
Functional testing of list
using JavaTESK

Contents
UniTESK description...2
Testing aims and bounds detection..3
Specification development...6

add...8
indexOf..8
remove...9

Requirements refinement to the quality of testing...14
Test scenario development...19
Mediators development..21
Test scenario development...23
Test set processing...27

Building...27
Test execution..27
Test results analysis...27

1

UniTESK description
Developed software must be correct and reliably. Testing is the best-known and widely used way
for assure it. But traditional methods of testing is not applicable for the modern software because it
becomes huge. Testing of small program (~< 104 lines of code) is possible by regular ways but its
efficiency is reduced when program grows. UniTESK is technology for test developing. It can solve
this problem. It decreases laboriousness and increases the testing quality for modern complex soft-
ware.

The main aspects of UniTESK are:

• Tests are developed on basis of functional model (formal specification), but not on structure
of code. So test developing may be started earlier than software is developed.

• Test coverage criteria are built automatically from formal specifications. Criteria define test
fullness criteria on basis of requirements structure. These criteria are used for evaluating of
testing quality.

• Test scenario are built from specifications and chosen coverage criterion. Test scenario are
targeted to the maximum coverage by the criterion. UniTESK test scenario are similar to the
test scripts, but test scenario are more expressive and provide more qualitative testing with
the same efforts.

• UniTESK supports “black-box” testing.

• Formal specifications can be used for testing of different versions of the same software,
even these interfaces are different. It economizes efforts of developing specific tests for this
software. Special layer between tests and implementation (mediators) provides this capabil-
ity.

• Formal specifications, mediators and test scenario are developed on the extension of the pro-
gramming language of tested software. It simplifies studying of technology by testers and
makes more clear relations between tests and tested software. There is a tool supported
UniTESK for Java.

The main actions for test developing according to UniTESK:

1. Formal specification developing. It bases on the analysis of functional requirements and
knowledge of developers.

2. Coverage criteria extraction. Try to formulate requirements for test quality («enough full
testing», when it may be stopped) based on customer wishes, knowledge about application
domain and project resources. Reformulate these requirements as requirements for coverage
according to coverage criteria using specification structure.

3. Test scenario developing. It bases on specifications and doesn't relate with software
implementation or its specific version. Test scenario must provide achievement of the
requiring coverage.

4. Mediators developing. The aim is binding test with specific system implementation.
Interface is enough for this step, full implementation may not be ready yet.

5. Test system compilation. It is necessary to automatically compile specifications, mediators
and scenario from programming language extension to programs on the same programming
language.

6. Test running. This is possible only after compilation. First time will be spent to the test

2

debugging.

7. Testing results analysis. Aims are error detecting and collecting coverage (if it is not enough,
new scenario can be useful).

Test scenario and mediators can be developed simultaneously since their dependencies are weak. In
addition since errors of testing system any step may be done again.

Testing aims and bounds detection
It is necessary to answer the following questions:

1. What parts, subsystems, components of target system will be tested?

2. What are functional requirements of this testing?

Answers depend on the following aspects:

• Application domain context: what requirements are put forth these systems, available docu-
ments and knowledge about application domain, context of target system using, wants of
users and other persons, requirements of governing organizations and standards, solved
problems by system, possible ways of solution these problems and possible structure corres-
ponding components of system.

• Target system architecture, how much is it known at the beginning of the work: system divi-
sion into components, problems solved by different components, and possible interactions
between components.

• Current project context: what resources (people, time, money, hardware and software) are
available, what are customer's requirements to the system and its testing (also system users'
requirements, developers' requirements, governing organizations' requirements, etc.).

• Related projects context: what another projects are related or will be possible related from
the target system and results of this project, what requirements to the system quality or to
the testing quality of the system.

The rest of the document is devoted to tests developing for collection framework of Java 5. Its
classes are located in package java.util.

Sources of the target system and requirements to their functionality:

• documentation

• application domain experts (experts of JDK)

• standards concerning to the application domain (requirements of Java specification, patterns
of programming)

• architectures, designers and developers of the system

We have standard documentation of JDK 1.5. The following consists of brief description of the
classes and interfaces from java.util, dealing with collections:

Interface Summary

Collection<E> The root interface in the collection hierarchy.

Comparator<T> A comparison function, which imposes a total ordering on some collection of objects.

Enumeration<E> An object that implements the Enumeration interface generates a series of elements, one at a
time.

3

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Enumeration.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html

Iterator<E> An iterator over a collection.

List<E> An ordered collection (also known as a sequence).

ListIterator<E> An iterator for lists that allows the programmer to traverse the list in either direction, modify the
list during iteration, and obtain the iterator's current position in the list.

Map<K,V> An object that maps keys to values.

Map.Entry<K,V> A map entry (key-value pair).

Queue<E> A collection designed for holding elements prior to processing.

RandomAccess Marker interface used by List implementations to indicate that they support fast (generally
constant time) random access.

Set<E> A collection that contains no duplicate elements.

SortedMap<K,V>
A map that further guarantees that it will be in ascending key order, sorted according to the
natural ordering of its keys (see the Comparable interface), or by a comparator provided at
sorted map creation time.

SortedSet<E>
A set that further guarantees that its iterator will traverse the set in ascending element order,
sorted according to the natural ordering of its elements (see Comparable), or by a Comparator
provided at sorted set creation time.

Class Summary

AbstractCollection<E> This class provides a skeletal implementation of the Collection interface, to
minimize the effort required to implement this interface.

AbstractList<E>
This class provides a skeletal implementation of the List interface to minimize the
effort required to implement this interface backed by a "random access" data store
(such as an array).

AbstractMap<K,V> This class provides a skeletal implementation of the Map interface, to minimize the
effort required to implement this interface.

AbstractQueue<E> This class provides skeletal implementations of some Queue operations.

AbstractSequentialList<E>
This class provides a skeletal implementation of the List interface to minimize the
effort required to implement this interface backed by a "sequential access" data store
(such as a linked list).

AbstractSet<E> This class provides a skeletal implementation of the Set interface to minimize the
effort required to implement this interface.

ArrayList<E> Resizable-array implementation of the List interface.

