be positive (len ≥ 0). If the fragments defined by the position
and the length go out of the position of the string is false returned.

SString* s1 = create_String("aBrAcAdabra");

String* s2 = create_String("cadabra");

printf("a1) %d\na2) %d\n"
 , regionMatchesCase_String(s1,0,s2,3,4)
 , regionMatchesCase_String(s1,7,s2,3,4)
);

printf("b1) %d\nb2) %d\n"
 , regionMatches_String(s1,false,0,s2,3,4)
 , regionMatches_String(s1,true,0,s2,3,4)
);

a1) 0
a2) 1
b1) 0
b2) 1

replace_String
Replaces in the given string all the oldChar symbols to the newChar symbols.

String* replace_String(String* self, char oldChar, char newChar)

Parametrs

self

A given string.

oldChar

A symbol which is to be changed.

newChar

A symbol with which entries of oldChar are replaced.

Return value

A specification string is gotten from self changing symbols oldChar to newChar.

Additional information

The symbols can't have the code 0.

String* s = create_String("abracadabra");

String* res = replace_String(s,'a','_');

printf("%s\n", toCharArray(res));

_br_c_d_br_

substringFrom_String
The function returns sub-string with all the symbols from the beginIndex position to the end.

String* substringFrom_String(String* self, int beginIndex)

Parametrs

self

A given string.

beginIndex

A position of the sought-for string beginning

Return value

A specification string which is a sub-string of self, extracted using mentioned rules.

Additional information

The position beginIndex can't go beyond the string:
0 ≤ beginIndex ≤ length_String(self).

String* s = create_String("abracadabra");

String* res = substringFrom_String(s,4);

printf("%s\n", toCharArray_String(res));

cadabra

substring_String
The function returns sub-string with all the symbols from the beginIndex position to the
endIndex inclusive.

String* substring_String
 (String* self, int beginIndex, int endIndex)

Parametrs

self

A given string.

beginIndex

A position of the sought-for string beginning

endIndex

An incremented position of the end of the string.

Return value

A specification string which is a sub-string of self, extracted using mentioned rules.

Additional information

The position beginIndex can't be negative and can't be greater than endIndex, and the position
endIndex can't be greater than the length of the string:
0 ≤ beginIndex ≤ endIndex ≤ length_String(self).

If the beginning and the ending positions are the same then an empty string is returned.

String* s = create_String("abracadabra");

String* res = substring_String(s,4,7);

printf("%s\n", toCharArray_String(res));

cad

toLowerCase_String
The function converts letters to the lower case.

String* toLowerCase_String(String* self)

Parametrs

self

A string which is to be converted to the lower case.

Return value

A specification string gotten from self by converting to the lower case.

Additional information

String* s = create_String("aBrAcAdAbRa");

String* res = toLowerCase_String(s);

printf("%s\n", toCharArray_String(res));

abracadabra

toUpperCase_String
The function converts letters to the upper case.

String* toUpperCase_String(String* self)

Parametrs

self

A string which is to be converted to the upper case.

Return value

A specification string gotten from self by converting to the upper case.

Additional information

String* s = create_String("aBrAcAdAbRa");

String* res = toLowerCase_String(s);

printf("%s\n", toCharArray_String(res));

ABRACADABRA

toCharArray_String

The function returns a C-string corresponding to the given specification string.

const char* toCharArray_String(String* self)

Parametrs

self

 A given specification reference of the type String.

Return value

A symbol array, corresponding to the specification string self.

Additional information

String* s = create_String("abracadabra");

printf("%s\n", toCharArray_String(s));

abracadabra

trim_String
The function returns a string, constructed from a self string by removing space characters from the
beginning and the ending of the string.

String* trim_String(String* self)

Parametrs

self

A string from which first and last whitespaces are to be excluded.

Return value

A specification reference of the type String to the string gotten from self excluding first and
last whitespaces.

Additional information

Whitespaces are whitespaces, tabulations and line feeds.

String* s = create_String(" \tabracadabra \n");

String* res = trim_String(s);

printf("'%s'\n", toCharArray_String(res));

'abracadabra'

format_String
The function returns a specification string, corresponding to output of printf function, invoked with
the same parameters

String* format_String(const char *format, ...)

Parametrs

format

A string , setting formatting using rules of the printf function.

Return value

A specification reference of the type String, corresponding to the output of the function printf
with a parameter format.

Additional information

char s[12];

String* str;

sprintf(s,"abra%s","cadabra");

str = create_String(s);

String* str = format_String("abra%s","cadabra");
The two shown methods are equivalent.

vformat_String
The function returns a specification string, corresponding to output of vprintf function, invoked
with the same parameters.

String* vformat_String(const char *format, va_list args)

Parametrs

format

A string , setting formatting using rules of the function printf.

args

Arguments which are passed to one of the functions of printf family.

Return value

 A specification reference of the type String, corresponding to the output of the function printf

with a parameter format.

Additional information

char s[12];

String* str;

vsprintf(s,"abra%s","cadabra");

str = create_String(s);

String* str = vformat_String("abra%s","cadabra");
The two shown methods are equivalent.

valueOfBool_String
The function returns a string representation of bool.

String* valueOfBool_String(bool b)

Parametrs

b

A value of the type bool, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value b.

Additional information

String* s1 = valueOfBool_String(true);

String* s2 = valueOfBool_String(false);

printf("1) %s\n2) %s\n"
 , toCharArray_String(s1)
 , toCharArray_String(s2)
);

1) true
2) false

valueOfChar_String
The function returns a string representation of char.

String* valueOfChar_String(char c)

Parametrs

c

A value of the type char, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value c.

Additional information

String* s = valueOfChar_String('a');

printf("%s\n", toCharArray_String(s));

a

valueOfShort_String
The function returns a string representation of short.

String* valueOfShort_String(short i)

Parametrs

i

A value of the type short, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value i.

Additional information

String* s = valueOfShort_String (-28);

printf("%s\n", toCharArray_String(s));

-28

valueOfUShort_String
The function returns a string representation of unsigned short.

String* valueOfUShort_String(unsigned short i)

Parametrs

i

A value of the type unsigned short, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value i.

Additional information

String* s = valueOfUShort_String(47);

printf("%s\n", toCharArray_String(s));

47

valueOfInt_String
The function returns a string representation of int.

String* valueOfInt_String(int i)

Parametrs

i

A value of the type int, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value i.

Additional information

String* s = valueOfInt_String(-28);

printf("%s\n", toCharArray_String(s));

-28

valueOfUInt_String
The function returns a string representation of unsigned int.

String* valueOfUInt_String(unsigned int i)

Parametrs

i

A value of the type unsigned int, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value i.

Additional information

String* s = valueOfUInt_String(47);

printf("%s\n", toCharArray_String(s));

47

valueOfLong_String
The function returns a string representation of long.

String* valueOfLong_String(long i)

Parametrs

i

A value of the type long, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value i.

Additional information

String* s = valueOfLong_String(-28);

printf("%s\n", toCharArray_String(s));

-28

valueOfULong_String
The function returns a string representation of unsigned long.

String* valueOfULong_String(unsigned long i)

Parametrs

i

A value of the type unsigned long, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value i.

Additional information

String* s = valueOfULong_String(47);

printf("%s\n", toCharArray_String(s));

47

valueOfFloat_String
The function returns a string representation of float.

String* valueOfFloat_String(float f)

Parametrs

f

A value of the type float, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value f.

Additional information

String* s = valueOfFloat_String(3.14);

printf("%s\n", toCharArray_String(s));

3.140000

valueOfDouble_String
The function returns a string representation of double.

String* valueOfDouble_String(double d)

Parametrs

d

A value of the type double, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of value d.

Additional information

String* s = valueOfDouble_String(3.14);

printf("%s\n", toCharArray_String(s));

3.140000

valueOfPtr_String
The function returns a string representation of void*.

String* valueOfPtr_String(void *p)

Parametrs

p

A value of the type void*, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of not typified pointer p.

Additional information

int i;

String* s = valueOfPtr_String((void*)&i);

printf("%s\n", toCharArray_String(s));

0012FF6C

valueOfObject_String
The function returns a string representation of a specification type.

String* valueOfObject_String(Object* ref)

Parametrs

ref

A value of specification type, for which a string representation is constructing.

Return value

A specification reference of the type String to the string representation of a specification type
value p.

Additional information

The result is the same as the returned value of standard function toString:

Object* ref;

String* s = valueOfObject_String(ref);

String* s = toString(ref);

valueOfBytes_String
The function returns a string hexadecimal representation of p byte array of a given length.

String* valueOfBytes_String(const char* p, int l)

Parametrs

p

A byte array, for which a string representation is constructing.

l

A length of byte array p.

Return value

A specification reference of the type String to the string representation of byte array p.

Additional information

char a[6] = { 0x00, 0x33, 0x66, 0x99, 0xCC, 0xFF };

String* s = valueOfBytes_String(a,6);

printf("%s\n", toCharArray_String(s));

[00 33 66 99 CC FF]

14.2.12 List

Type List is a container data type, implementing an ordered list of items.

Any specification references can be elements of the list. Type of elements can be constrained when
a list is created. Such a list is called typified, and all functions, related to the typified list, will check
that Object* parameter actual type is equal to data type of list’s elements.

Two lists are equal if they have the same length and their elements are equal in pairs. Typification of
lists is not considered at that. Particularly, empty lists are always equal.

Elements of the list are numbered from 0.

Header file: atl/list.h
add_List
The function inserts an element into the given position.
addAll_List
The function adds all the elements of one list to another one inserting them in the same order from
the given position.
append_List
The function appends the given element at the end of the list.
appendAll_List
The function adds all the elements of one list to the end of another one.
clear_List
The function removes all the elements from the list.
contains _List
The function checks whether the list contains an element, equals to the given one.
create_List
The function creates a list and returns a specification reference of List data type.
elemType_List
The function returns a pointer to a constant descriptor of specification data type, that constrains data
type of the list’s elements.
get_List
The function returns a specification reference to the element at the given position.
indexOf_List
The function returns a number of the position of the first element with the given value.
isEmpty_List
The function checks if the list is empty.
lastIndexOf_List
The function returns a number of the position of the last element in the list which has the given value.
remove_List
The function removes the element at the given position from the list.
set_List
The function replaces an element at the given position by the given object.
size_List
The function returns the length of the list.
subList_List

The function returns elements of the given list, containing between the given positions, as a new
list.
toSet_List
The function returns set which consists of the unique elements of the given list.

add_List
The function inserts an element into the given position.

void add_List(List* self, int index, Object* ref)

Parametrs

self

A list, where an insertion is proceeded.
index

A position in the list where value ref is inserted.
ref

A value of the specification type which is inserted in the list.

