
Institute for System Programming of the Russian Academy
of Sciences

MicroTESK User Guide
(UNDER DEVELOPMENT)

Moscow 2016

Contents

1 Overview 4

2 Installation 5
2.1 System Requirements . 5
2.2 Installation Steps . 5

2.2.1 Setting Environment Variables 5
2.2.2 Installing Constraint Solvers 6

2.3 Installation Directory Structure . 7
2.4 Running . 7
2.5 Command-Line Options . 8
2.6 Settings File . 10

3 Test Templates 11
3.1 Introduction . 11
3.2 Test Template Structure . 11
3.3 Reusing Test Templates . 12
3.4 Test Template Settings . 13

3.4.1 Managing Text Format . 13
3.4.2 Managing Address Alignment 14

3.5 Text Printing . 14
3.6 Random Distributions . 16
3.7 Instruction Calls . 16

3.7.1 Aliases . 17
3.7.2 Pseudo Instructions . 17
3.7.3 Groups . 18
3.7.4 Test Situations . 18
3.7.5 Registers Selection . 19

3.8 Instruction Call Sequences . 20
3.9 Data . 21

3.9.1 Configuration . 21
3.9.2 Definitions . 22

3.10 Preparators . 24
3.11 Comparators . 25
3.12 Exception Handlers . 26

2

MicroTESK User Guide [Draft]

4 Test Engine Branch 27
4.1 Parameters . 27
4.2 Description . 27

5 Customization 28
5.1 Data Generators . 28

6 Appendixes 29
6.1 References . 29

Bibliography . 29

3

Chapter 1

Overview

4

Chapter 2

Installation

2.1 System Requirements
MicroTESK is a set of Java-based utilities that are run from the command line.

It can be used on Windows , Linux and OS X machines that have JDK 1.7 or
later installed. To build MicroTESK from source code or to build the generated
Java models, Apache Ant version 1.8 or later is required. To generate test data
based on constraints, MicroTESK needs the Microsoft Research Z3 or CVC4
solver that can work on the corresponding operating system.

2.2 Installation Steps
To install MicroTESK, the following steps should be performed:

1. Download from http://forge.ispras.ru/projects/microtesk/files and
unpack the MicroTESK installation package (the .tar.gz file, latest release)
to your computer. The folder to which it was unpacked will be further referred
to as the installation directory (<installation dir>).

2. Declare the MICROTESK_HOME environment variable and set its value to the path
to the installation directory (see the Setting Environment Variables section).

3. Set the <installation dir>/bin folder as the working directory (add the
path to the PATH environment variable) to be able to run MicroTESK utilities
from any path.

4. Note: Required for constraint-based generation. Download and install con-
straint solver tools to the <installation dir>/tools directory (see the In-
stalling Constraint Solvers section).

2.2.1 Setting Environment Variables

Windows

1. Open the System Properties window.

5

http://forge.ispras.ru/projects/microtesk/files

MicroTESK User Guide [Draft]

2. Switch to the Advanced tab.

3. Click on Environment Variables.

4. Click New.. under System Variables.

5. In the New System Variable dialog, specify variable name as MICROTESK_HOME
and variable value as <installation dir>.

6. Click OK on all open windows.

7. Reopen the command prompt window.

Linux and OS X

Add the command below to the ~.bash_profile file (Linux) or the ~/.profile
file (OS X):
export MICROTESK_HOME=<installation dir>

To start editing the file, type vi ~/.bash_profile (or vi ~/.profile). Changes
will be applied after restarting the command-line terminal or reboot. You can also
run the command in your command-line terminal to make temporary changes.

2.2.2 Installing Constraint Solvers

To generate test data based on constraints, MicroTESK requires external con-
straint solvers. The current version supports the Z3 and CVC4 constraint solvers.
Constraint executables should be downloaded and placed to the <installation
dir>/tools directory.

Using Environment Variables

If solvers are already installed in another directory, to let MicroTESK find them,
the following environment variables can be used: Z3_PATH and CVC4_PATH. They
specify the paths to the Z3 and CVC4 excutables correspondingly.

Installing Z3

• Windows users should download Z3 (32 or 64-bit version) from the follow-
ing page:http://z3.codeplex.com/releases and unpack the archive to the
<installation dir>/tools/z3/windows directory. Note: the executable file
path is <windows>/z3/bin/z3.exe.

• UNIX and Linux users should use one of the links below and and unpack
the archive to the <installation dir>/tools/z3/unix directory. Note: the
executable file path is <unix>/z3/bin/z3.