Arrays This class contains various methods for manipulating arrays (such as sorting and
searching).

Collections This class consists exclusively of static methods that operate on or return collections.

Dictionary<K,V> The Dictionary class is the abstract parent of any class, such as Hashtable,
which maps keys to values.

EnumMap<K extends
Enum<K>,V> A specialized Map implementation for use with enum type keys.

EnumSet<E extends
Enum<E>> A specialized Set implementation for use with enum types.

HashMap<K,V> Hash table based implementation of the Map interface.

HashSet<E> This class implements the Set interface, backed by a hash table (actually a
HashMap instance).

Hashtable<K,V> This class implements a hashtable, which maps keys to values.

IdentityHashMap<K,V> This class implements the Map interface with a hash table, using reference-equality

4

http://java.sun.com/j2se/1.5.0/docs/api/java/util/IdentityHashMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Hashtable.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/HashSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/HashMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Set.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/EnumSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/EnumSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/EnumMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/EnumMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Dictionary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collections.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Arrays.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ArrayList.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/AbstractSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/AbstractSequentialList.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Queue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/AbstractQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/AbstractMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/AbstractList.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/AbstractCollection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/SortedSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/SortedMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Set.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/RandomAccess.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Queue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.Entry.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Map.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ListIterator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Iterator.html

in place of object-equality when comparing keys (and values).

LinkedHashMap<K,V> Hash table and linked list implementation of the Map interface, with predictable
iteration order.

LinkedHashSet<E> Hash table and linked list implementation of the Set interface, with predictable
iteration order.

LinkedList<E> Linked list implementation of the List interface.

PriorityQueue<E> An unbounded priority queue based on a priority heap.

Stack<E> The Stack class represents a last-in-first-out (LIFO) stack of objects.

TreeMap<K,V> Red-Black tree based implementation of the SortedMap interface.

TreeSet<E> This class implements the Set interface, backed by a TreeMap instance.

Vector<E> The Vector class implements a growable array of objects.

WeakHashMap<K,V> A hashtable-based Map implementation with weak keys.

Exception Summary

ConcurrentModificationException This exception may be thrown by methods that have detected concurrent
modification of an object when such modification is not permissible.

EmptyStackException Thrown by methods in the Stack class to indicate that the stack is empty.

NoSuchElementException Thrown by the nextElement method of an Enumeration to indicate that
there are no more elements in the enumeration.

As result, there are 13 interfaces, 25 classes, and 3 exceptions.

Repeat two corner questions:

1. What components will be tested?

2. What requirements to its testing?

Abstraction (or generalization) is useful way for decreasing efforts of test developing. Abstraction
is extraction common functionality of the different components, common requirements to them. Ab-
straction is useful for the answer of the second question. The common way of common functionality
testing is developing one test. This test deals with different components of the target system through
the simple intermediate components — mediators.

• Testing of exceptions is testing their constructors (without parameters and with one string-
parameter) and methods inherited from java.lang.Throwable. One specification is
enough, each exception will be tested with specific mediator. If there is such test for
java.lang.Throwable, it can be used for testing without additional development.

• Few classes have almost similar functionality but their behaviors differ in multithreading
environment. Tests for sequential requests to their methods can be similar. It is not necessary
to develop special tests for their behavior in multithreading environment because correct
behavior is supported by Java.

• It is not necessary to develop tests for abstract classes, if these classes implement basic func-
tionality for interfaces (AbstractCollection, AbstractList, AbstractMap, Abstract-
Set). Whole their functionality can be tested by tests for interfaces.

Further details may be appeared after methods inspection. For example, it is possible that testing of
whole functionality of ArrayList is not necessary within project (testing of constructor ArrayL-
ist(int) and methods void ensureCapacity(int) and void trimToSize() is not necessary).

5

http://java.sun.com/j2se/1.5.0/docs/api/java/util/NoSuchElementException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/EmptyStackException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ConcurrentModificationException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/WeakHashMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Vector.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/TreeSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/TreeMap.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Stack.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Queue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/PriorityQueue.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/LinkedList.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/LinkedHashSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/LinkedHashMap.html

The rest of ArrayList may be tested by tests for interface List because it is methods for list pro-
cessing.

Thereby it is possible to clearly define set of classes for testing and approximate behavior of tests.

We delay accurate detection of requirements to the testing quality before accurate detection of test
aims, i.e. before specification development.

Specification development
Lets it is necessary to develop tests for ArrayList. Lets testing methods from interface List is
enough. According to UniTESK, the first step is definition of interface functionality, i.e. develop-
ment of formal specifications.

Specifications used in UniTESK describe a structure of target components by describing its fields
and invariants – additional constraints on the data of correct component. Description should contain
only fields for explanation component works. Description should contain also preconditions and
postconditions for all component methods. A precondition defines conditions when method can be
called. A postcondition defines constraints to the results of method which must be true if method is
correct. The following table contains descriptions methods of List.

Method Summary
 boolean add(E o)

 Appends the specified element to the end of this list (optional operation).
 void add(int index, E element)

 Inserts the specified element at the specified position in this list (optional operation).
 boolean addAll(Collection<? extends E> c)

 Appends all of the elements in the specified collection to the end of this list, in the
order that they are returned by the specified collection's iterator (optional operation).

 boolean addAll(int index, Collection<? extends E> c)
 Inserts all of the elements in the specified collection into this list at the specified
position (optional operation).

 void clear()
 Removes all of the elements from this list (optional operation).

 boolean contains(Object o)
 Returns true if this list contains the specified element.

 boolean containsAll(Collection<?> c)
 Returns true if this list contains all of the elements of the specified collection.

 boolean equals(Object o)
 Compares the specified object with this list for equality.

 E get(int index)
 Returns the element at the specified position in this list.

 int hashCode()
 Returns the hash code value for this list.

 int indexOf(Object o)
 Returns the index in this list of the first occurrence of the specified element, or -1 if
this list does not contain this element.

 boolean isEmpty()
 Returns true if this list contains no elements.

 Iterator<E> iterator()
 Returns an iterator over the elements in this list in proper sequence.