Additional information

If the list is typified, data type of ref element must coincide with data type of list’s elements.
Number of the position must be in the range from 0 to the length of the list including, i.e.
0 ≤ index ≤ size_List(self). If the number of the position is equal to the length of the list,
the element is appended to the end of this list

List* l = create_List(&type_Integer);

add_List(l,0,create_Integer(28));

add_List(l,0,create_Integer(47));

add_List(l,1,create_Integer(63));
List l is changing during the run-time this way:

1. < 28 >
2. < 47, 28 >
3. < 47, 63, 28 >

addAll_List
The function adds all the elements of one list to another one inserting them in the same order from
the given position.

void addAll_List(List* self, int index, List* other)

Parametrs

self

A list, where new elements are inserted.

index

A position from which begins the insertion of new elements.

other

A list the elements of which are inserted in the list self.

Additional information

If self list is typified, types of all elements of other list must coincide with type of elements of self
list (other list itself must not be typified). Number of position must be in the range from 0 to the
length of self list including, i.e. 0 ≤ index ≤ size_List(self). If number of the position is equal to the
length of self list, elements are appended to the end of this list.

List* l1 = create_List(&type_Integer);

List* l2 = create_List(NULL);

append_List(l1,create_Integer(28));

append_List(l1,create_Integer(47));

append_List(l2,create_Integer(63));

append_List(l2,create_Integer(85));

addAll_List(l1,1,l2);
 List l1 before the call of addAll_List consists of the following elements: < 28, 47 >. List l2:
< 63, 85 >.After the call of addAll_List the list l1 also consists of the elements of l2: < 28,
63, 85, 47 >.

append_List
The function appends the given element at the end of the list.

void append_List(List* self, Object* ref)

Parametrs

self

A list, where an insertion is proceeded.
ref

A value of the specification type which is inserted in the list.

Return value

If the list is not typified (during the creation no restrictions was placed on the elements' types), the
function returns NULL.

Additional information

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(63));
The list l is changing during the run-time this way:

1. < 28 >

2. < 28, 47 >

3. < 28, 47, 63 >

appendAll_List
The function adds all the elements of one list to the end of another one.

void appendAll_List(List* self, List* other)

Parametrs

self

A list, where new elements are inserted.

other

A list the elements of which are inserted into the list self.

Additional information

If list self is typified, types of all elements of the list other must coincide with the type of the
elements of the list self (list other itself is not required to be typified).

List* l1 = create_List(&type_Integer);

List* l2 = create_List(NULL);

append_List(l1,create_Integer(28));

append_List(l1,create_Integer(47));

append_List(l2,create_Integer(63));

append_List(l2,create_Integer(85));

appendAll_List(l1,l2);
List l1 before the call of addAll_List consists of the following elements: < 28, 47 >. List l2:
< 63, 85 >. After the call of appendAll_List list l1 also consists of the elements of l2 < 28,
47, 63, 85 >.

clear_List
The function removes all the elements from the list.

void clear_List(List* self)

Parametrs

self

A list which should be cleared.

Additional information

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

clear_List(l);
List l is changing during the run-time this way:

1. < 28 >

2. < 28, 47 >

3. <>
The same result can be gotten by recreating the list:

List* l = create_List(&type_Integer);

...

l = create_List(elemType_List(l));
But this method is less effective than the call of function clear_List.

contains_List
The function checks whether the list contains an element, equals to the given one.

bool contains_List(List* self, Object* ref)

Parametrs

self

An under test list.

ref

A specification type value which is searched in the list.

Return value

true, if ref is in the self. false in any other case.

Additional information

If the list is typified then the type of element ref must be the same as the types of the elements of
the list.

bool contains;

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

contains = contains_List(l,create_Integer(28));
List l is changing during the run-time this way:

1. < 28 >
2. < 47, 28 >

the value of variable contains after the code execution will be true.

create_List
The function creates a list and returns a specification reference of List data type.

List* create_List(const Type *elem_type)

Parametrs

elem_type

A pointer to constant descriptor of the list's elements type.

Return value

A specification reference to the created list of the type List.

Additional information

If parameter elem_type is NULL, then types of the elements are not restricted .

List* l1 = create_List(NULL);

List* l2 = create_List(&type_Integer);
By the first call of create_List a list is created, in which any elements can be added. A list
created by the second call can store only Integer elements.

This function create_List is defines along with the standard function create.

List* l1 = create(&type_List, NULL);

List* l2 = create_List(NULL);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

elemType_List
The function returns a pointer to a constant descriptor of specification data type, that constrains data
type of the list’s elements.

Type *elemType_List(List* self)

Parametrs

self

A list limitation of which should be returned by the function.

Return value

A pointer to the constant descriptor of a specification type by which values of the list are limited.

If the list is not typified (during the creation no restrictions was placed on the elements' types), the
function returns NULL.

Additional information

List* l = create_List(&type_Integer);

Type *t = elemType_List(l);
A variable t gets value &type_Integer.

get_List
The function returns a specification reference to the element at the given position.

Object* get_List(List* self, int index)

Parametrs

self

A list with a needed element.

index

A position of the element which must be returned by the function.

Return value

A position where in the list is value ref. If there is no such value in the list, the return value is -1.

Additional information

A number of the position must be in the rage from 0 to the length of the list decremented one, i.e.
0 ≤ index < size_List(self).

List* l = create_List(&type_Integer);

Object* o;

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(63));

o = get_List(l,1);
List l is changing during the run-time this way:

1. < 28 >
2. < 28, 47 >
3. < 28, 47, 63 >

The value of object o after the call of get_List will be 47.

indexOf_List
The function returns a number of the position of the first element with the given value.

int indexOf_List(List* self, Object* ref)

Parametrs

self

A list with a needed element.

ref

A specification reference with the value of which elements of the list are compared.

Return value

A position where in the list is value ref. If there is no such value in the list, the return value is -1.

Additional information

If the list is typified when the type of the element ref must be the same as the type of the elements
of the list. If there is no such value in the list, the return value is -1.

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(28));

int pos = indexOf_List(l,create_Integer(28));
List l is changing during the run-time this way:

1. < 28 >

2. < 28, 47 >

3. < 28, 47, 28 >
A value of the variable pos after the call of get_List will be 0.

isEmpty_List
The function checks if the list is empty.

bool isEmpty_List(List* self)

Parametrs

self

A list with a needed element.

Return value

true, if the list has no elements. false in any other case.

Additional information

If the list is typified when the type of the element ref must be the same as the type of the elements
of the list. If there is no such element in the list, the return value is -1.

bool empty;

List* l = create_List(&type_Integer);

empty = isEmpty_List(l);

append_List(l,create_Integer(28));

empty = isEmpty_List(l);
The value of variable empty after the first call of isEmpty_List will be true, and after the
second one (when 28 will be added) — false.

lastIndexOf_List
The function returns a number of the position of the last element in the list which has the given
value.

int lastIndexOf_List(List* self, Object* ref)

Parametrs

self

A list with a needed element.

ref

A specification reference with the value of which elements of the list are compared.

Return value

A position where in the list is value ref. If there is no such value in the list, the return value is -1.

Additional information

If the list is typified when the type of the element ref must be the same as the type of the elements
of the list. If there is no such value in the list, the return value is -1.

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(28));

int pos = lastIndexOf_List(l,create_Integer(28));
List l is changing during the run-time this way:

1. < 28 >

2. < 28, 47 >

3. < 28, 47, 28 >
The value of the variable pos after the call of get_List will be 2.

remove_List
The function removes the element at the given position from the list.

void remove_List(List* self, int index)

Parametrs

self

A list, from which elements are deleted.

index

A position in the list from which an element is deleted.

Additional information

The number of the position must be in the interval from 0 to the length of the list including, i.e.
0 ≤ index ≤ size_List(self).

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(63));

remove_List(l,1);
List l is changing during the run-time this way:

1. < 28 >

2. < 28, 47 >

3. < 28, 47, 63 >

4. < 28, 63 >

set_List
The function replaces an element at the given position by the given object.

void set_List(List* self, int index, Object* ref)

Parametrs

self

A list where the replacement is done.

index

A position in the list in which value ref is placed.

ref

A value of a specification type inserted in the list.

Additional information

If the list is typified when the type of the element ref must be the same as the type of the elements
of the list. The number of the position must be in the interval from 0 to the length of the list
including, i.e. 0 ≤ index ≤ size_List(self).If the number of the position is equal to the
length of the list when the element is inserted at the end of the list.

List* l = create_List(&type_Integer);

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

set_List(l,1,create_Integer(63));
List l is changing during the run-time this way:

1. < 28 >
2. < 28, 47 >
3. < 28, 63 >

size_List
The function returns the length of the list.

int size_List(List* self)

Parametrs

self

A list the length of which the function must return.

Return value

A particular number of the elements of list self.

Additional information

int size;

List* l = create_List(&type_Integer);

size = size_List(l);

append_List(l,create_Integer(28));

size = size_List(l);
After the first call of size_List variable size becomes 0. Ater the second call of size_List the
variable is 1: one value has been added to the list.

subList_List
The function returns elements of the given list, containing between the given positions, as a new
list.

List* subList_List(List* self, int fromIndex, int toIndex)

Parametrs

self

An initial list.

fromIndex

A position of the first element of the new list.

toIndex

A number of the last element's position of the new list incremented by one.

Return value

A specification reference of the type List, a sub-list of self.

Additional information

A position of the first element of the new list — fromIndex; a position of the last element —
toIndex-1. Position fromIndex can't be negative and can't be greater than toIndex, and
position toIndex can't be greater than the length of the list:
0 ≤ fromIndex ≤ toIndex ≤ size_List(self). If the first and the last positions are equal
an empty list is returned.

List* l = create_List(&type_Integer);

List* l2;

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(63));

l2 = subList_List(l,1,3);
List l changes and in the result has the following elements: < 28, 47, 63 >. List l2 after the
call of function subList_List has two elements: < 47, 63 >.

toSet_List
The function returns a set which consists of the unique elements of the given list.

Set* toSet_List(List* self)

Parametrs

self

A list, a set of elements of which is to be gotten.

Return value

A specification reference of the type Set, set of elements of list self.