6

https://github.com/z3prover
http://cvc4.cs.nyu.edu
http://z3.codeplex.com/releases

MicroTESK User Guide [Draft]

Debian x64 http://z3.codeplex.com/releases/view/101916
Ubuntu x86 http://z3.codeplex.com/releases/view/101913
Ubuntu x64 http://z3.codeplex.com/releases/view/101911
FreeBSD x64 http://z3.codeplex.com/releases/view/101907

• OS X users should download Z3 from http://z3.codeplex.com/releases/
view/101918 and unpack the archive to the <installation dir>/z3/osx
directory. Note: the executable file path is <osx>/z3/bin/z3.

Installing CVC4

• Windows users should download the latest version of CVC4 binary from
http://cvc4.cs.nyu.edu/builds/win32-opt/ and save it to the <installation
dir>/tools/cvc4/windows directory as cvc4.exe.

• Linux users download the latest version of CVC4 binary from http://cvc4.
cs.nyu.edu/builds/i386-linux-opt/unstable/ (32-bit version) or http:
//cvc4.cs.nyu.edu/builds/x86_64-linux-opt/unstable/ (64-bit version)
and save it to the <installation dir>/tools/cvc4/unix directory as cvc4.

• OS X users should download the latest version of CVC4 distribution package
from http://cvc4.cs.nyu.edu/builds/macos/ and install it. The CVC4
binary should be copied to <installation dir>/tools/cvc4/osx as cvc4 or
linked to this file name via a symbolic link.

2.3 Installation Directory Structure
The MicroTESK installation directory contains the following subdirectories:

arch Microprocessor specifications and test templates
bin Scripts to run modeling and test generation tasks
doc Documentation
etc Configuration files
gen Generated code of microprocessor models
lib JAR files and Ruby scripts to perform modeling and

test generation tasks
src Source code of MicroTESK

2.4 Running
To generate a Java model of a microprocessor from its nML specification, a

user needs to run the compile.sh script (Unix, Linux, OS X) or the compile.bat
script (Windows). For example, the following command generates a model for the
miniMIPS specification:
sh bin/compile.sh arch/minimips/model/minimips.nml

7

http://z3.codeplex.com/releases/view/101916
http://z3.codeplex.com/releases/view/101913
http://z3.codeplex.com/releases/view/101911
http://z3.codeplex.com/releases/view/101907
http://z3.codeplex.com/releases/view/101918
http://z3.codeplex.com/releases/view/101918
http://cvc4.cs.nyu.edu/builds/win32-opt/
http://cvc4.cs.nyu.edu/builds/i386-linux-opt/unstable/
http://cvc4.cs.nyu.edu/builds/i386-linux-opt/unstable/
http://cvc4.cs.nyu.edu/builds/x86_64-linux-opt/unstable/
http://cvc4.cs.nyu.edu/builds/x86_64-linux-opt/unstable/
http://cvc4.cs.nyu.edu/builds/macos/

MicroTESK User Guide [Draft]

NOTE: Models for all demo specifications are already built and included in the
MicroTESK distribution package. So a user can start working with MicroTESK
from generating test programs for these models.

To generate a test program, a user needs to use the generate.sh script (Unix,
Linux, OS X) or the generate.bat script (Windows). The scripts require the fol-
lowing parameters:

• model name;

• test template file;

• target test program source code file.

For example, the command below runs the euclid.rb test template for the
miniMIPS model generated by the command from the previous example and saves
the generated test program to an assembler file. The file name is based on values of
the –code-file-prefix and –code-file-extension options.
sh bin/generate.sh minimips arch/minimips/templates/euclid.rb

To specify whether Z3 or CVC4 should be used to solve constraints, a user needs
to specify the -s or –solver command-line option as z3 or cvc4 respectively. By
default, Z3 will be used. Here is an example:
sh bin/generate.sh -s cvc4 minimips arch/minimips/templates/constraint.rb

More information on command-line options can be found on the Command-Line
Options section.

2.5 Command-Line Options
MicroTESK works in two modes: specification translation and test generation,

which are enabled with the –translate (used by default) and –generate keys cor-
respondingly. In addition, the –help key prints information on the command-line
format.