6

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#iterator()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Iterator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#isEmpty()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#indexOf(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#hashCode()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#get(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#equals(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#containsAll(java.util.Collection)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#contains(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#clear()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#addAll(int,%20java.util.Collection)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#addAll(java.util.Collection)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#add(int,%20E)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#add(E)

 int lastIndexOf(Object o)
 Returns the index in this list of the last occurrence of the specified element, or -1 if
this list does not contain this element.

 ListIterator<E> listIterator()
 Returns a list iterator of the elements in this list (in proper sequence).

 ListIterator<E> listIterator(int index)
 Returns a list iterator of the elements in this list (in proper sequence), starting at the
specified position in this list.

 E remove(int index)
 Removes the element at the specified position in this list (optional operation).

 boolean remove(Object o)
 Removes the first occurrence in this list of the specified element (optional operation).

 boolean removeAll(Collection<?> c)
 Removes from this list all the elements that are contained in the specified collection
(optional operation).

 boolean retainAll(Collection<?> c)
 Retains only the elements in this list that are contained in the specified collection
(optional operation).

 E set(int index, E element)
 Replaces the element at the specified position in this list with the specified element
(optional operation).

 int size()
 Returns the number of elements in this list.

 List<E> subList(int fromIndex, int toIndex)
 Returns a view of the portion of this list between the specified fromIndex,
inclusive, and toIndex, exclusive.

 Object[] toArray()
 Returns an array containing all of the elements in this list in proper sequence.

<T> T[] toArray(T[] a)
 Returns an array containing all of the elements in this list in proper sequence; the
runtime type of the returned array is that of the specified array.

Lets the system under test is selected methods group (i.c. all methods from java.util.List).

It's necessary for specification development to define the following:

1. State of the system, which is enough to describe the reaction of the system on any method
invocation.

2. Signatures for each method: clear name, parameters types, type of return value, exceptions.

3. Preconditions for each method – it means the situations when method's behavior is defined
and method can be called.

4. Postconditions for each method – it means constraints on the results of the correctly invoked
method.

Consider these aspects in details.

1. State of the system is defined by information about method's invocation history for possibil-
ity of describing results of method invocation with any arguments. In our case elements of
list and their order are enough for full description of methods in java.util.List.

2. It's necessary to define a signature of the specification method for each method of the system

7

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#toArray(T%5B%5D)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#toArray()
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#subList(int,%20int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#size()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#set(int,%20E)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#retainAll(java.util.Collection)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Collection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#removeAll(java.util.Collection)
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#remove(java.lang.Object)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#remove(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#listIterator(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ListIterator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#listIterator()
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ListIterator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html#lastIndexOf(java.lang.Object)

under test. Don't forget the following:

a. Types of parameters, results and exceptions may be differ from the correspond types
of the target system.

b. List of exceptions must consist of all exceptions which occur in regular conditions
including descendants of RuntimeException and Error. Term «Regular conditions»
means fulfillment of precondition and maybe extra conditions on resources about
testing modes, e.g. large amount of memory availability.

3. It's necessary to define a precondition of the specification method for each method of the
system under test. The first step is explication of situations (state of the system a,d paramet-
ers of methods) which are not intended for method. Method's behavior is not defined in
these situations, method invocation may cause to unpredictable consequences up to the tar-
get system crash. In our case method invocation shouldn't cause to system crash, so its pre-
condition should be true always. Specification method may report about incorrect values of
arguments (it can't process these arguments by common rule) by special return value or
throw an exception. Not all preconditions may be the weakest. For example, system of
memory managing may require link to the allocated (by special operation) object for
memory dispose because its high efficiency. These constraints are emphasized especially in
documentation and presented always at operations especially for limited amount of de-
velopers. In our case preconditions of all methods java.util.List should be true because
these are common use interface.

4. It's necessary to define a postcondition of the specification method for each method of the
system under test (i.e. define method's behavior for any system state and any arguments).
Postcondition describes constraints on the results of correctly executed method. It can be ex-
plicated from documentation or another sources with method requirements. We have enough
documentation for methods of java.util.List. Consider few methods.

add
public void add(int index,
 E element)

Inserts the specified element at the specified position in this list (optional operation). Shifts the element
currently at that position (if any) and any subsequent elements to the right (adds one to their indices).

Parameters:
index - index at which the specified element is to be inserted.
element - element to be inserted.

Throws:
UnsupportedOperationException - if the add method is not supported by this list.
ClassCastException - if the class of the specified element prevents it from being added to this list.
NullPointerException - if the specified element is null and this list does not support null
elements.
IllegalArgumentException - if some aspect of the specified element prevents it from being
added to this list.
IndexOutOfBoundsException - if the index is out of range (index < 0 || index > size()).

indexOf
public int indexOf(Object o)

8

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Object.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalArgumentException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/NullPointerException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ClassCastException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/UnsupportedOperationException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html

Returns the index in this list of the first occurrence of the specified element, or -1 if this list does not contain
this element. More formally, returns the lowest index i such that (o==null ? get(i)==null :
o.equals(get(i))), or -1 if there is no such index.

Parameters:
o - element to search for.

Returns:
the index in this list of the first occurrence of the specified element, or -1 if this list does not contain this
element.

Throws:
ClassCastException - if the type of the specified element is incompatible with this list (optional).
NullPointerException - if the specified element is null and this list does not support null
elements (optional).

remove
public E remove(int index)

Removes the element at the specified position in this list (optional operation). Shifts any subsequent elements to
the left (subtracts one from their indices). Returns the element that was removed from the list.

Parameters:
index - the index of the element to removed.

Returns:
the element previously at the specified position.

Throws:
UnsupportedOperationException - if the remove method is not supported by this list.
IndexOutOfBoundsException - if the index is out of range (index < 0 || index >= size()).

Suppose that our tests will be expected to the common functionality of list without restrictions to
the object classes and stored objects itself. In addition suppose that all operations are supported by
list. It means that exceptions UnsupportedOperationException, IllegalArgumentException are
impossible in our tests. Similar assumptions narrow resulting tests' domain of applicability a bit.

Begin a specification development.