Additional information

A returned set has the same typification as the list: if elements of the list was constrained by a data
type, elements of the set will be constrained by the same type.

List* l = create_List(&type_Integer);

Set* s;

Type *t;

append_List(l,create_Integer(28));

append_List(l,create_Integer(47));

append_List(l,create_Integer(28));

s = toSet_List(l);

t = elemType_Set(s);
List l is changing during the run-time this way:

1. < 28 >
2. < 28, 47 >
3. < 28, 47, 28 >

Set s, returned by function toSet_List, has elemnts: < 28, 47 >. A call of elemType_Set(s)
returns &type_Integer.

14.2.13 Set

Type Set is a container type, implementing a set of elements.

Any specification references can be elements of a set. Type of elements can be constrained when
creating a set. Such a set is called typified, and all functions, related to the typified set, will check
that Object* parameter actual type is equal to the data type of set’s elements.

Two sets are equal if they have the same elements. Typification of sets is not considered at that.
Particularly, empty sets are always equal.

Header file: atl/set.h
add_Set
The function inserts the given element into the set.
addAll_Set
The function unions two sets: adds the elements of one set to another one.
clear_Set
The function removes all the elements from the set.
contains_Set
The function checks whether the set contains an element, equals to the given one.
containsAll_Set
The function checks whether one set is a subset of another one, in other words, checks whether first
set contains all the elements of the second one.
create_Set
The function creates a set and returns a specification reference of Set data type.
elemType_Set
The function returns a pointer to a constant descriptor of specification data type, that constrains the
set’s elements.
get_Set
The function returns a specification reference to the element with the given number; elements are
numerated in a random order .
isEmpty_Set
The function checks whether the set is empty.
remove_Set
The function removes an element from the set.
removeAll_Set
Subtracts one set from another one: removes from the first set elements, that belong to the second
one.
retainAll_Set
Gets an intersection of the sets: retains in the first set only such elements, which also belong to the
second one.
size_Set
The function returns the number of the elements in the set.
toList_Set
The function returns a List containing all the elements of the given set .

add_Set
The function inserts the given element into the set.

bool add_Set(Set* self, Object* ref)

Parametrs

self

A set where elements are inserted.

ref

A value of a specification type which is inserted in the set.

Return value

true, if the insertion was successful.In any other case — false.

Additional information

If the set is typified, then the type of element ref should be the same as the type of the set's ele-
ments.

Set* s = create_Set(&type_Integer);

add_Set(s, create_Integer(28));

add_Set(s, create_Integer(47));

add_Set(s, create_Integer(28));
Set s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47 }

addAll_Set
The function unions two sets: adds the elements of one set to another one.

bool addAll_Set(Set* self, Set* set)

Parametrs

self

A set, in which elements are added.

set

A set, elements of which are added to self.

Return value

If during the unification even one element was added to self , the function returns true.In any
other case — false.

Additional information

If set self is typified, then the types of all the elements of set set must be the same as the type of
set's self elements (set itself is not required to be typified).

bool changed;

Set* s1 = create_Set(&type_Integer);

Set* s2 = create_Set(NULL);

add_Set(s1,create_Integer(28));

add_Set(s1,create_Integer(47));

add_Set(s2,create_Integer(28));

add_Set(s2,create_Integer(47));

add_Set(s2,create_Integer(63));

changed = addAll_Set(s1,s2);
Set s1 changes this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 63 }

Set s2 changes this way:
1. { 28 }
2. { 28, 47 }

after the call of addAll_Set to set s1 is added element 63, and variable changed go to true.

clear_Set
The function removes all the elements from the set.

void clear_Set(Set* self)

Parametrs

self

A cleared set.

Additional information

Set* s = create_Set(&type_Integer);

add_Set(s,create_Integer(28));

add_Set(s,create_Integer(47));

clear_Set(s);
Set s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. {}

The same result can be gotten by having recreating the set:

Set* s = create_Set(&type_Integer);

...

s = create_Set(elemType_Set(s));

But this result is less effective than the call of clear_Set.

contains_Set
The function checks whether the set contains an element, equals to the given one.

bool contains_Set(Set* self, Object* ref)

Parametrs

self

An under test set.

ref

A value of a specification type a search of which occurs in the set.

Return value

true, if element ref belongs to set self. false otherwise.

Additional information

If the set is typified, then the type of element ref should be the same as the type of the set's
elements.

bool contains;

Set* s = create_Set(&type_Integer);

add_Set(s,create_Integer(28));

add_Set(s,create_Integer(47));

contains = contains_Set(s,create_Integer(28));
Set s is changing during the run-time this way:

1. { 28 }
2. { 47, 28 }

An element contains value after the call of contains_Set will be true.

containsAll_Set
The function checks whether one set is a subset of another one, in other words, checks whether the
first set contains all the elements of the second one.

bool containsAll_Set(Set* self, Set* set)

Parametrs

self

A set, which is to be checked whether it contains elements of set set.

set

A priori subset of self.

Return value

true, if all of the elements of set set belong to the set self. false in any other case.

Additional information

bool contains;

Set* s1 = create_Set(&type_Integer);

Set* s2 = create_Set(NULL);

add_Set(s1,create_Integer(28));

add_Set(s1,create_Integer(47));

add_Set(s2,create_Integer(28));

add_Set(s2,create_String("a"));

add_Set(s2,create_Integer(47));

contains = containsAll_Set(s1,s2));

contains = containsAll_Set(s2,s1));
Set s1 changes this way:

1. { 28 }
2. { 28, 47 }

Set s2 changes this way:
1. { 28 }
2. { 28, "a" }
3. { 28, "a", 47 }

After the first call of containsAll_Set variable contains go to false, and after the second
call — true.

create_Set
The function creates a set and returns a specification reference of Set data type.

Set* create_Set(const Type *elem_type)

Parametrs

elem_type

A pointer to constant descriptor of the set's elements' type.

Return value

A pointer to constant descriptor of specification data type by which values of this set are limited.
If the set is not typified (during the creation there was no limitations of the elements' type), the
function returns NULL.

Additional information

If parameter elem_type is NULL, than types of set's elements are not limited.
Set* s1 = create_Set(NULL);

Set* s2 = create_Set(&type_Integer);
After the first call of create_Set was created a set, in which any elements can be added. A set
created by the second call can store elements of Integer type only.

The function create_Set is defined along with the standard function create.

Set* s1 = create(&type_Set, NULL);

Set* s2 = create_Set(NULL);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

elemType_Set
The function returns a pointer to a constant descriptor of specification data type, that constrains the
set’s elements.

Type *elemType_Set(Set* self)

Parametrs

self

A set , limitations of which the function must return.

Return value

A pointer to constant descriptor of specification data type by which values of this set are limited.
If the set is not typified (during the creation there was no limitations of the elements' type), the
function returns NULL.

Additional information

Set* s = create_Set(&type_Integer);

Type *t = elemType_Set(s);

Variable t gets value &type_Integer.

get_Set
The function returns a specification reference to the element with the given number; elements are
numerated in a random order .

Object* get_Set(Set* self, int index)

Parametrs

self

A set, an element of which the function should return.

index

An element number, which should be returned by the function.

Return value
A specification reference of the type Object.

Additional information

This function is intended for enumeration of set’s elements. Since a set is not ordered, elements are
numerated in a random order. A number of position must be in the range from 0 to the size of the set
– 1, i.e. 0 ≤ index < size_Set(self).

Set* s1 = create_Set(&type_Integer);

Set* s2 = create_Set(&type_Integer);

int i;

bool equ;

add_Set(s1,create_Integer(28));

add_Set(s1,create_Integer(47));

add_Set(s1,create_Integer(63));

for(i=0; i < size_Set(s1); i++)

 add_Set(s2, get_Set(s1,i));

equ = equals(s1,s2);
Set s1 changes during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 63 }

An order of adding the elements to set s2 is not defined, however after an iteration all the elements

of s1 will be added to s2 and the value of variable equ after the call of equals will be true.

isEmpty_Set
The function checks whether the set is empty.

bool isEmpty_Set(Set* self)

Parametrs

self

An under-test set.

Return value

true, if there is no elements in the set and false otherwise.

Additional information

bool empty;

Set* s = create_Set(&type_Integer);

empty = isEmpty_Set(s);

add_Set(s,create_Integer(28));

empty = isEmpty_Set(s);
A value of variable empty after the first call of isEmpty_Set will be true, and after the second
one (when number 28 will be added) — false.

remove_Set
The function removes an element from the set.

void remove_Set(Set* self, Object* ref)

Parametrs

self

A set from which elements should be deleted .

ref

An element which is to be deleted from the set.

Additional information

If the set is typified, then the type of element ref shoud be the same as the type of the set's
elements

Set* s = create_Set(&type_Integer);

add_Set(s,create_Integer(28));

add_Set(s,create_Integer(47));

remove_Set(s,create_Integer(28));
Set s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 47 }

removeAll_Set
Subtracts one set from another one: removes from the first set elements, that belong to the second
one.

bool removeAll_Set(Set* self, Set* set)

Parametrs

self

A set from which elements should be deleted.

set

A set elements of which are deleted from self.

Return value

If during the subtraction from set self at list one element was deleted, the function returns
true.In any other case — false.

Additional information

bool changed;

Set* s1 = create_Set(&type_Integer);

Set* s2 = create_Set(NULL);

add_Set(s1,create_Integer(28));

add_Set(s1,create_Integer(47));

add_Set(s1,create_Integer(63));

add_Set(s2,create_Integer(28));

add_Set(s2,create_Integer(47));

changed = removeAll_Set(s1,s2);
Set s1 changes this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 63 }

Set s2 changes this way:

1. { 28 }
2. { 28, 47 }

After the call of removeAll_Set n set s1 element 63 remains, and variable changed go to true.

retainAll_Set
Gets an intersection of the sets: retains in the first set only such elements, which also belong to the
second one.

bool retainAll_Set(Set* self, Set* set)

Parametrs

self

A first argument of the sets' intersection. This set will store the result of the intersection.

set

A second argument of the sets' intersection.

Return value

true, if the number of elements in the intersection is less than the number of elements in self.In
any other case — false.