The –translate and –generate keys are inserted into the command-line by
compile.sh/compile.bat and generate.sh/generate.bat scripts correspondingly.
Other options should be specified explicitly to customize the behavior of MicroTESK.
Here is the list of options:

8

MicroTESK User Guide [Draft]

Full name Short
name

Description Requires

–help -h Shows help message
–verbose -v Enables printing diagnostic

messages
–translate -t Translates formal specifica-

tions
–generate -g Generates test programs
–output-dir <arg> -od Sets where to place gener-

ated files
–include <arg> -i Sets include files directories –translate
–extension-dir <arg> -ed Sets directory that stores

user-defined Java code
–translate

–random-seed <arg> -rs Sets seed for randomizer –generate
–solver <arg> -s Sets constraint solver engine

to be used
–generate

–branch-exec-limit
<arg>

-bel Sets the limit on control
transfers to detect endless
loops

–generate

–solver-debug -sd Enables debug mode for
SMT solvers

–generate

–tarmac-log -tl Saves simulator log in Tar-
mac format

–generate

–self-checks -sc Inserts self-checking code
into test programs

–generate

–arch-dirs <arg> -ad Home directories for tested
architectures

–generate

–rate-limit <arg> -rl Generation rate limit,
causes error when broken

–generate

–code-file-extension
<arg>

-cfe The output file extension –generate

9

MicroTESK User Guide [Draft]

–code-file-prefix
<arg>

-cfp The output file prefix (file
names are as follows pre-
fix_xxxx.ext, where xxxx is
a 4-digit decimal number)

–generate

–data-file-extension
<arg>

-dfe The data file extension –generate

–data-file-prefix
<arg>

-dfp The data file prefix –generate

–exception-file-prefix
<arg>

-efp The exception handler file
prefix

–generate

–program-length-limit
<arg>

-pll The maximum number of
instructions in output pro-
grams

–generate

–trace-length-limit
<arg>

-tll The maximum length of
execution traces of output
programs

–generate

–comments-enabled -ce Enables printing comments;
if not specified no comments
are printed

–generate

–comments-debug -cd Enables printing detailed
comments; must be used
together with –comments-
enabled

–generate

2.6 Settings File
Default values of options are stored in the <MICROTESK_HOME>/etc/settings.xml

configururation file that has the following format:
<?xml version="1.0" encoding="utf-8"?>
<settings>
<setting name="random-seed" value="0"/>
<setting name="branch-exec-limit" value="1000"/>
<setting name="code-file-extension" value="asm"/>
<setting name="code-file-prefix" value="test"/>
<setting name="data-file-extension" value="dat"/>
<setting name="data-file-prefix" value="test"/>
<setting name="exception-file-prefix" value="test_except"/>
<setting name="program-length-limit" value="1000"/>
<setting name="trace-length-limit" value="1000"/>
<setting name="comments-enabled" value=""/>
<setting name="comments-debug" value=""/>
<setting
name="arch-dirs"
value="cpu=arch/demo/cpu/settings.xml:minimips=arch/minimips/settings.xml"

/>
</settings>

10

Chapter 3

Test Templates

3.1 Introduction
MicroTESK generates test programs on the basis of test templates that describe

test programs to be generated in an abstract way. Test templates are created using
special Ruby-based test template description language that derives all Ruby features
and provides special facilities. The language is implemented as a library that im-
plements facilities for describing test cases. Detailed information on Ruby features
can be found in official documentation [2, 3].

MicroTESK uses the JRuby [4] interpreter to process test templates. This allows
Ruby libraries to interact with other components of MicroTESK written in Java.

Test templates are processed in two stages:

1. Ruby code is executed to build the internal representation (a hierarchy of Java
objects) of the test template.

2. The internal representation is processed with various engines to generate test
cases which are then simulated on the reference model and printed to files.

This chapter describes facilities of the test template description language and
supported test generation engines.

3.2 Test Template Structure
A test template is implemented as a class inherited from the Template library

class that provides access to all features of the library. Information on the location
of the Template class is stored in the TEMPLATE environment variable. Thus, the
definition of a test template class looks like this:
require ENV[’TEMPLATE’]

class MyTemplate < Template

Test template classes should contain implementations of the following methods:

1. initialize (optional) - specifies settings for the given test template;

11

MicroTESK User Guide [Draft]

2. pre (optional) - specifies the initialization code for test programs;

3. post (optional) - specifies the finalization code for test programs;

4. run - specifies the main code of test programs (test cases).

The definitions of optional methods can be skipped. In this case, the default
implementations provided by the parent class will be used. The default implemen-
tation of the initialize method initializes the settings with default values. The
default implementations of the pre and post methods do nothing.