Declaration of the specification class for list looks in the following way. Specification class must
have a type parameter because specification is intended for lists of elements of the same type.
package jatva.examples.list;
specification class ListSpecification<T>
{
 ...
}

State of list is fully described by enumeration its elements with the same order. This state should be
arrange as one or many fields of specification class. Use an array of objects for it.

specification class ListSpecification<T>
{
 public T[] items;
 ...
}

9

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IndexOutOfBoundsException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/UnsupportedOperationException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/NullPointerException.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/ClassCastException.html

Consider creation a specification method for method add() of list.

Use the same name for specification method. Don't change types of parameters, type of method res-
ult and exceptions because they don't take part in specified system:

specification class ListSpecification<T>
{
 public T[] items;
 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 ...
 }
}

Preconditions of all methods must be true:
specification class ListSpecification<T>
{
 public T[] items;
 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 pre { return true; }
 ...
 }
}

But this precondition may be omitted because absence of precondition is the same as its identical
true.
Describe constraints on the method result in regular situation, i.e. after execution without excep-
tions. Object (from the second argument) must be inserted to the i-th position into the list, all ele-
ments before i-th must be remained at their positions, and all elements after i-th must be shifted to
the 1 position right. Use temporary copy source list and check list after addition. Create a special
method arrayCompare for comparing list ranges. Create a special method for comparing objects,
when each object may be null.
 public static <T> boolean objectsAreEqual(T o1, T o2)
 {
 return o1 == null && o2 == null
 || o1 != null && o1.equals(o2);
 }

 public static <T> boolean arrayCompare(
 T[] first, int firstStart
 , T[] second, int secondStart, int number
)
 {
 for(int i = 0; i < number; i++)
 if(!objectsAreEqual(first[i+firstStart], second[i+secondStart]))
 return false;
 return true;
 }

 specification void add(int i, T o)
 throws IndexOutOfBoundsException

10

 {
 post
 {
 T oldItems[] = pre (T[]) items.clone();
 return thrown == null
 && items[i] == o
 && items.length == oldItems.length + 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i+1, oldItems, i, oldItems.length-i);
 }
 }
Operator pre is used for getting a copy of items before target method invocation. Method clone()
is invoked because items is reference to the object but not a value. Operator pre has lesser priority
that method invocation, so clone() returns a copy of array before method invocation. In case of
non-object type of a, expression pre a returns value of a before method invocation.

Expression thrown == null may be used to check exceptions absence while method is invoked.
Keyword thrown means a reference to the created exception.

Add constraints about exceptions to the postcondition. Exception IndexOutOfBoundsException
must be occurred when i is out of correct positions range, list mustn't be changed.
 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = pre (T[]) items.clone();
 if(i < 0 || i > items.length)
 {
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 return thrown == null
 && items[i] == o
 && items.length == oldItems.length + 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i+1, oldItems, i, oldItems.length-i);
 }
 }
 }
Specification method for indexOf()can be created similarly:
 public static <T> boolean arrayContains(
 T[] a, int start, int number, T o
)
 {
 for(int i = 0; i < number; i++)
 if(objectsAreEqual(a[i + start], o)) return true;
 return false;
 }

 specification int indexOf(T o)
 {
 post

11

 {
 T oldItems[] = pre (T[]) items.clone();
 if(arrayContains(items, 0, items.length, o))
 {
 return objectsAreEqual(oldItems[indexOf], o)
 && !arrayContains(oldItems, 0, indexOf + 1, o)
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 return indexOf == -1
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 }
 }
Specification contains additional constraint on the method result using special variable which name
is the same with name of method.

The following consists of specifications for all methods.
package jatva.examples.list;
specification class ListSpecification<T>
{
 public T[] items;
 public static <T> boolean objectsAreEqual(T o1, T o2)
 {
 return o1 == null && o2 == null
 || o1 != null && o1.equals(o2);
 }

 public static <T> boolean arrayCompare(
 T[] first, int firstStart
 , T[] second, int secondStart, int number
)
 {
 for(int i = 0; i < number; i++)
 if(!objectsAreEqual(first[i+firstStart], second[i+secondStart]))
 return false;
 return true;
 }

 public static <T> boolean arrayContains(
 T[] a, int start, int number, T o
)
 {
 for(int i = 0; i < number; i++)
 if(objectsAreEqual(a[i + start], o)) return true;
 return false;
 }

 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = pre (T[]) items.clone();

12

 if(i < 0 || i > items.length)
 {
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 return thrown == null
 && items[i] == o
 && items.length == oldItems.length + 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i+1, oldItems, i, oldItems.length-i);
 }
 }
 }

 specification int indexOf(T o)
 {
 post
 {
 T oldItems[] = pre (T[]) items.clone();
 if(arrayContains(items, 0, items.length, o))
 {
 return objectsAreEqual(oldItems[indexOf], o)
 && !arrayContains(oldItems, 0, indexOf + 1, o)
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 return indexOf == -1
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 }
 }

 specification T remove(int i)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = pre (T[]) items.clone();
 if(i < 0 || i >= items.length)
 {
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 return thrown == null
 && remove == oldItems[i]
 && items.length == oldItems.length - 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i, oldItems, i+1, items.length - i);

13

 }
 }
 }
}
It's necessary to write a constructor for initialization of the model state (fields of specification
class). In our case items should be assigned with an empty array in the following way:
 @SuppressWarnings("unchecked")
 public ListSpecification()
 {
 items = (T[])new Object[0];
 }
Now we have specifications represented formalized requirements to the target system. This
representation is useful for testing automation.

Requirements refinement to the quality of testing
This stage is intended to definition a quality of testing for each tested component, subsystem, class
and method.

Quality of testing is measured by provided coverage of different situations occurred when system
works. The first step is explication of full situations set (coverage targets) based on some coverage
criterion. The next is calculating occurred situations when testing worked. So measure of quality of
testing is ratio from this amount to the amount of all situations (coverage percent).
Coverage criteria may be divided into the groups:

• Structural criteria. These criteria are defined coverage targets based on the testing system
structure, i.e. system architecture, internal organization of components, structure of code.
For example, coverage targets can be methods of the system under test, measure is percent
of invoked methods. Another example is coverage of lines of code, coverage targets is exe-
cution all lines of code of the system under test.