Additional information

bool changed;

Set* s1 = create_Set(&type_Integer);

Set* s2 = create_Set(NULL);

add_Set(s1,create_Integer(28));

add_Set(s1,create_Integer(47));

add_Set(s1,create_Integer(63));

add_Set(s2,create_Integer(28));

add_Set(s2,create_Integer(47));

changed = retainAll_Set(s1,s2);
Set s1 changes this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 63 }

Set s2 changes this way:

1. { 28 }
2. { 28, 47 }

After the call of retainAll_Set in set s1 elements 28 and 47 remain,and variable
changed go to true.

size_Set
The function returns the number of the elements in the set.

int size_Set(Set* self)

Parametrs

self

A set, power of which the function should return.

Return value

An exact number of elements in set self.

Additional information

int size;

Set* s = create_Set(&type_Integer);

size = size_Set(s);

add_Set(s,create_Integer(28));

size = size_Set(s);
After the first call of size_Set variable size go to zero. After the second call of size_Set the
variable is 1: one element was added to the set.

toList_Set
The function returns a List containing all the elements of the given set.

List* toList_Set(Set* self)

Parametrs

self

A given set.

Return value

A specification reference of the type List.

Additional information

Order of the elements in the list is not defined. The returned list has the same typification as the set:
if the elements of the set was constrained by a data type, the elements of the list will be constrained
by the same type.

Set* s = create_Set(&type_Integer);

List* l;

Type *t;

add_Set(s,create_Integer(28));

add_Set(s,create_Integer(47));

l = toList_Set(s);

t = elemType_Set(l);
Set s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }

List l, returned by function toList_Set, has elements: { 28, 47 }; They can be stored in any
order. The call of elemType_Set(l) returns &type_Integer.

14.2.14 Map

Type Map is a container type, implementing a mapping of elements from range of definition to
range of values. An element from the range of definition is called a key, and a corresponding
element from the range of values is called a value. One key has exactly one corresponding value.

Any specification references can be elements of a map. Type of elements can be constrained when
creating a map, separately for elements of range of definition and for elements of range of values.
Such a map is called typified, and all functions, related to the typified map, will check that an actual
parameter type is the same as the type of map's elements of the appropriate range.

Two maps are equal if they have the same range of keys, and values corresponding to the same keys
from these maps are equal. Particularly, empty maps are always equal.

Header file: atl/map.h
clear_Map
The function removes all the elements from the map.
containsKey_Map
The function checks whether the map contains a key equals to the given one.
containsValue_Map
The function checks whether the map contains a value equals to the given one.
create_Map
The function creates a map and returns a specification reference of Map data type.
get_Map
The function returns a specification reference to the value, corresponding to the given key.
getKey_Map
The function returns a specification reference to some key,to which corresponds the given value.
isEmpty_Map
The function checks whether the map is empty.
key_Map
The function returns a key of the map at the given position.
keyType_Map
The function returns a pointer to a constant descriptor of a specification data type that constrains
keys of this map.
put_Map
The function adds a “key–value” pair to the map.
putAll_Map
Adds to the first map all the pairs “key-value” from the second one.
remove_Map
The function removes from the map a pair “key-value” for the given key.
size_Map
The function returns the size of the map.
valueType_Map
The function returns a pointer to a constant descriptor of a specification data type, that constrains
values of the map.

clear_Map
The function removes all the elements from the map.

void clear_Map(Set* self)

Parametrs

self

A cleared map.

Map* m = create_Map(&type_Integer, &type_String);

put_Map(m,create_Integer(28),create_String("a"));

put_Map(m,create_Integer(47),create_String("b"));

clear_Map(m);
Map m changes during the run-time this way:

1. { 28 → "a" }
2. { 28 → "a", 47 → "b" }
3. {}

The same result can be gotten having recreating the set:

Map* m;

...

m = create_Map(keyType_Map(m), valueType_Map(m));
But this method is less effective than the call of function clear_Map.

containsKey_Map
The function checks whether the map contains a key equals to the given one.

bool containsKey_Map(Map* self, Object* key)

Parametrs

self

An under-test map.

key

A key, which is searched in the map.

Return value

true, if key key is in self. false otherwise.

Additional information

If a definitional domain is typified then the type of element key should be the same as the type of

map's keys.

bool contains;

Map* m = create_Map(&type_Integer, &type_String);

put_Map(m,create_Integer(28),create_String("a"));

put_Map(m,create_Integer(47),create_String("b"));

contains = containsKey_Map(m,create_Integer(28);
Map m changes during the run-time this way:

1. { 28 → "a" }
2. { 28 → "a", 47 → "b" }

A value of variable contains after the call of containsKey_Map will be true.

containsValue_Map
The function checks whether the map contains a key equals to the given one.

bool containsValue_Map(Map* self, Object* value)

Parametrs

self

An under-test map.

value

A value, which is searched in the map.

Return value

true,if value value containes in self. false otherwise.

Additional information

If domain is typified than the type of element value must be the same as the type of map's values.

bool contains;

Map* m = create_Map(&type_Integer, &type_String);

put_Map(m,create_Integer(28),create_String("a"));

put_Map(m,create_Integer(47),create_String("b"));

contains = containsValue_Map(m,create_String("b"));
Map m changes during the run-time this way:

1. { 28 → "a" }
2. { 28 → "a", 47 → "b" }

A value of variable contains after the call of containsValue_Map will be true.

create_Map
The function creates a map and returns a specification reference of Map data type.

Map* create_Map(const Type *key_type, const Type *val_type)

Parametrs

key_type

A pointer to constant descriptor of the map's key's type.

val_type

A pointer to constant descriptor of map's value type.

Return value

A specification reference of the type Map.

Additional information

If parameter key_type is NULL, than types of elements of range of definition are not limited.
Otherwise the parameter must be a pointer to a constant descriptor of the map's keys' data type. In a
similar manner, if parameter val_type is NULL, than types of domain's elements are not limited.
Otherwise the parameter must be the pointer to a constant descriptor of the map's values' type.

The first line of the example creates a map without typification; the second line creates a map with
keys of type Integer; the third line creates a map from Integer to String.

Map* m1 = create_Map(NULL, NULL);

Map* m2 = create_Map(&type_Integer, NULL);

Map* m3 = create_Map(&type_Integer, &type_String);
The function create_Map defined along with standard function create.

Map* m1 = create(&type_Set, NULL, NULL);

Map* m2 = create_Map(NULL, NULL);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

get_Map
The function returns a specification reference to the value, corresponding to the given key.

Object* get_Map(Map* self, Object* key)

Parametrs

self

A map, an element of which should be returned by the function.

key

A key, corresponded to the needed value.

Return value

A value corresponded to the given key is returned. If a map has no such key NULL is returned.

Additional information

If a definitional domain is typified then the type of element key should be the same as the type of
map's keys.

Map* m = create_Map(&type_Integer, &type_String);

Object* val;

put_Map(m,create_Integer(28),create_String("a"));

put_Map(m,create_Integer(47),create_String("b"));

val = get_Map(m,create_Integer(28));
Map m changes during the run-time this way:

1. { 28 → "a" }
2. { 28 → "a", 47 → "b" }

A value of variable val after the call of get_Map will be "a".

getKey_Map
The function returns a specification reference to some key,to which corresponds the given value.

Object* getKey_Map(Map* self, Object* value)

Parametrs

self

A map, an element of which should be returned by the function.

value

A key, corresponded to the needed value.

Return value

One of the keys corresponded to the given value is returned. If a map has no such key NULL is
returned.

Additional information

If domain is typified than the type of element value must be the same as the type of map's values.

bool equ;

Map* m = create_Map(&type_Integer, &type_String);

Object* key;

Object* val;

put_Map(m,create_Integer(28),create_String("a"));

put_Map(m,create_Integer(47),create_String("a"));

val = create_String("a");

key = getKey_Map(m,val);

equ = equals(get_Map(m,key), val);
Map m changes during the run-time this way:

1. { 28 → "a" }
2. { 28 → "a", 47 → "a" }

A value of specification reference key after the call of getKey_Map will be 28 or 47. A value of
variable equ after the call of equals true.

isEmpty_Map
The function checks whether the map is empty.

bool isEmpty_Map(Map* self)

Parametrs

self

An under-test map.

Return value

True is returned, if a map has no pair “key-value”; otherwise false is returned.

Additional information

bool empty;

Map* m = create_Map(&type_Integer, &type_String);

empty = isEmpty_Map(m);

put_Map(m,create_Integer(28),create_String("a"));

empty = isEmpty_Map(m);
A value of variable empty after the first call of isEmpty_Map will be true, and after the second
one (when pair 28 → "a" will be added to the map) — false.

key_Map
The function returns a key of the map at the given position.

Object* key_Map(Map* self, int index)

Parametrs

self

A map, a key of which the function should return.

index

A key's number, which should be returned by the function.

Return value

A specification reference to the map's key at the index position.

Additional information

This function is intended for enumeration all the keys of the map. Since a key set is not ordered the
elements are numbered in a random order. A number of the position must be in the range from 0 to
the size of the map – 1, i.e. 0 ≤ index < size_Map(self).

Map* m1 = create_Map(&type_Integer, &type_String);

Map* m2 = create_Map(&type_Integer, &type_String);

int i;

bool equ;

put_Map(m1,create_Integer(28),create_String("a"));

put_Map(m1,create_Integer(47),create_String("b"));

for (i = 0; i < size_Map(m1); i++) {

 Object* key = key_Map(m1,i);

 Object* val = get_Map(m1,key);

 put_Map(m2,key,val);

}

equ = equals(m1,m2);
Map m1 changes during the run-time like this:

1. { 28 → "a" }
2. { 28 → "a", 47 → "b" }

Map m2 changes by the analogy, but since the keys are not ordered in the map the order of
adding “key-value” pairs can't be described definitely. A value of variable equ after the call of
equals will be true.

keyType_Map
The function returns a pointer to a constant descriptor of a specification data type that constrains
keys of this map.

Type *keyType_Map(Map* self)

Parametrs

self

A specification reference to the given map.

Return value

The function returns a pointer to the constant descriptor of a specification type, by which the map's
keys are limited.

Additional information

If the domain of the map is not typified then NULL is returned.

Map* m = create_Map(&type_Integer, &type_String);

Type *t = keyType_Map(m);
A specification reference value t after the call of function keyType_Map will be &type_Integer.

put_Map
The function adds a “key–value” pair to the map.

Object* put_Map(Map* self, Object* key, Object* value)

Parametrs

self

A map, to which a “key-value” pair is added.

key

A key of an added pair.

value

A value of an added pair.

Return value

If a map has no key key, the function returns NULL. If a map has key key, then the function returns
an old value corresponded to it.

Additional information

If a definitional domain is typified then the type of element key should be the same as the type of
map's keys. If domain is typified than the type of element value must be the same as the type of
map's values.