The full interface of a test template looks as follows:
require ENV[’TEMPLATE’]

class MyTemplate < Template

def initialize
super
Initialize settings here

end

def pre
Place your initialization code here

end

def post
Place your finalization code here

end

def run
Place your test problem description here

end

end

3.3 Reusing Test Templates
It is possible to reuse code of existing test templates in other test templates. To

do this, you need to subclass the template you want to reuse instead of the Template
class. For example, the MyTemplate class below reuses code from the MyPrepost
class that provides initialization and finalization code for similar test templates.
require ENV[’TEMPLATE’]
require_relative ’MyPrepost’

class MyTemplate < MyPrepost

def run
...

end

end

12

MicroTESK User Guide [Draft]

Another way to reuse code is creating code libraries with methods that can be
called by test templates. A code library is defined as a Ruby module file and has
the following structure:
module MyLibrary

def method1
...

end

def method2(arg1, arg2)
...

end

def method3(arg1, arg2, arg3)
...

end

end

To be able to use utility methods method1, method2 and method3 in a test
template, the MyLibrary module must be included in that test template as a mixin.
Once this is done, all methods of the library are available in the test template. Here
is an example:
require ENV[’TEMPLATE’]
require_relative ’my_library’

class MyTemplate < Template
include MyLibrary

def run
method1
method2 arg1, arg2
method3 arg1, arg2, arg3

end

end

3.4 Test Template Settings

3.4.1 Managing Text Format

Test templates use the following settings that set up the format of generated test
programs:

• sl_comment_starts_with - starting characters for single-line comments;

• ml_comment_starts_with - starting characters for multi-line comments;

• ml_comment_ends_with - terminating characters for multi-line comments;

• indent_token - indentation token;

13

MicroTESK User Guide [Draft]

• separator_token - token used in separator lines.

Here is how these settings are initialized with default values in the Template
class:
@sl_comment_starts_with = "//"
@ml_comment_starts_with = "/*"
@ml_comment_ends_with = "*/"

@indent_token = "\t"
@separator_token = "="

The settings can be overridden in the initialize method of a test template.
For example:
class MyTemplate < Template

def initialize
super

@sl_comment_starts_with = ";"
@ml_comment_starts_with = "/="
@ml_comment_ends_with = "=/"

@indent_token = " "
@separator_token = "*"

end
...

end

3.4.2 Managing Address Alignment

The .align n directive may have different interpretation for different assem-
blers. By default, MicroTESK assumes that it aligns an address to the next 2n byte
boundary. If this is not the case, to make MicroTESK correctly interpret it, the
alignment_in_bytes function must be overridden in a test template. This function
returns the number of bytes that correponds to n. The default implementation of
the function looks like this:
#
By default, align n is interpreted as alignment on 2**n byte border.
This behavior can be overridden.
#
def alignment_in_bytes(n)
2 ** n

end

3.5 Text Printing
The test template description language provides facilities for printing text mes-

sages. Text messages are printed either into the generated source code or into the
simulator log. Here is the list of functions that print text:

14

MicroTESK User Guide [Draft]

• newline - adds the new line character into the test program;

• text(format, *args) - adds text into the test program;

• trace(format, *args) - prints text into the simulator execution log;

• comment(format, *args) - adds a comment into the test program;

• start_comment - starts a multi-line comment;

• end_comment - ends a multi-line comment.

Formatted Printing

Functions text, trace and comment print formatted text. They take a format
string and a variable list of arguments that provide data to be printed.

Supported argument types:

• constants;

• locations.

To specify locations to be printed (registers, memory), the location(name,
index) function should be used. It takes the name of the memory array and the
index of the selected element.

Supported format characters:

• d - decimal format;

• x or X - hexadecimal format (lowercase or uppercase letters);

• s - decimal format for constants and binary format for locations.

For example, the code below prints the 0xDEADBEEF value as a constant and as
a value stored in a register using different format characters:
prepare reg(1), 0xDEADBEEF
reg1 = location(’GPR’, 1)
text ’Constants: dec=%d, hex=0x%X, str=%s’, 0xDEADBEEF, 0xDEADBEEF, 0xDEADBEEF
text ’Locations: dec=%d, hex=0x%X, str=%s’, reg1, reg1, reg1

Here is how it will be printed:
Constants: dec=3735928559, hex=0xDEADBEEF, str=3735928559
Locations: dec=3735928559, hex=0xDEADBEEF, str=11011110101011011011111011101111

15

MicroTESK User Guide [Draft]

3.6 Random Distributions
Many tasks involve selection based on random distribution. The test template

language includes constructs to describe ranges of possible values and their weights.
To accomplish this task, the following functions are provided:

• range(attrs) - creates a range of values and its weight, which are described
by the :value and :bias attribures. Values can be one of the following types:

– Single value;

– Range of values;

– Array of values;

– Distribution of values.

The :bias attribute can be skipped which means default weight. Default
weight is used to describe an even distribution based on ranges with equal
weights.

• dist(*ranges) - creates a random distribution from a collection of ranges.

The code below illustrates how to create weighted distributions for integer num-
bers:
simple_dist = dist(
range(:value => 0, :bias => 25), # Value
range(:value => 1..2, :bias => 25), # Range
range(:value => [3, 5, 7], :bias => 50) # Array
)

composite_dist = dist(
range(:value=> simple_dist, :bias => 80), # Distribution
range(:value=> [4, 6, 8], :bias => 20) # Array
)

Distributions are used in a number of test template features that will be described
further in this chapter.