• Functional criteria. These criteria are defined coverage targets based on the structure of re-
quirements to the system. For example, coverage targets may be certain requirements, and
quality of testing is measured by ratio from count of tested requirements to the count of all
requirements.

UniTESK is intended to the development functional tests aimed to the high quality on functional
coverage criteria. These criteria are defined on the developed specification structure. It is possible
because specifications are developed proceeding from requirements and they are formalized repres-
entation of requirements. Further, development of these tests can be automated easily, because
formal specifications can be processed automatically.

Consider specification of method add() once more.
 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = pre (T[]) items.clone();
 if(i < 0 || i > items.length)
 {
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);

14

 }
 else
 {
 return thrown == null
 && items[i] == o
 && items.length == oldItems.length + 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i+1, oldItems, i, oldItems.length-i);
 }
 }
 }
The postcondition has 2 branches with appreciably different requirements on the method results. So
these 2 situations are necessary for testing. These branchings in postconditions with different
constraints on the result of the tested method are named as branches of functionality. They are
marked by branch operator. Further occurrence conditions for the first or the second branch are de-
pend on state of list and arguments only. All operators in a postcondition before branch are ex-
ecuted before target method's invocation, and all operators after branch are executed after invoca-
tion. So all identifiers before branch means values of fields, parameters, etc. before target method
invocation. Operator pre may be used after branch only. Operator pre is not necessary after addi-
tion of branch for our specification. Each operator branch would have a description in brackets:
 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = (T[])items.clone();

 if(i < 0 || i > items.length)
 {
 branch ExceptionalCase (“Exceptional case”);
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 branch NormalCase (“Normal case”);
 return thrown == null
 && items[i] == o
 && items.length == oldItems.length + 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i+1, oldItems, i, oldItems.length-i);
 }
 }
 }
These branches of functionality set functional coverage criteria naturally. If type of a target
method's result is not void, a postcondition should have constraints on method's result after branch
by variable with the same name as specification method's name. Resulting specification can be the
following:
package jatva.examples.list;
specification class ListSpecification<T>
{
 public T[] items;

 @SuppressWarnings("unchecked")
 public ListSpecification()

15

 {
 items = (T[])new Object[0];
 }

 public static <T> boolean objectsAreEqual(T o1, T o2)
 {
 return o1 == null && o2 == null
 || o1 != null && o1.equals(o2);
 }

 public static <T> boolean arrayCompare(
 T[] first, int firstStart
 , T[] second, int secondStart, int number
)
 {
 for(int i = 0; i < number; i++)
 if(!objectsAreEqual(first[i+firstStart], second[i+secondStart]))
 return false;
 return true;
 }

 public static <T> boolean arrayContains(
 T[] a, int start, int number, T o
)
 {
 for(int i = 0; i < number; i++)
 if(objectsAreEqual(a[i + start], o)) return true;
 return false;
 }

 specification void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = (T[])items.clone();

 if(i < 0 || i > items.length)
 {
 branch ExceptionalCase (“Exceptional case”);
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 branch NormalCase (“Normal case”);
 return thrown == null
 && items[i] == o
 && items.length == oldItems.length + 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i+1, oldItems, i, oldItems.length-i);
 }
 }
 }

 specification int indexOf(T o)
 {
 post
 {

16

 T oldItems[] = (T[])items.clone();

 if(arrayContains(items, 0, items.length, o))
 {
 branch ListContainsTheObject (“List contains the object”);
 return objectsAreEqual(oldItems[indexOf], o)
 && !arrayContains(oldItems, 0, indexOf + 1, o)
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 branch ListDoesNotContainTheObject(“List does not contain the object”);
 return indexOf == -1
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 }
 }

 specification T remove(int i)
 throws IndexOutOfBoundsException
 {
 post
 {
 T oldItems[] = (T[])items.clone();

 if(i < 0 || i >= items.length)
 {
 branch ExceptionalCase (“Exceptional case”);
 return thrown != null
 && thrown instanceof IndexOutOfBoundsException
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 branch NormalCase (“Normal case”);
 return thrown == null
 && remove == oldItems[i]
 && items.length == oldItems.length - 1
 && arrayCompare(items, 0, oldItems, 0, i)
 && arrayCompare(items, i, oldItems, i+1, items.length - i);
 }
 }
 }
}
Now we can require coverage percent which tests will provide (for example, 100% of branches). All
branches of functionality for one class set coverage criteria of branches of functionality.

The next step is analysis of conformance 100% coverage of branches with requirements to testing
from customers, developers and other persons. Missing situations can be defined explicitly in spe-
cifications by referencing with some marks. Lets it's necessary to test methods indexOf() and re-
move() on lists with 1 element. Each additional situation can be defined by operator mark. Lets in-
sert it to the beginning of the postcondition (the rest of code is preserved):
specification class ListSpecification<T>
{
 ...
 specification void add(int i, T o)

17

 throws IndexOutOfBoundsException
 {
 post
 {
 if (items.length == 0) mark "Empty list";
 ...
 }
 }

 specification int indexOf(T o)
 {
 post
 {
 if (items.length == 0) mark "Empty list";
 else if(items.length == 1) mark "List with single element";
 ...
 }
 }

 specification T remove(int i)
 throws IndexOutOfBoundsException
 {
 post
 {
 if (items.length == 0) mark "Empty list";
 else if(items.length == 1) mark "List with single element";
 ...
 }
 }
}
Marks introduced by mark define coverage criterion of marked paths. Situations of this criterion
correspond to different combinations of mark and branch from one execution of postcondition.
Situations for our case are collected in the following table:

Method add() indexOf() remove()
list is empty Empty list

Exceptional case
Empty list
List contains the object

Empty list
Exceptional case

Empty list
Normal case

Empty list
List does not contain the object

Empty list
Normal case

list has 1 element
only

Exceptional case List with single element
List contains the object

List with single element
Exceptional case

Normal case List with single element
List does not contain the object

List with single element
Normal case

list has more than
1 element

Exceptional case List contains the object Exceptional case
Normal case List does not contain the object Normal case

Table 1: Test situations for coverage criteria of marked paths
Selected cells correspond to impossible situations — empty list doesn't contains elements and there
isn't parameter for empty list which more or equal than 0 but less than it length which equals to 0.