If a map has no key key, then a key key and a corresponded value value are added to the map. If
a map has key key, then the function returns an old value corresponded to it and replaces an old
value with a new one in a map.

String *val;

Map* m = create_Map(&type_Integer, &type_String);

val = put_Map(m,create_Integer(28),create_String("a"));

val = put_Map(m,create_Integer(47),create_String("b"));

val = put_Map(m,create_Integer(28),create_String("c"));
Map m changes during the run-time this way:

1. { 28 → "a" }
2. { 28 → "a", 47 → "b" }
3. { 28 → "c", 47 → "b" }

Value val after each of the first two calls of put_Map is NULL; after the third call it goes to "a".

putAll_Map
Adds to the first map all the pairs “key-value” from the second one.

void putAll_Map(Map* self, Map* t)

Parametrs

self

A map, to which elements are added.

t

A map, elements of which are added to self.

Additional information

If a range of definition of map self is typified then types of all the keys of map t must be the
same as types of the keys of map self. In a same manner, if a domain of map self is typified,
then types of all the values of map t must be the same as types of the values of map self. Range
of definition and range of values of t map are not required to be typified.

If map self has already got a key from map t, then a value corresponded to it replaces with a new
one.

Map* m1 = create_Map(&type_Integer, &type_String);

Map* m2 = create_Map(NULL, NULL);

put_Map(m1,create_Integer(28),create_String("a"));

put_Map(m1,create_Integer(63),create_String("b"));

put_Map(m2,create_Integer(28),create_String("c"));

put_Map(m2,create_Integer(47),create_String("d"));

putAll_Map(m1,m2);
Map m1 changes like this:

1. { 28 → "a" }
2. { 28 → "a", 63 → "b" }

Map m2 changes like this:

1. { 28 → "c" }
2. { 28 → "c", 47 → "d" }

After the call of putAll_Map pair 47 → "d" is added to map m1 and a value to key 28 changes
to "c":

3. { 28 → "c", 47 → "d", 63 → "b" }

remove_Map
The function removes from the map a pair “key-value” for the given key.

Object* remove_Map(Map* self, Object* key);

Parametrs

self

A map, from which an element is removed.

key

A key of a removed pair “key-value”.

Return value

Returns a value, which corresponded to key key in map self, or NULL, if there was no such value.

Additional information

Map* m = create_Map(&type_Integer, &type_String);

put_Map(m,create_Integer(28),create_String("a"));

remove_Map(m,create_Integer(28));

remove_Map(m,create_Integer(28));
The first call of function remove_Map returns a string representation corresponded to key 28: "a".
The second call returns NULL, because the pair with key 28 was already removed.

size_Map
The function returns the size of the map.

int size_Map(Map* self)

Parametrs

self

A map, the size of which must be returned by the function.

Return value

The function returns the exact number of pairs in a map.

Additional information

A size is considered to be a number of pairs “key-value”, which a map has.

int size;

Map* m = create_Map(&type_Integer, &type_String);

size = size_Map(m);

put_Map(m,create_Integer(28),create_String("a"));

size = size_Map(m);
After the first call of size_Map variable size goes to NULL. Ater the second call of size_Map
variable goes to 1, as one element was added to the map.

valueType_Map
The function returns a pointer to a constant descriptor of a specification data type, that constrains
values of the map.

Type *valueType_Map(Map* self)

Parametrs

self

A specification reference to the given map.

Return value

The function returns a reference to a constant descriptor of a specification type, by which values of
the given map are limited.

Additional information

If a range of definition of a map is not typified then NULL is returned.

Map* m = create_Map(&type_Integer, &type_String);

Type *t = valueType_Map(m);
Value of specification reference t after the call of function valueType_Map will be
&type_String.

14.2.15 MultiSet

Type MultiSet is a container type, implementing a multiset of elements(i.e. a set, elements of
which can repeat).

Any specification references can be elements of a multiset. ype of elements can be constrained
when creating a multiset. Such a multiset is called typified, and all functions, related to the typified
multiset, will check that Object* parameter actual type is equal to the data type of multiset’s
elements.

Two multisets are equal if they have the same elements (with regard to repetition factor).
Typification of multisets is not considered at that. Particularly, empty multisets are always equal.

Header file: atl/multiset.h
add_MultiSet
The function inserts the given element into the multiset.
addAll_MultiSet
Adds the elements of one multiset to another one.
clear_MultiSet
The function removes all the elements from the multiset.
contains_MultiSet
The function returns a repetition factor of an element, equals to the given one, in a multiset.
containsAll_MultiSet
checks whether one set is a subset of another one, in other words, checks whether first set contains
all the elements of the second one (with regard to repetition factor).
create_MultiSet
The function creates a multiset and returns a specification reference of MultiSet data type.
elemType_MultiSet
The function returns a reference to a constant descriptor of a specification type, hat constrains the
multiset’s elements.
get_MultiSet
The function returns a specification reference to the element with the given number; elements are
numerated in a random order .
isEmpty_MultiSet
The function hecks whether the multiset is empty.
remove_MultiSet
The function removes an element from the multiset once (i.e. with regard to repetition factor of this
element's entry in the multiset descend by 1).
removeAll_MultiSet
Subtracts one multiset from another one: removes from the first multiset elements, that belong to
the second one (with regard to repetition factor).
removeCount_MultiSet
The function decreases the repetition factor of the given element's entry by the given quantity.
removeFull_MultiSet
The function totally removes an element from multiset (i.e. the repetition factor of this elements
entry in multiset goes to 0).
retainAll_MultiSet

Gets an intersection of the multisets: retains in the first multiset only such elements, which also
belong to the second one (with regard to repetition factor).
size_MultiSet
The function returns the number of the elements in the multiset.
toList_MultiSet
The function returns a List containing all the elements of the given multiset.
toSet_MultiSet
The function returns a Set, containing all the elements of the given multiset.

add_MultiSet
The function inserts the given element into the multiset.

bool add_MultiSet(MultiSet* self, Object* ref)

Parametrs

self

A multiset where elements are inserted.

ref

A value of a specification type which is inserted in the multiset.

Return value

true, if the insertion was successful.In any other case — false.

Additional information

If the multiset is typified, then the type of element ref should be the same as the type of the multis-
et's elements.

MultiSet* s = create_MultiSet(&type_Integer);

add_MultiSet(s, create_Integer(28));

add_MultiSet(s, create_Integer(47));

add_MultiSet(s, create_Integer(28));
The multiset s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }

addAll_MultiSet
Adds the elements of one multiset to another one.

bool addAll_MultiSet(MultiSet* self, MultiSet* set)

Parametrs

self

A multiset, in which elements are added.

set

A multiset, elements of which are added to self.

Return value

If during the unification even one element was added to self , the function returns true.In any
other case — false.

Additional information

If multiset self is typified, then the types of all the elements of multiset set must be the same as
the type of multiset's self elements (set itself is not required to be typified).

bool changed;

MultiSet* s1 = create_MultiSet(&type_Integer);

MultiSet* s2 = create_MultiSet(NULL);

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(47));

add_MultiSet(s2,create_Integer(28));

add_MultiSet(s2,create_Integer(47));

add_MultiSet(s2,create_Integer(63));

changed = addAll_MultiSet(s1,s2);

multiset s1 changes like this:
1. { 28 }
2. { 28, 47 }

multiset s2 changes like this:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 63 }

after the call of addAll_MultiSet multiset s1 changes like this:
3. { 28, 47, 28, 47, 63 }

and variable changed go to true.

clear_MultiSet
The function removes all the elements from the multiset.

void clear_MultiSet(MultiSet* self)

Parametrs

self

A cleared multiset.

Additional information

MultiSet* s = create_MultiSet(&type_Integer);

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(47));

clear_MultiSet(s);
multiset s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. {}

The same result can be gotten by recreating the multiset:

MultiSet* s = create_MultiSet(&type_Integer);

...

s = create_MultiSet(elemType_MultiSet(s));
But this result is less effective than the call of function clear_MultiSet.

contains_MultiSet
The function returns a repetition factor of an element, equals to the given one, in a multiset.

int contains_MultiSet(MultiSet* self, Object* ref)

Parametrs

self

An under-test multiset.

ref

A value of a specification type a search of which occurs in the multiset.

Return value

A repetition factor of element's ref entry in multiset self .

Additional information

If the multiset is typified, then the type of element ref should be the same as the type of the
multiset's elements.

int contains;

MultiSet* s = create_MultiSet(&type_Integer);

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(47));

add_MultiSet(s,create_Integer(28));

contains = contains_MultiSet(s,create_Integer(28));
Multiset s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }

A value of variable contains after the call of contains_MultiSet will be 2.

containsAll_MultiSet
Checks whether one multiset is a submultiset of another one, in other words, checks whether the
first multiset contains all the elements of the second one.

bool containsAll_MultiSet(MultiSet* self, MultiSet* set)

Parametrs

self

A multiset, which is to be checked whether it contains elements of multiset set.

set

A priori submultiset of self.

Return value
ttrue, if all of the elements of multiset set belong to the multiset
self. false in any other case.

Additional information

bool contains;

MultiSet* s1 = create_MultiSet(&type_Integer);

MultiSet* s2 = create_MultiSet(NULL);

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(47));

add_MultiSet(s2,create_Integer(28));

add_MultiSet(s2,create_String("a"));

add_MultiSet(s2,create_Integer(47));

contains = containsAll_MultiSet(s1,s2));

contains = containsAll_MultiSet(s2,s1));
multiset s1 changes like this:

1. { 28 }
2. { 28, 47 }

multiset s2 changes like this:

1. { 28 }
2. { 28, a }
3. { 28, a, 47 }

After the first call of containsAll_MultiSet variable contains go to false, and after the
second call — true.

create_MultiSet
The function creates a multiset and returns a specification reference of MultiSet data type.

MultiSet* create_MultiSet(const Type *elem_type)

Parametrs

elem_type

A pointer to constant descriptor of the multiset's elements' type.

Return value

A specification reference of the type MultiSet to the just created multiset.

Additional information

If parameter elem_type is NULL, than types of multiset's elements are not limited.
MultiSet* s1 = create_MultiSet(NULL);

MultiSet* s2 = create_MultiSet(&type_Integer);
After the first call of create_Multiset was created a multiset, in which any elements can be
added. A multiset created by the second call can store elements of Integer type only.

The function create_MultiSet defined along with standart function create.