3.7 Instruction Calls
The pre, post and run methods of a test template contain descriptions of in-

struction call sequences. Instructions are operations defined in ISA specifications
which represent target assembler instructions. Operations can have arguments of
three kinds:

• immediate value;

• addressing mode;

• operation.

16

MicroTESK User Guide [Draft]

Addressing modes encapsulate logic of reading or writing values to memory re-
sources. For example, an addressing mode can refer to a register, a memory location
or hold an immediate value. Operations are used to describe complex instructions
that are composed of several operations (e.g. VLIW instructions). What arguments
are suitable for specific instructions is specified in ISA specifications.

Arguments are passed to instructions and addressing modes in two ways:

• As arrays. This format is based on methods with a variable number of ar-
guments. Values are expected to come in the same order as corresponding
parameter definitions in specifications.

• As hash maps. This format implies that operations and addressing modes are
parameterized with hash tables where the key is in the name of the parameter
and the value is the value to be assigned to this parameter.

The first way is more preferable as it is simpler and closer to the assembly code
syntax. The code below demonstrates both ways (miniMIPS):
Arrays
add reg(11), reg(9), reg(0)
Hash maps
add :rd=>reg(:i=>11), :rs=>reg(:i=>9), :rt=>reg(:i=>0)

3.7.1 Aliases

Sometimes it is required to define aliases for addressing modes or operations
invoked with certain arguments. This is needed to make a test template more
human-readable. This can be done by defining in a test template Ruby functions
that create instances with specific arguments. For example, the following code makes
it possible to address registers reg(0) and reg(1) as zero and at:
def zero
reg(0)

end

def at
reg(1)

end

3.7.2 Pseudo Instructions

It is possible to specifify pseudo instructions that do not have correspondent
operation in specifications. Such instructions print user-specified text and do not
change the state of the reference model. The can be described using the following
function: pseudo(text). For example:
pseudo ’syscall’

17

MicroTESK User Guide [Draft]

3.7.3 Groups

Addressing modes and operations can be organized into groups. Groups are used
when it is required to randomly select an addressing mode or an operation from the
specified set.

Groups can be defined in specifications or in test templates. To define them in
test templates, the following functions are used:

• define_mode_group(name, distribution) - defines an addressing mode
group;

• define_op_group(name, distribution) - defined an operation group.

Both function take the name and distribution arguments that specify the group
name and the distribution used to select its items. More information on distributions
is in the Random Distribution section. Notes : (1) distribution items can be names
of addressing modes and operations, by not names of groups; (2) it is not allowed
to redefine existing groups.

For example, the code below creates an instruction group called alu that contains
instructions add, sub, and, or, nor, and xor selected randomly according to the
specified distribution.
alu_dist = dist(
range(:value => ’add’, :bias => 40),
range(:value => ’sub’, :bias => 30),
range(:value => [’and’, ’or’, ’nor’, ’xor’], :bias => 30))

define_op_group(’alu’, alu_dist)

The following code specifies three calls that use instructions randomly selected
from the alu group:
alu t0, t1, t2
alu t3, t4, t5
alu t6, t7, t8

3.7.4 Test Situations

Test situations are associated with specific instruction calls and specify methods
used to generate their input data. There is a wide range of data generation meth-
ods implemented by various data generation engines. Test situations are specified
using the situation construct. It takes the situation name and a map of optional
attributes that specify situation-specific parameters. For example, the following line
of code causes input registers of the add instruction to be filled with zeros:
add t1, t2, t3 do situation(’zero’) end

When no situation is specified, a default situation is used. This situation places
random values into input registers. It is possible to assign a custom default situation
for individual instructions and instruction groups with the set_default_situation
function. For example:

18

MicroTESK User Guide [Draft]

set_default_situation ’add’ do situation(’zero’) end

Situations can be selected at random. The selection is based on a distribution.
This can be done by using the random_situation construct. For example:
sit_dist = dist(
range(:value => situation(’add.overflow’)),
range(:value => situation(’add.normal’)),
range(:value => situation(’zero’)),
range(:value => situation(’random’, :dist => int_dist))
)

add t1, t2, t3 do random_situation(sit_dist) end

Unknown immediate arguments that should have their va-lues generated are
specified using the "_" symbol. For example, the code below states that a random
value should be added to a value stored in a random register and the result should
be placed to another random register:
addi reg(_), reg(_), _ do situation(’random’) end