The second situation will be ignored automatically because it corresponds to identically false for-
mula on integers: items.length == 0, !(i < 0), !(i >= items.length).

The first situation corresponds to only human-understandable constraints: items.length == 0, ar-

18

rayContains(items, 0, items.length, o). So it's necessary to add a tautology with this con-
straints for ignoring the first situation. The final specification for indexOf() is the following:
 specification int indexOf(T o)
 {
 post
 {
 if (items.length == 0) mark "Empty list";
 else if(items.length == 1) mark "List with single element";
 T oldItems[] = (T[])items.clone();

 tautology items.length != 0 || !arrayContains(items, 0, items.length, o);
 if(arrayContains(items, 0, items.length, o))
 {
 branch ListContainsTheObject (“List contains the object”);
 return objectsAreEqual(oldItems[indexOf], o)
 && !arrayContains(oldItems, 0, indexOf + 1, o)
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 else
 {
 branch ListDoesNotContainTheObject(“List does not contain the object”);
 return indexOf == -1
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }
 }
 }
Now specification development is fully completed and testing aim is defined strongly — full cover-
age achievement on criteria of marked paths.

Scenario classes development
Test scenario of UniTESK sets a construction of tests sequence. If method's behavior depends on ar-
guments only, test scenario contains a sequence of this method invocations provided required cover-
age. If method's behavior depends on history of target system processing, test scenario should ob-
serve some states of the target system. To solve this problem a test scenario describes briefly finite
state machine modeled the target system's behavior. Test scenario executes all acceptable methods
in each occurred state. And test scenario should provide high coverage percent on selected coverage
criterion, full coverage in ideal case.

Lets consider different situations in ListSpecification for criterion of marked paths. These situ-
ations are collected in the table 1. It's necessary to define a finite state machine (FSM) for test scen-
ario. Traversal of this FSM must cover all these situations. The FSM can be specified by the follow-
ing aspects:

1. FSM states (generalized scenario states). In our case states can be constructed from situation
parts not depended from method parameters. So FSM will have 3 states: empty list, list with
1 element, and list with more than 1 element.

2. FSM transitions. They can be constructed by meaning of acceptable methods and arguments
for each state. In our case it's necessary to cover 2 situations in each generalized state: nor-
mal and exceptional for add() and remove(), situations for indexOf() differ by containing
object-parameter in the list. So it's enough to define 2 transitions in each state for each meth-

19

od using different values of parameters. 0 is enough as parameter for add() in Normal case
situation, -1 is enough for Exceptional case situation. The same parameters are suitable
for remove(). items[0] is enough as parameter for indexOf() in List contains the ob-
ject situation with the exception of empty list situation. new Object() is enough as para-
meter for List does not contain the object situation. Resulting graph are in the picture
1.

Besides FSM description it's necessary to define an algorithm for FSM traversal. This algorithm im-
plemented by some engine. An engine is a library component of JavaTESK. Selected engine must
be able to deal with constructed FSM.

We select jatva.engines.DFSMExplorer because it deals with deterministic strongly connected
FSM.

Strongly connected FSM is FSM with ability to transfer from any state to any state by some trans-
itions only. Out FSM is strongly connected.

In deterministic FSM invocation of any operation from any state defines transition from this state
unambiguously. Destination state mustn't depend on way to reach source state.

Our FSM is not deterministic — remove() invocation with parameter around the bound of list from
«list with more than 1 element» state can stay at the same state (if list has more than 2 elements),
and transfer to the «list has 1 element only» state (if list has 2 elements only).

UniTESK requires to improve FSM to make it deterministic. It's can be done by splitting states con-
tained non-determinism until FSM becomes deterministic.

In our case “list with more than 1 element” state should be split into 2 states: «list with 2 elements
only» and «list with more than 2 elements». But resulting FSM is non-determinism yet because of
remove() invocation from state «list with more than 2 elements». Splitting it creates the following
states: «list with 3 elements only», «list with 4 elements only», etc. — infinity FSM, each state cor-
responds to length of the list.

So FSM should be limited, for example, by forbidding to add new elements to the list if it has 9 ele-
ments already. Corresponding graph is at the picture 2.

20

Picture 1: Graph for list operations

empty
list

list with
1 element

list with
more than
1 element

add()
Normal case

add()
Normal case

remove()
Normal case

remove()
Normal case

add(), remove() Exceptional case
indexOf() все случаи

Now we have enough information for test scenario building:

1. Use specification class ListSpecification.

2. Use jatva.engines.DFSMExplorer as test engine.

3. Made up FSM ensured full coverage by criteria of marked paths.

a. States (generalized scenario states) correspond to count of list's elements and can be
specified by integer value.

b. Transitions correspond to invocations of List's methods.
More clearly, FSM transitions correspond to invocations of:

• method add() with arguments:
◦ 0 and new Object() (for lists with more than 8 elements)
◦ -1 and new Object()

• method remove() with arguments:
◦ 0
◦ -1

• method indexOf() with arguments:
◦ items[0] (for non-empty list)
◦ new Object()

It's necessary to develop a new component of testing system called mediator. The next section is de-
voted to developing it. Scenario development will continue after the next section.

Mediators development
We developed class ListSpecification to describe functionality of the target system presented by
objects of interface List. Using of specifications is impossible without connection between spe-
cification and the system under test. Connection is provided by special classes called mediators.