MultiSet* s1 = create(&type_MultiSet, NULL);

MultiSet* s2 = create_MultiSet(NULL);
The two shown methods of creating a specification reference are functionally equivalent, but the
use of create is not type-safe and cause a compiler warning (see function create definition).

elemType_MultiSet
The function returns a reference to a constant descriptor of a specification type, hat constrains the
multiset’s elements.

Type *elemType_MultiSet(MultiSet* self)

Parametrs

self

A multiset , limitations of which the function must return.

Return value

A pointer to constant descriptor of specification data type by which values of this multiset are lim-
ited.
If the multiset is not typified (during the creation there was no limitations of the elements' type), the
function returns NULL.

Additional information

MultiSet* s = create_MultiSet(&type_Integer);

Type *t = elemType_MultiSet(s);

Variable t gets value &type_Integer.

get_MultiSet
The function returns a specification reference to the element with the given number; elements are
numerated in a random order .

Object* get_MultiSet(MultiSet* self, int index)

Parametrs

self

A multiset, an element of which the function should return.

index

An element number, which should be returned by the function.

Return value

A specification reference of the type Object.

Additional information

This function is intended for enumeration of multiset’s elements. Since a multiset is not ordered,
elements are numerated in a random order. A number of position must be in the range from 0 to the
size of the multiset – 1, i.e. 0 ≤ index < size_MultiSet(self).

MultiSet* s1 = create_MultiSet(&type_Integer);

MultiSet* s2 = create_MultiSet(&type_Integer);

int i;

bool equ;

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(47));

add_MultiSet(s1,create_Integer(63));

for(i=0; i < size_MultiSet(s1); i++)

 add_MultiSet(s2, get_MultiSet(s1,i));

equ = equals(s1,s2);
Multiset s1 changes during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 63 }

A value of variable equ after the call of equals will be true, since after an iteration all the
elements of s1 will be added to s2, i.e the multisets will be equal.

isEmpty_MultiSet
The function hecks whether the multiset is empty.

bool isEmpty_MultiSet(MultiSet* self)

Parametrs

self

An under-test multiset.

Return value

true, if there is no elements in the multiset and false otherwise.

Additional information

bool empty;

MultiSet* s = create_MultiSet(&type_Integer);

empty = isEmpty_MultiSet(s);

add_MultiSet(s,create_Integer(28));

empty = isEmpty_MultiSet(s);
A value of variable empty After the first call of isEmpty_MultiSet will be true, and after the
second one (when number 28 will be added) — false.

remove_MultiSet
The function removes an element from the multiset once (i.e. with regard to repetition factor of this
element's entry in the multiset descend by 1).

bool remove_MultiSet(MultiSet* self, Object* ref)

Parametrs

self

A multiset from which elements should be deleted.

ref

An element which is to be deleted from the multiset.

Return value

If during the subtraction from multiset self at list one element was deleted, the function returns
true.In any other case — false.

Additional information

If the multiset is typified, then the type of element ref shoud be the same as the type of the
multiset's elements.

bool changed;

MultiSet* s = create_MultiSet(&type_Integer);

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(47));

add_MultiSet(s,create_Integer(28));

changed = remove_MultiSet(s,create_Integer(28));

changed = remove_MultiSet(s,create_Integer(63));
Multiset s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }
4. { 47, 28 }

A value of variable changed. After the first call of remove_MultiSet will be true, and after
the second one — false.

removeAll_MultiSet
Subtracts one multiset from another one: removes from the first multiset elements, that belong to
the second one.

bool removeAll_MultiSet(MultiSet* self, MultiSet* set)

Parametrs

self

A multiset from which elements should be deleted.

set

A multiset elements of which are deleted from self.

Return value

If during the subtraction from multiset self at list one element was deleted, the function returns
true. In any other case — false.

Additional information

bool changed;

MultiSet* s1 = create_MultiSet(&type_Integer);

MultiSet* s2 = create_MultiSet(NULL);

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(47));

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(63));

add_MultiSet(s2,create_Integer(28));

add_MultiSet(s2,create_Integer(47));

changed = removeAll_MultiSet(s1,s2);
Multiset s1 changes like this:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }
4. { 28, 47, 28, 63 }

Multiset s2 changes like this:
1. { 28 }
2. { 28, 47 }

after the call of removeAll_MultiSet in multiset s1 elements 28 (once) and 63 remain, and
variable changed go to true.

removeCount_MultiSet
The function decreases the repetition factor of the given element's entry by the given quantity.

int removeCount_MultiSet(MultiSet* self, Object* ref, int count)

Parametrs

self

A multiset from which elements should be deleted.

ref

An element which is to be deleted from the multiset.

count

The number on which the repetition factor of the given element's entry should be lessened.

Return value

A number of really deleted entries of element ref in multiset self.

Additional information

If the multiset is typified, then the type of element ref shoud be the same as the type of the
multiset's elements.

int changed;

MultiSet* s = create_MultiSet(&type_Integer);

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(47));

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(28));

changed = removeCount_MultiSet(s,create_Integer(28),2);

changed = removeCount_MultiSet(s,create_Integer(28),2);
 Multiset s is changing during the run-time this way:

1. { 28 }
2. { 28 47 }
3. { 28 47 28 }
4. { 28 47 28 28 }
5. { 47 28 }
6. { 47}

After the first call of removeCount_MultiSet variable changed goes to 2, and sfter the second
one — 1.

removeFull_MultiSet
The function totally removes an element from multiset (i.e. the repetition factor of this elements
entry in multiset goes to 0).

int removeFull_MultiSet(MultiSet* self, Object* ref)

Parametrs

self

A multiset from which elements should be deleted.

ref

An element which is to be deleted from the multiset.

Return value

A number of really deleted entries of element ref in multiset self.

Additional information

If the multiset is typified, then the type of element ref shoud be the same as the type of the
multiset's elements.

int changed;

MultiSet* s = create_MultiSet(&type_Integer);

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(47));

add_MultiSet(s,create_Integer(28));

changed = removeFull_MultiSet(s,create_Integer(28));
Multiset s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }
4. { 47 }

after the call of removeFull_MultiSet variable changed goes to 2.

retainAll_MultiSet
Gets an intersection of the multisets: retains in the first multiset only such elements, which also
belong to the second one (with regard to repetition factor).

bool retainAll_MultiSet(MultiSet* self, MultiSet* set)

Parametrs

self

A first argument of the multisets' intersection. This multiset will store the result of the
intersection.

set

A second argument of the multisets' intersection.

Return value

true, if the number of elements in the intersection is less than the number of elements in self.In
any other case — false.

Additional information

bool changed;

MultiSet* s1 = create_MultiSet(&type_Integer);

MultiSet* s2 = create_MultiSet(NULL);

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(47));

add_MultiSet(s1,create_Integer(28));

add_MultiSet(s1,create_Integer(63));

add_MultiSet(s2,create_Integer(28));

add_MultiSet(s2,create_Integer(47));

changed = retainAll_MultiSet(s1,s2);
Multiset s1 changes like this:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }
4. { 28, 47, 28, 63 }

Multiset s2 changes like this:

1. { 28 }
2. { 28, 47 }

after the call of retainAll_MultiSetin set s1 elements 28 and 47 remain,and
variable changed go to true.

size_MultiSet
The function returns the number of the elements in the multiset.

int size_MultiSet(MultiSet* self)

Parametrs

self

A multiset, power of which the function should return.

Return value

An exact number of elements in multiset self.

Additional information

int size;

MultiSet* s = create_MultiSet(&type_Integer);

size = size_MultiSet(s);

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(28));

size = size_MultiSet(s);
After the first call of size_MultiSet variable size go to zero. Ater the second call of
size_MultiSet the variable is 2: two (equal) elements were added to the multiset.

toList_MultiSet
The function returns a List containing all the elements of the given multiset.

List* toList_MultiSet(MultiSet* self)

Parametrs

self

A given multiset.

Return value

A specification reference of the type List.

Additional information

Order of the elements in the list is not defined. The returned list has the same typification as the
multiset: if the elements of the multiset was constrained by a data type, the elements of the list will
be constrained by the same type.

MultiSet* s = create_MultiSet(&type_Integer);

List* l;

Type *t;

add_MultiSet(s,create_Integer(28));

add_MultiSet(s,create_Integer(47));

add_MultiSet(s,create_Integer(28));

l = toList_MultiSet(s);

t = elemType_MultiSet(l);

Multiset s is changing during the run-time this way:

1. { 28 }
2. { 28, 47 }
3. { 28, 47, 28 }

List l, returned by function toList_MultiSet, has elements: < 28, 47, 28 >; has
elements elemType_MultiSet(l) returns &type_Integer.

toSet_MultiSet
The function returns a Set, containing all the elements of the given multiset.

Set* toSet_MultiSet(MultiSet* self)

Parametrs

self

A given multiset.

Return value

A specification reference of the type Set.

Additional information

The returned list has the same typification as the multiset: if the elements of the multiset was
constrained by a data type, the elements of the list will be constrained by the same type.

MultiSet* ms = create_MultiSet(&type_Integer);

Set* s;

Type *t;

add_MultiSet(ms,create_Integer(28));

add_MultiSet(ms,create_Integer(47));

add_MultiSet(ms,create_Integer(28));

s = toSet_MultiSet(ms);

t = elemType_MultiSet(s);
Multiset ms is changing during the run-time this way:

1. { 28
2. { 28, 47 }
3. { 28, 47, 28 }

Multiset s, returned by function toSet_MultiSet, has elements: { 28, 47 }. The call of
elemType_MultiSet(s) returns &type_Integer.