3.7.5 Registers Selection

Unknown immediate arguments of addressing modes are a special case and their
values are generated in a slightly different way. Typically, they specify register
indexes and are bounded by the lenght of register arrays. Often such indexes must be
selected from a specific range taking into account previous selections. For example,
registers are allocated at random and they must not overlap. To be able to solve
such tasks, all values passed to addressing modes are tracked. The allowed value
range and the method of value selection are specified in configuration files. Values
are selected using the specified method before the instruction call is processed by
the engine that generates data for the test situation. The selection method can be
customized by using the mode_allocator function. It takes the allocation method
name and a map of method-specific parameters. For example, the following code
states that the output register of the add instruction must be a random register
which is not used in the current test case:
add reg(_ mode_allocator(’free’)), t0, t1

Also, it is possible to exclude some elements from the range by using the exclude
attribute. For example:
add reg(_ :exclude=>[1, 5, 7]), t0, t1

Addressing modes with specific argument values can be marked as free using
the free_allocated_mode function. To free all allocated addressing modes, the
free_all_allocated_modes function can be used.

19

MicroTESK User Guide [Draft]

3.8 Instruction Call Sequences
Instruction call sequences are described using block-like structures. Each block

specifies a sequence or a collection of sequences. Blocks can be nested to construct
complex sequences. The algorithm used for sequence construction depends on the
type and the attributes of a block.

An individual instruction call is considered a primitive block describing a single
sequence that consists of a single instruction call. A single sequence that consists of
multiple calls can be described using the sequence or the atomic construct. The
difference between the two is that an atomic sequence is never mixed with other
instruction calls when sequences are merged. The code below demonstrates how to
specify a sequence of three instruction calls:
sequence {
add t0, t1, t2
sub t3, t4, t5
or t6, t7, t8

}

A collection of sequences that are processed one by one can be specified using the
iterate construct. For example, the code below describes three sequences consisting
of one instruction call:
iterate {
add t0, t1, t2
sub t3, t4, t5
or t6, t7, t8

}

Sequences can be combined using the block construct. The resulting sequences
are constructed by sequentially applying the following engines to sequences returned
by nested blocks:

• combinator - builds combinations of sequences returned by nested blocks.
Each combination is a tuple of length equal to the number of nested blocks.

• permutator - modifies combinations returned by combinator by rearranging
some sequences.

• compositor - merges (multiplexes) sequences in a combination into a single
sequence preserving the initial order of instructions calls in each sequence.

• rearranger - rearranges sequences constructed by compositor.

• obfuscator - modifies sequences returned by rearranger by permuting some
instruction calls.

Each engine has several implementations based on different methods. It is pos-
sible to extend the list of supported methods with new implementations. Specific
methods are selected by specifying corresponding block attributes. When they are
not specified, default methods are applied. The format of a block structure for
combining sequences looks as follows:

20

MicroTESK User Guide [Draft]

block(
:combinator => ’combinator-name’,
:permutator => ’permutator-name’,
:compositor => ’compositor-name’,
:rearranger => ’rearranger-name’,
:obfuscator => ’obfuscator-name’) {

Block A. 3 sequences of length 1: {A11}, {A21}, {A31}
iterate { A11; A21; A31 }

Block B. 2 sequences of length 2: {B11, B12}, {B21, B22}
iterate { sequence { B11, B12 }; sequence { B21, B22 } }

Block C. 1 sequence of length 3: {C11, C12, C13}
iterate { sequence { C11; C12; C13 } }

}

The default method names are: diagonal for combinator, catenation for com-
positor, and trivial for permutator, rearranger and obfuscator. Such a combina-
tion of engines describes a collection of sequences constructed as a concatenation of
sequences returned by nested blocks. For example, sequences constructed for the
block in the above example will be as follows: {A11, B11, B12, C11, C12, C13}, {A21,
B21, B22, C11, C12, C13} and {A31, B11, B12, C11, C12, C13}

3.9 Data

3.9.1 Configuration

Defining data requires the use of assembler-specific directives. Information on
these directives is not included in ISA specifications and should be provided in test
templates. It includes textual format of data directives and mappings between nML
and assembler data types used by these directives. Configuration information on
data directives is specified in the data_config block, which is usually placed in the
pre method. Only one such block per a test template is allowed. Here is an example:
data_config(:text => ’.data’, :target => ’M’) {
define_type :id => :byte, :text => ’.byte’, :type => type(’card’, 8)
define_type :id => :half, :text => ’.half’, :type => type(’card’, 16)
define_type :id => :word, :text => ’.word’, :type => type(’card’, 32)

define_space :id => :space, :text => ’.space’, :fillWith => 0
define_ascii_string :id => :ascii, :text => ’.ascii’, :zeroTerm => false
define_ascii_string :id => :asciiz, :text => ’.asciiz’, :zeroTerm => true

}

The block takes the following parameters:

• text (compulsory) - specifies the keyword that marks the beginning of the
data section in the generated test program;

• target (compulsory) - specifies the memory array defined in the nML specifi-
cation to which data will be placed during simulation;

21

MicroTESK User Guide [Draft]

• base_virtual_address (optional) - specifies the base virtual address where
data allocation starts. Default value is 0;

• item_size (optional) - specifies the size of a memory location unit pointed by
address. Default value is 8 bits (or 1 byte).