21

Picture 2: Graph of the deterministic FSM modeled list

0 1 2 3 4

8 7 6 59

A A A A

A

CCCC

C C C C

C

AAAA

B,D,E B,D,E B,D,E B,D,E B,D,E

B,D,E B,D,E B,D,E B,D,E B,D,E

A — add() Normal case
B — add() Exceptional case
C — remove() Normal case
D — remove() Exceptional case
E — indexOf() все случаи

Declaration of mediator class (lets give it name ListMediator) contains name of specification
class. Lets put mediator class to the same package with specification class. Mediator class has a
type parameter because the specification class has a type parameter. These type parameters must be
equal:
package jatva.examples.list;
mediator class ListMediator<T> implements ListSpecification<T>
{
 ...
}
Mediator class must have a reference to the target system object. Target methods will be invoked by
this object from operators branch of postconditions:
mediator class ListMediator<T> implements ListSpecification<T>
{
 implementation java.util.List<T> targetObject = null;
 ...
}
Mediator class must override all specification methods from ListSpecification. Mediator meth-
ods implement specification methods by target method's invocation. So in our case mediator meth-
ods will invoke (and return value) target methods with the same parameters as specification method
invoked. Don't forget about exceptions — they should be in mediator method's signatures. Target
methods' invocations should be placed in implementation-block:
mediator class ListMediator<T> implements ListSpecification<T>
{
 implementation java.util.List<T> targetObject = null;
 mediator void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 implementation
 {
 targetObject.add(i, o);
 }
 }

 mediator int indexOf(T o)
 {
 implementation
 {
 return targetObject.indexOf(o);
 }
 }

 mediator T remove(int i)
 throws IndexOutOfBoundsException
 {
 implementation
 {
 return targetObject.remove(i);
 }
 }
 ...
}
The next step is making up procedure for model state synchronization. This procedure aims to build
model object state after invocation of target method.

22

In our case state of model object is presented by items[] array. Use methods get(int) and
size() from interface java.util.List. We have to rely on correctness of these methods. Their
testing can be performed by separate process.

Using these methods, synchronization can be the following:
 items = (T[])new Object[targetObject.size()];
 for(int i = 0; i < items.length; i++)
 items[i] = targetObject.get(i);

Each execution of this code (i.e. after any target method's invocation) caused to create a new array
items and fill it by objects returned from get(int). Procedure for model state synchronization
should be placed in update-block:
package jatva.examples.list;
mediator class ListMediator<T> implements ListSpecification<T>
{
 implementation java.util.List<T> targetObject = null;

 mediator void add(int i, T o)
 throws IndexOutOfBoundsException
 {
 implementation
 {
 targetObject.add(i, o);
 }
 }

 mediator int indexOf(T o)
 {
 implementation
 {
 return targetObject.indexOf(o);
 }
 }

 mediator T remove(int i)
 throws IndexOutOfBoundsException
 {
 implementation
 {
 return targetObject.remove(i);
 }
 }

 @SuppressWarnings("unchecked")
 update
 {
 items = (T[])new Object[targetObject.size()];
 for(int i = 0; i < items.length; i++)
 items[i] = targetObject.get(i);
 }
}
Now we may continue to develop test scenario.

Test scenario development
Scenario classes are intended to test scenario, i.e. to define test sequence. Execution of a test
sequence performs required testing process. Scenario classes are marked by scenario modifier

23

after other modifiers and before class keyword. Lets scenario class has name ListTestScenario.
Put it to the same package with mediator and specification classes:
package jatva.examples.list;
scenario class ListTestScenario
{
 ...
}
Scenario class can have fields and methods definitions. It's necessary to define a field of specifica-
tion class type (in our case with ListSpecification type). Lets it has name objectUnderTest.
It's necessary to choose type for specification class actualization. Lets choose Object:
scenario class ListTestScenario
{
 ListSpecification<Object> objectUnderTest;
 ...
}
Later generalized FSM state was built to count of items 's elements from object
objectUnderTest. Procedure of generalized state calculation are written by state-block:
scenario class ListTestScenario
{
 ListSpecification<Object> objectUnderTest;
 state { return objectUnderTest.items.length; }
 ...
}
Scenario methods are intended to define a sequence of accesses to the target system from each
reachable generalized state. Scenario methods look like methods of scenario class with modifier
scenario without parameters. It's impossible to specify a return type — it's predefined and equal to
boolean: true – if checking shows a correctness of the target system, false – otherwise. Scenario
method provides addition an extra check to postcondition. If this extra check is not necessary, it's
enough to return true. Lets get names to scenario methods as the same with specification methods
(it makes easier to watch an invoked specification method from generalized state). Lets begin from
method add(). This method must be invoked twice from each generalized state. Parameters for the
first invocation are -1 and new Object() , and for the second invocation are — 0 and new
Object(). So method add() must be invoked with parameters i and new Object() for each i from
{-1, 0} set. These invocations can be coded by operator iterate :
scenario class ListTestScenario
{
 ListSpecification<Object> objectUnderTest;
 state { return objectUnderTest.items.length; }
 scenario add()
 {
 iterate(int i = -1; i <= 0; i++)
 {
 objectUnderTest.add(i, new Object());
 }
 return true;
 }
 ...
}
Lets remember possible exceptions from specification methods. This exception for method add() is
IndexOutOfBoundsException. Scenario method's not need to check correctness of throwing this
exception because this check is performed by specification method:
 scenario add()

24

 {
 iterate(int i = -1; i <= 0; i++)
 {
 try
 {
 objectUnderTest.add(i, new Object());
 }
 catch(IndexOutOfBoundsException e) { }
 }
 return true;
 }
If scenario method is invoked from 9th generalized state (with 9 elements), addition of element will
be performed but FSM prohibits this addition. So add checking of elements' count to the scenario
method:
 scenario add()
 {
 if (objectUnderTest.items.length <= 8)
 iterate(int i = -1; i < 1; i++)
 {
 try
 {
 objectUnderTest.add(i, new Object());
 }
 catch(IndexOutOfBoundsException e) { }
 }
 return true;
 }
Scenario method remove() can be created similarly. It's not necessary to check elements' count be-
cause it can't be increased.
 scenario remove()
 {
 iterate(int i = -1; i < 1; i++)
 {
 try
 {
 objectUnderTest.remove(i);
 }
 catch(IndexOutOfBoundsException e) { }
 }
 return true;
 }
Lets create scenario method indexOf(). This method should be invoked from each generalized
state with argument items[0], if array items is not empty, and with argument new Object(), oth-
erwise. These cases can be coded by operator iterate. Iteration variable of this operator has value
1 or 2 to set required kind of argument:
 scenario indexOf()
 {
 iterate(int i = 1; i < 3; i++)
 {
 objectUnderTest.indexOf
 (
 (i == 1 && objectUnderTest.items.length > 0)
 ? objectUnderTest.items[0]
 : new Object()
);
 }
 return true;