	1 Purpose of CTESK
	1.1 UniTESK Technology
	1.2 UniTESK implementation in CTESK

	2 User manual
	3 General information
	4 Specifications
	4.1 Specification functions
	4.2 Deferred reactions
	4.3 Access constraints
	4.4 Precondition
	4.5 Postcondition
	4.6 Data Types
	4.7 Allowable types
	4.8 Specification types
	4.8.1 Creating of specification data type value
	4.8.2 Copying the specification type value
	4.8.3 Cloning of the specification type value
	4.8.4 Comparing the specification type values
	4.8.5 Comparing the specification type values to equality
	4.8.6 String form of specification type value
	4.8.7 Creating XML-form of specification type value
	4.8.8 Creating new specification types
	4.8.9 Default implementation of basic operations of specification types
	4.8.10 Function of initialization by default
	4.8.11 Function of copying by default
	4.8.12 Function of comparison by default
	4.8.13 Function of stringifying by default
	4.8.14 Function of creating XML-form by default
	4.8.15 Function of enumeration of inner specification references by default
	4.8.16 Function deallocating resources by default
	4.8.17 Definition of own functions for the specification type basics operations
	4.8.18 Function of initialization of specification type
	4.8.19 Function of copying specification type
	4.8.20 Function of comparing specification type
	4.8.21 Function of stringifying specification type
	4.8.22 Function of creating XML-form specification type
	4.8.23 Function of enumeration of inner specification references of specification type
	4.8.24 Function deallocating resources of specification type

	4.9 Invariants
	4.9.1 Type invariant
	4.9.2 Variable invariant

	5 Coverages
	5.1 Different types of coverages
	5.1.1 Enumerable coverage
	5.1.2 Computable coverage
	5.1.3 Enum-coverage
	5.1.4 Derived coverage
	5.1.5 Product-coverage
	Getting of coverage element component

	5.1.6 Change of coverage domain
	5.1.7 Local coverage

	5.2 Operations on coverages elements
	5.2.1 Getting of coverage element
	5.2.2 Coverage element iteration
	5.2.3 Entering of information about coverage element to report
	5.2.4 Storage of coverage elements in variables of CoverageElement type
	Declaration of variable-element of coverage

	6 Mediators
	6.1 Mediator function
	6.1.1 Call-block of mediator function
	Mediator for function of selection of stack element

	6.1.2 State-block of mediator function

	6.2 Catcher

	7 Test scenarios
	7.1 Creation of test scenario and its call parameters
	7.1.1 Function of initialization
	7.1.2 Function of evaluating scenario state
	7.1.3 Function of finalization
	7.1.4 Function of determining state stationarity
	7.1.5 Function of saving state stationarity
	7.1.6 Function of restoring model state

	7.2 Scenario function
	7.2.1 Iteration statement
	7.2.2 Scenario state variables

	8 Additional facilities
	8.1 String and XML representations of non-specification types.

	9 SeC Semantic
	9.1 Specification
	9.1.1 Specification functions
	Syntax
	Semantic rules

	9.1.2 Deferred reactions
	Syntax
	Semantic rules

	9.1.3 Access constraints
	Syntax
	Semantic rules

	9.1.4 Aliases
	Syntax
	Semantic rules

	9.1.5 Precondition
	Syntax
	Semantic rules

	9.1.6 Postcondition
	Syntax
	Semantic rules

	9.1.7 Pre-expressions
	Syntax
	Semantic rules

	9.2 Specification data types
	Syntax
	Semantic rules

	9.3 Invariants of types
	Syntax
	Semantic rules

	9.4 Variable invariant
	Syntax
	Sematic rules

	9.5 Test scenario
	Syntax
	Semantic rules

	9.6 Scenario functions
	Syntax
	Semantic rules
	9.6.1 Iteration statement
	Syntax
	Semantic rules

	9.6.2 State variables
	Syntax
	Semantic rules

	9.7 Coverages
	9.8 Declarations and specifications of coverages
	Syntax
	Semantic rules
	Syntax
	9.8.1 Shortcut declaration
	Shortcut declaration of a global coverage.
	Shortcut declaration of a local coverage.
	Semantic rules

	9.8.2 Full declaration
	Semantic rules

	9.8.3 Full declaration of enumerable coverage
	Full declaration of enumerable coverage
	Syntax
	Semantic rules

	9.8.4 Full declaration of enum – coverage
	Full declaration of enum – coverage
	Semantic rules

	9.8.5 Full declaration of derived coverage
	Full declaration of a global product-coverage
	Full declaration of local coverage by se_coverage_statement instruction
	Full declaration of a local coverage by se_local_coverage instruction
	Syntax
	Semantic rules

	9.8.6 Primary computable coverage declaration
	Declaration of local primary computable coverage
	Semantic rules

	9.8.7 Primary computable coverage definition
	Definition of global primary computable coverage
	Definition of local primary computable coverage
	Semantic rules
	Syntax

	9.8.8 Shortened definition
	Global coverage shortened definition
	Local coverage shortened definition
	Semantic rules

	9.8.9 Common rules of coverage access
	Access to the local coverage inside the function prototype
	Access to the local coverage inside the function definition
	Semantic rules

	9.9 Rules of performing operations on coverage elements
	9.9.1 Getting of a constant coverage element
	Syntax
	Getting of a constant primary coverage element
	Getting of a constant element of the second order coverage
	Semantic rules

	9.9.2 Getting of a component of a derived coverage element
	Syntax
	Getting of a component of a coverage element
	Semantic rules

	9.9.3 Coverage element computation
	Syntax
	Global coverage element computation
	Local coverage element computation
	Semantic rules

	9.9.4 Expression of a tracing of a coverage element
	Syntax
	tracing of a coverage element
	Semantic rules

	9.9.5 CoverageElement type
	Semantic rules

	9.9.6 Coverage elements iteration
	Syntax
	Local coverage iteration with filtration
	Semantic rules
	Coverage elements filter construction
	Semantic rules

	9.9.7 Appeal to the earlier calculated coverage element
	Using the earlier calculated coverage element in a body of coverages iteration
	Global coverage iteration (there is an interpretation of name_expr C in the comments).
	Local coverage iteration(there is an interpretation of field_expr f.C in the comments).
	Semantic rules

	9.9.8 Coverage element-variable declaration
	Coverage element-variable declaration
	Semantic rules

	9.10 Mediator function
	Semantic rules

	9.11 Semantic of call block of mediator function
	Mediator for the function of the selection of stack element
	Semantic rules

	9.12 State block of mediator function
	Mediator for the function of element addition to the stack
	Semantic rules

	9.13 String and XML- view of non-specification types

	10 CTESK test system support library
	10.1 Base services of the test system
	10.1.1 System functions
	setBadVerdict
	Parameters
	Additional information
	Header file: ts/ts.h

	Assertion
	Parameters
	Additional information

	Header file: utils/assertion.h
	10.1.2 Time model
	setTSTimeModel
	Parameters
	Return value
	Additional information

	GetTSTimeModel
	LinearTimeMark
	TimeFrameOfReferenceID
	Header file: ts/timemark.h
	TimeMark

	TimeInterval
	systemTimeFrameOfReferenceID
	minTimeMark
	maxTimeMark
	getTimeFrameOfReferenceID
	setSystemTimeFrameOfReferenceName
	Parameters
	Return value
	Additional information

	createTimeMark
	Parameters
	Return value
	Additional information

	createDistributedTimeMark
	Parameters
	Return value
	Additional information

	createTimeInterval
	Return value
	Additional information

	getCurrentTimeMark
	Return value

	setDefaultCurrentTimeMarkFunction
	Return value
	Additional information

	11 Standart test engines
	11.1 Dfsm
	11.2 Ndfsm
	11.3 Fields of data types of test scenario
	init
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	finish
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	getState
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	actions
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	saveModelState
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	restoreModelState
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	IsStationaryState
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	ObserveState
	Additional information
	Header file: ts/dfsm.h, ts/ndfsm.h

	11.4 Data types used by test engine
	FinishMode
	Additional information
	Header file: ts/engine.h

	PtrFinish
	Additional information
	Header file: ts/engine.h

	PtrGetState
	Additional information
	Header file: ts/engine.h

	PtrInit
	Additional information
	Header file: ts/engine.h

	PtrIsStationaryState
	Additional information
	Header file: ts/engine.h

	PtrObserveState
	Additional information
	Header file: ts/engine.h

	PtrRestoreModelState
	Additional information
	Header file: ts/engine.h

	PtrSaveModelState
	Additional information
	Header file: ts/engine.h

	11.5 Test engine service function
	areDeferredReactionsEnabled
	Return value
	Additional information
	Header file: ts/engine.h

	getFindFirstSeriesOnlyBound
	Return value
	Additional information
	Header file:ts/engine.h

	getFinishMode
	Return value
	Additional information
	Header file: ts/engine.h

	getWTime
	Return value
	Additional information
	Header file: ts/engine.h

	isFindFirstSeriesOnly
	Return value
	Additional information
	Header file: ts/engine.h
	setDeferredReactionsMode
	Return value
	Additional information
	Header file: ts/engine.h

	setFindFirstSeriesOnly
	Paremeters
	Return value
	Additional information
	Header file: ts/engine.h

	SetFindFirstSeriesOnlyBound
	Parameters
	Return value
	Additional information
	Header file: ts/engine.h

	setFinishMode
	Additional information
	Header file: ts/engine.h
	Parameters
	Return value
	Additional information
	Header file: ts/engine.h

	11.6 Standard parameters of test scenario
	--find-first-series-only
-ffso
	Additional information

	-nt
--no-trace
	Additional information

	-t
	Additional information

	-tc
	Additional information

	--trace-accidental
	Additional information

	-tt
	Additional information

	-uend
	Additional information

	-uerr
	Additional information

	--trace-format
	Additional information

	--disabled-actions
	Additional information

	12 Tracing services
	12.1 Tracing control
	Additional information
	Header file: ts/c_tracer.h
	Additional information
	Header file: ts/c_tracer.h
	addTraceToFile
	Parameters
	Return value
	Additional information
	Header file: ts/c_tracer.h
	Parameters
	Return value
	Additional information
	Header file: ts/c_tracer.h
	Parameters
	Return value
	Additional information
	Header file: ts/c_tracer.h

	setTraceUserEnv
	Parameters
	Additional information
	Header file: ts/c_tracer.h

	setTraceEncoding
	Parameters
	Additional information
	Header file: ts/c_tracer.h

	12.2 Message tracing
	Parameters
	Additional information
	Header file: ts/c_tracer.h
	traceFormattedUserInfo
	Parameters
	Additional information
	Header file: ts/c_tracer.h

	13 Deferred reactions registration services
	13.1 Interaction channels
	Additional information
	Header file: ts/register.h
	WrongChannel
	Additional information

	UniqueChannel
	Additional information
	Header file: ts/register.h
	Return value
	Additional information
	Header file: ts/register.h
	Parameters
	Additional information
	Header file: ts/register.h

	13.2 Interactions registrar
	Parameters
	Return value
	Additional information
	Header file: ts/register.h
	Return value
	Additional information
	Header file: ts/register.h
	registerReaction
	Parameters
	Additional information
	Header file: ts/register.h
	Parameters
	Additional information
	Header file: ts/register.h

	registerReactionWithTimeInterval
	Parameters
	Additional information
	Header file: ts/register.h

	registerWrongReaction
	Parameters
	Additional information
	Header file: ts/register.h

	registerStimulusWithTimeInterval
	Parameters
	Additional information
	Header file: ts/register.h