To set up particular directives, the language provides special methods that must
be called inside the block. All the methods share two common parameters: id and
text. The first specifies the keyword to be used in a test template to address the
directive and the second specifies how it will be printed in the test program. The
current version of MicroTESK provides the following methods:

1. define_type - defines a directive to allocate memory for a data element of an
nML data type specified by the type parameter;

2. define_space - defines a directive to allocate memory (one or more address-
able locations) filled with a default value specified by the fillWith parameter;

3. define_ascii_string - defines a directive to allocate memory for an ASCII
string terminated or not terminated with zero depending on the zeroTerm
parameter.

The above example defines the directives byte, half, word, ascii (non-zero
terminated string) and asciiz (zero terminated string) that place data in the mem-
ory array M (specified in nML using the mem keyword). The size of an addressable
memory location is 1 byte.

3.9.2 Definitions

Data are defined using the data construct. Data definitions can be added to the
test program source code file or placed into a separate source code file. There are
two types of data definitions:

• Global - defined in the beginning of a test template and can be used by all test
cases generated by the test template. Global data definitions can be placed
in the root of the pre or run methods or methods called from these methods.
Memory allocation is performed during inital processing of a test template (see
stage 1 of template processing).

• Test case level - defined and used by specific test cases. Such definitions
can be applied multiple times (e.g. when defined in preparators). Memory
allocation is performed when a test case is generated (see stage 2 of template
processing).

The data construct has two optional parameters:

• global - a boolean value that states that the data definition should be treated
as global regardless of where it is defined.

• separate_file - a boolean value that states that the generated data defini-
tions should be placed into a separate source code file.

22

MicroTESK User Guide [Draft]

Predefined methods

Here is the list of methods that can be used in data sections:

• align - aligns data by the amount n passed as an argument. By default, n
means 2n bytes. How to change this behaviour see here.

• org - sets data allocation origin. Can be used to increase the allocation address,
but not to descrease it. Its parameter specifies the origin and can be used in
two ways:

1. As obsolute origin. In this case, it is specified as a constant value (org
0x00001000) and means an offset from the base virtual address.

2. As relative origin. In this case, it is specified using a hash map (org
:delta => 0x10) and means an offset from the latest data allocation.

• label - associates the specified label with the current address.

Configurable methods

Also, here is the list of runtime methods what has been configured in the data_config
section in the previous example:

• space - increases the allocation address by the number of bytes specified by
its argument. The allocated space is filled with the value which has been set
up by the define_space method.

• byte, half, word

• ascii, asciiz

Here is an example:
data {
org 0x00001000

label :data1
byte 1, 2, 3, 4

label :data2
half 0xDEAD, 0xBEEF

label :data3
word 0xDEADBEEF

label :hello
ascii ’Hello’

label :world
asciiz ’World’

space 6
}

23

MicroTESK User Guide [Draft]

In this example, data is placed into memory. Data items are aligned by their
size (1 byte, 2 bytes, 4 bytes). Strings are allocated at the byte border (addressable
unit). For simplicity, in the current version of MicroTESK, memory is allocated
starting from the address 0 (in the memory array of the executable model).

3.10 Preparators
Preparators describe instruction sequences that place data into registers or mem-

ory accessed via the specified addressing mode. These sequences are inserted into
test programs to set up the initial state of the microprocessor required by test situ-
ations. It is possible to overload preparators for specific cases (value masks, register
numbers, etc). Preparators are defined in the pre method using the preparator
construct, which uses the following parameters describing conditions under which it
is applied:

• target - the name of the target addressing mode;

• mask (optional) - the mask that should be matched by the value in order for
the preparator to be selected;

• arguments (optional) - values of the target addressing mode arguments that
should be matched in order for the preparator to be selected;

• name (optional) - the name that identifies the current preparator to resolve
ambiguity when there are several different preparators that have the same
target, mask and arguments.

It is possible to define several variants of a preparator which are selected at ran-
dom according to the specified distribution. They are described using the variant
construct. It has two optional parameters:

• name (optional) - identifies the variant to make it possible to explicitly select
a specific variant;

• bias - specifies the weight of the variant, can be skipped to set up an even
distribution.