25

 }

Lets create constructor of scenario class. Its aim is initialization operations for the scenario: test en-
gine setting (in our case jatva.engines.DFSMExplorer) and initial model state creation. Setting of
test engine can be performed by setTestEngine method with test engine's object as parameter. It's
necessary to create mediator object for model state creation. Mediator object is created with cre-
ation of this implementation fields. Mediator ListMediator has 1 implementation field -
targetObject:
 public ListTestScenario()
 {
 objectUnderTest = mediator ListMediator<Object>(
 targetObject = new java.util.ArrayList<Object>()
);
 setTestEngine(new jatva.engines.DFSMExplorer());
 }
It's necessary to create method main for scenario launch. This method may be placed in separate
class or in scenario class (we put it to the scenario class). Method can create scenario class's object
and invoke its method run for launching:
 public static void main(String[] args)
 {
 ListTestScenario myScenario = new ListTestScenario();
 myScenario.run();
 }
Prepared scenario class should have the following code:
package jatva.examples.list;
scenario class ListTestScenario
{
 ListSpecification<Object> objectUnderTest;
 state { return objectUnderTest.items.length; }
 public ListTestScenario()
 {
 objectUnderTest = mediator ListMediator<Object>(
 targetObject = new java.util.ArrayList<Object>()
);
 setTestEngine(new jatva.engines.DFSMExplorer());
 }

 scenario add()
 {
 if (objectUnderTest.items.length <= 9)
 iterate(int i = -1; i < 1; i++)
 {
 try
 {
 objectUnderTest.add(i, new Object());
 }
 catch(IndexOutOfBoundsException e) { }
 }
 return true;
 }

 scenario remove()
 {
 iterate(int i = -1; i <= 0; i++)
 {
 try

26

 {
 objectUnderTest.remove(i);
 }
 catch(IndexOutOfBoundsException e) { }
 }
 return true;
 }

 scenario indexOf()
 {
 iterate(int i = 1; i <= 2; i++)
 {
 objectUnderTest.indexOf
 (
 (i == 1 && objectUnderTest.items.length > 0)
 ? objectUnderTest.items[0]
 : new Object()
);
 }
 return true;
 }

 public static void main(String[] args)
 {
 ListTestScenario myScenario = new ListTestScenario();
 myScenario.run();
 }
}
We have prepared test set with specification, mediator and scenario.

Test set processing

Building
Building of test set can be performed in Eclipse by command Build Project for project with de-
veloped classes. Specifications, mediators and scenario will be translated to the corresponding com-
ponents of the test set in Java.

We can do it for ListTestScenario scenario.

Test execution
Test execution can be performed in Eclipse by command RunAs > JavaTESK Test for corresponding
scenario class.

We can execute test for scenario ListTestScenario.

Test results analysis
After test execution new file will appear in Package Explorer window near the scenario node. This
new file will have special icon (running human figure). This file corresponds to the trace of ex-
ecuted test. Creating of report about testing can be performed automatically by command Gener-
ate Report from the context menu of this file.

Report shows 9 failures.

27

Look at the information about the first failure by Failures/failure 7 menu item.

28

Report shows that the failure caused by postcondition violation from indexOf() invocation with
argument contained in the list. According to specification arrayContains(oldItems, 0, index-
Of+1, o) must have false value but it had true value when test executed. Review of other fail-
ures shows that they correspond to the same situation. Besides report shows all invocations of in-
dexOf() was failed with argument contained in the list.

29

Non-complex analysis of arrayContains(oldItems, 0, indexOf+1, o) shows it is always
true in this situation, because it checks occurrence of o in the list on positions from 0 to the results
of indexOf() invocation inclusive. So failure means error in specifications — part of indexOf()
postcondition in case of containing argument in the list should be the following:
 if(arrayContains(items, 0, items.length, o))
 {
 branch ListContainsTheObject (“List contains the object”);
 return objectsAreEqual(oldItems[indexOf], o)
 && !arrayContains(oldItems, 0, indexOf - 1, o)
 && items.length == oldItems.length
 && arrayCompare(items, 0, oldItems, 0, items.length);
 }

After correction, recompilation and test execution new report hasn't contained any failures. Cover-
age report about indexOf() method can be the following:

30

Рисунок 3: Покрытие метода indexOf() с данными о количестве нарушений

31

Coverage report for add() contains information about achieved 100% coverage by criteria of
marked paths (“marks” column contains «100%»). ”disjuncts” column means coverage criteria by
disjuncts. Achieved coverage for this criteria is only 66%. Two rows with pink cells show non-
100% coverage. Each pink row is divided into cells corresponding to elemental formula (without
conjunction and disjunction). Cells for occurred elemental formula in marked paths has «+» (if it's
true) or «-» (if it's false). Different sequences of “+” and “-” can correspond to the same marked
path (because of lazy logic in Java). Report has all possible variants of elemental formula calcula-
tions with the exception of identically false formula. ”Pink” formula didn't realized whilst testing.
More clearly the following cases didn't be realized:

• !f0 && !f1 && f2

• f0 && !f1 && f2

All cases can be merged into one – !f1 && f2, because value of f0 can be anyone. According to for-
mula definition, it's necessary to realize !(i < 0) && (items.length < i) in scenario for
add(). Other words it's necessary to invoke method add() with argument which value is more than
length of the list:
 scenario add()
 {
 if(objectUnderTest.items.length <= 9)
 iterate(int i = -1; i <= objectUnderTest.items.length + 1; i++)
 {
 try
 {
 objectUnderTest.add(i, new Object());
 }
 catch(IndexOutOfBoundsException e) { }
 }
 return true;
 }

Execution of the new test for add() reports about full coverage for all criteria:

32

Scenario method remove() can be changed similarly. New scenario get full coverage by all criteria:

Besides of failures report and coverage report, there is graphical report about test execution. It can
be accessed by command Open from context menu for node corresponding to trace of test.

33

	UniTESK description
	Testing aims and bounds detection
	Specification development
	add
	indexOf
	remove

	Requirements refinement to the quality of testing
	Scenario classes development
	Mediators development
	Test scenario development
	Test set processing
	Building
	Test execution
	Test results analysis