	13.3 Catcher functions registering service
	ReactionCatcherFuncType
	Additional information
	Header file: ts/timemark.h

	registerReactionCatcher
	Parameters
	Additional information
	Header file: ts/register.h

	unregisterReactionCatcher
	Parameters
	Return value
	Additional information
	Header file: ts/register.h

	UnregisterReactionCatchers
	Parameters
	Return value
	Additional information
	Header file: ts/register.h

	14 Library of specification data types
	14.1 Standard functions
	14.1.1 Function of Creating references
	Parameters
	Return value
	Additional information

	14.1.2 Function of getting reference's type
	Parameters
	Return value

	14.1.3 Function of copying values by references
	Parameters
	Additional information

	14.1.4 Function of cloning object
	Parameters
	Additional information

	14.1.5 Function of comparing values by references
	Parameters
	Return value

	14.1.6 Function of detecting equivalence of values by references
	Parameters
	Return value

	14.1.7 Function of building a string representation of value by reference
	Parameters
	Return value

	14.1.8 Function of building XML representation of value by reference
	Parameters
	Return value

	14.2 Predefined specification types
	14.2.1 Char
	Additional information
	Header file: atl/char.h

	create_Char
	Parametrs
	Return value
	Additional information

	value_Char
	Parametrs
	Return value
	Additional information

	14.2.2 Integer and UInteger
	Additional information
	Header file: atl/Integer.h

	create_Integer, create_UInteger
	Parametrs
	Return value
	Additional information

	value_Integer, value_UInteger
	Parametrs
	Additional information

	14.2.3 Short and Ushort
	Additional information
	Header file: atl/short.h

	create_Short, create_UShort
	Parametrs
	Return value
	Additional information

	value_Short, value_UShort
	Parametrs
	Additional information

	14.2.4 Long and Ulong
	Additional information
	Header file: atl/long.h

	create_Long, create_ULong
	Parametrs
	Return value
	Additional information

	value_Long, value_ULong
	Parametrs
	Additional information

	14.2.5 Float
	Additional information
	Header file: atl/float.h

	create_Float
	Parametrs
	Return value
	Additional information

	value_Float
	Parametrs
	Additional information

	14.2.6 Double
	Additional information
	Header file: atl/double.h

	create_Double
	Parametrs
	Return value
	Additional information

	value_Double
	Parametrs
	Additional information

	14.2.7 VoidAst
	Additional information
	Header file: atl/voidast.h

	create_VoidAst
	Parametrs
	Return value
	Additional information

	value_VoidAst
	Parametrs
	Additional information

	14.2.8 Unit
	Additional information
	Header file: atl/unit.h

	create_Unit
	Return value
	Additional information

	14.2.9 BigInteger
	Header file: atl/bigint.h
	add_BigInteger
	Parametrs
	Return value

	create_BigInteger
	Parametrs
	Return value
	Additional information

	divide_BigInteger
	Parametrs
	Return value

	intValue_BigInteger
	Parametrs
	Additional information

	longValue_BigInteger
	Parametrs
	Additional information

	multiply_BigInteger
	Parametrs
	Return value

	negate_BigInteger
	Parametrs
	Return value

	power_BigInteger
	Parametrs
	Return value

	remainder_BigInteger
	Parametrs
	Return value

	subtract_BigInteger
	Parametrs
	Return value

	valueOf_BigInteger
	Parametrs
	Return value

	14.2.10 Complex
	Additional information
	Header file: atl/complex.h
	create_Complex
	Parametrs
	Return value
	Additional information

	14.2.11 String
	Additional information
	Header file: atl/string.h
	create_String
	Parametrs
	Return value
	Additional information

	charAt_String
	Parametrs
	Return value
	Additional information

	concat_String
	Parametrs
	Return value
	Additional information

	startsWith_String
	Parametrs
	Return value
	Additional information

	startsWithOffset_String
	Parametrs
	Return value
	Additional information

	endsWith_String
	Parametrs
	Return value
	Additional information

	indexOfChar_String
	Parametrs
	Return value
	Additional information

	indexOfCharFrom_String
	Parametrs
	Return value
	Additional information

	indexOfString_String
	Parametrs
	Return value
	Additional information

	indexOfStringFrom_String
	Parametrs
	Return value
	Additional information

	lastIndexOfChar_String
	Parametrs
	Return value
	Additional information

	lastIndexOfCharFrom_String
	Parametrs
	Return value
	Additional information

	lastIndexOfString_String
	Parametrs
	Return value
	Additional information

	lastIndexOfStringFrom_String
	Parametrs
	Return value
	Additional information

	length_String
	Parametrs
	Return value
	Additional information

	regionMatches_String, regionMatchesCase_String
	Parametrs
	Return value
	Additional information

	replace_String
	Parametrs
	Return value
	Additional information

	substringFrom_String
	Parametrs
	Return value
	Additional information

	substring_String
	Parametrs
	Return value
	Additional information

	toLowerCase_String
	Parametrs
	Return value
	Additional information

	toUpperCase_String
	Parametrs
	Return value
	Additional information
	toCharArray_String
	Parametrs
	Return value
	Additional information

	trim_String
	Parametrs
	Return value
	Additional information

	format_String
	Parametrs
	Return value
	Additional information

	vformat_String
	Parametrs
	Return value
	Additional information

	valueOfBool_String
	Parametrs
	Return value
	Additional information

	valueOfChar_String
	Parametrs
	Return value
	Additional information

	valueOfShort_String
	Parametrs
	Return value
	Additional information

	valueOfUShort_String
	Parametrs
	Return value
	Additional information

	valueOfInt_String
	Parametrs
	Return value
	Additional information

	valueOfUInt_String
	Parametrs
	Return value
	Additional information

	valueOfLong_String
	Parametrs
	Return value
	Additional information

	valueOfULong_String
	Parametrs
	Return value
	Additional information

	valueOfFloat_String
	Parametrs
	Return value
	Additional information

	valueOfDouble_String
	Parametrs
	Return value
	Additional information

	valueOfPtr_String
	Parametrs
	Return value
	Additional information

	valueOfObject_String
	Parametrs
	Return value
	Additional information

	valueOfBytes_String
	Parametrs
	Return value
	Additional information

	14.2.12 List
	Header file: atl/list.h
	add_List
	Parametrs
	Additional information

	addAll_List
	Parametrs
	Additional information

	append_List
	Parametrs
	Return value
	Additional information

	appendAll_List
	Parametrs
	Additional information

	clear_List
	Parametrs
	Additional information

	contains_List
	Parametrs
	Return value
	Additional information

	create_List
	Parametrs
	Return value
	Additional information

	elemType_List
	Parametrs
	Return value
	Additional information

	get_List
	Parametrs
	Return value
	Additional information

	indexOf_List
	Parametrs
	Return value
	Additional information

	isEmpty_List
	Parametrs
	Return value
	Additional information

	lastIndexOf_List
	Parametrs
	Return value
	Additional information

	remove_List
	Parametrs
	Additional information

	set_List
	Parametrs
	Additional information

	size_List
	Parametrs
	Return value
	Additional information

	subList_List
	Parametrs
	Return value
	Additional information

	toSet_List
	Parametrs
	Return value
	Additional information

	14.2.13 Set
	Header file: atl/set.h
	add_Set
	Parametrs
	Return value
	Additional information

	addAll_Set
	Parametrs
	Return value
	Additional information

	clear_Set
	Parametrs
	Additional information

	contains_Set
	Parametrs
	Return value
	Additional information

	containsAll_Set
	Parametrs
	Return value
	Additional information

	create_Set
	Parametrs
	Return value
	Additional information

	elemType_Set
	Parametrs
	Return value
	Additional information

	get_Set
	Parametrs

	Return value
	Additional information

	isEmpty_Set
	Parametrs
	Return value
	Additional information

	remove_Set
	Parametrs
	Additional information

	removeAll_Set
	Parametrs
	Return value
	Additional information

	retainAll_Set
	Parametrs
	Return value
	Additional information

	size_Set
	Parametrs
	Return value
	Additional information

	toList_Set
	Parametrs
	Return value
	Additional information

	14.2.14 Map
	Header file: atl/map.h
	clear_Map
	Parametrs

	containsKey_Map
	Parametrs
	Return value
	Additional information

	containsValue_Map
	Parametrs
	Return value
	Additional information

	create_Map
	Parametrs
	Return value
	Additional information

	get_Map
	Parametrs
	Return value
	Additional information

	getKey_Map
	Parametrs
	Return value
	Additional information

	isEmpty_Map
	Parametrs
	Return value
	Additional information

	key_Map
	Parametrs
	Return value
	Additional information

	keyType_Map
	Parametrs
	Return value
	Additional information

	put_Map
	Parametrs
	Return value
	Additional information

	putAll_Map
	Parametrs
	Additional information

	remove_Map
	Parametrs
	Return value
	Additional information

	size_Map
	Parametrs
	Return value
	Additional information

	valueType_Map
	Parametrs
	Return value
	Additional information

	14.2.15 MultiSet
	Header file: atl/multiset.h
	add_MultiSet
	Parametrs
	Return value
	Additional information

	addAll_MultiSet
	Parametrs
	Return value
	Additional information

	clear_MultiSet
	Parametrs
	Additional information

	contains_MultiSet
	Parametrs
	Return value
	Additional information

	containsAll_MultiSet
	Parametrs
	Return value
	Additional information

	create_MultiSet
	Parametrs
	Return value
	Additional information

	elemType_MultiSet
	Parametrs
	Return value
	Additional information

	get_MultiSet
	Parametrs
	Return value
	Additional information

	isEmpty_MultiSet
	Parametrs
	Return value
	Additional information

	remove_MultiSet
	Parametrs
	Return value
	Additional information

	removeAll_MultiSet
	Parametrs
	Return value
	Additional information

	removeCount_MultiSet
	Parametrs
	Return value
	Additional information

	removeFull_MultiSet
	Parametrs
	Return value
	Additional information

	retainAll_MultiSet
	Parametrs
	Return value
	Additional information

	size_MultiSet
	Parametrs
	Return value
	Additional information

	toList_MultiSet
	Parametrs
	Return value
	Additional information

	toSet_MultiSet
	Parametrs
	Return value
	Additional information