Here is an example of a preparator what places a value into a 32-bit register
described by the REG addressing mode and two its special cases for values equal to
0x00000000 and 0xFFFFFFFF:
preparator(:target => ’REG’) {
variant(:bias => 25) {
data {
label :preparator_data
word value

}

la at, :preparator_data
lw target, 0, at

24

MicroTESK User Guide [Draft]

}

variant(:bias => 75) {
lui target, value(16, 31)
ori target, target, value(0, 15)

}
}

preparator(:target => ’REG’, :mask => ’00000000’) {
xor target, zero, zero

}

preparator(:target => ’REG’, :mask => ’FFFFFFFF’) {
nor target, zero, zero

}

Code inside the preparator block uses the target and value functions to access
the target addressing mode and the value passed to the preparator.

Also, the prepare function can be used to explicitly insert preparators into test
programs. It can be used to create composite preparators. The function has the
following arguments:

• target - specifies the target addressing mode;

• value - specifies the value to be written;

• attrs (optional) - specifies the preparator name and the variant name to select
a specific preparator.

For example, the following line of code places value 0xDEADBEEF into the t0
register:
prepare t0, 0xDEADBEEF

3.11 Comparators
Test programs can include self-checks that check validity of the microprocessor

state after a test case has been executed. These checks are instruction sequences
inserted in the end of test cases which compare values stored in registers with ex-
pected values. If the values do not match control is transferred to a handler that
reports an error. Expected values are produced by the MicroTESK simulator. Self-
check are described using the comparator construct which has the same features as
the preparator construct, but serves a different purpose. Here is an example of a
comparator for 32-bit registers and its special case for value equal to 0x00000000:
comparator(:target => ’REG’) {
prepare target, value
bne at, target, :check_failed
nop

}

25

MicroTESK User Guide [Draft]

comparator(:target => ’REG’, :mask => "00000000") {
bne zero, target, :check_failed
nop

}

3.12 Exception Handlers
Test programs can provide handlers of exceptions that occur during their exe-

cution. Exception handlers are descibed using the exception_handler construct.
This description is also used by the MicroTESK simulator to handle exceptions.
Separate exception handlers are described using the section construct nested into
the exception_handler block. The section function has two arguments: org that
specifies the handler’s location in memory and exception that specifies names of
associated exceptions. For example, the code below describes a handler for the
IntegerOverflow, SystemCall and Breakpoint exceptions which resumes execu-
tion from the next instruction:
exception_handler {
section(:org => 0x380, :exception => [’IntegerOverflow’,

’SystemCall’,
’Breakpoint’]) {

mfc0 ra, cop0(14)
addi ra, ra, 4
jr ra
nop

}
}

26

Chapter 4

Test Engine Branch

4.1 Parameters
• branch_exec_limit is an upper bound for the number of executions of a single

branch instruction;

• trace_count_limit is an upper bound for the number of execution traces to be
returned.

More information on the parameters is given in the “Execution Traces Enumer-
ation” section.

4.2 Description
Functioning of the branch test engine includes the following steps:

1. construction of a branch structure of an abstract test sequence;

2. enumeration of execution traces of the branch structure;

3. concretization of the test sequence for each execution trace:

(a) construction of a control code;

(b) construction of an initialization code.

Let D be the size of the delay slot for an architecture under scrutiny (e.g., D=1
for MIPS, and D=0 for ARM).

27

Chapter 5

Customization

5.1 Data Generators

28

Chapter 6

Appendixes

6.1 References

29

Bibliography

[1] M. Freericks. The nML Machine Description Formalism. Technical Report TR
SM-IMP/DIST/08, TU Berlin CS Department, 1993.

[2] Ruby site – http://www.ruby-lang.org

[3] Flanagan D., Matsumoto Y. The Ruby Programming Language. O’Reilly Media,
Sebastopol, 2008.

[4] JRuby site – http://jruby.org

30

http://www.ruby-lang.org
http://jruby.org

	Overview
	Installation
	System Requirements
	Installation Steps
	Setting Environment Variables
	Installing Constraint Solvers

	Installation Directory Structure
	Running
	Command-Line Options
	Settings File

	Test Templates
	Introduction
	Test Template Structure
	Reusing Test Templates
	Test Template Settings
	Managing Text Format
	Managing Address Alignment

	Text Printing
	Random Distributions
	Instruction Calls
	Aliases
	Pseudo Instructions
	Groups
	Test Situations
	Registers Selection

	Instruction Call Sequences
	Data
	Configuration
	Definitions

	Preparators
	Comparators
	Exception Handlers

	Test Engine Branch
	Parameters
	Description

	Customization
	Data Generators

	Appendixes
	References
	Bibliography

