
C++TESK Hardware Edition:
Whitepaper

Version 1.0, 16/09/2011

С++TESK Hardware Edition: Whitepaper. Version 1.0, 16/09/2011 | © 2011 ISPRAS

2

© 2011 Institution of Russian Academy of Sciences Institute for System Programming of RAS (ISP RAS).

25 Alexander Solzhenitsyn st., Moscow, Russia 109004, http://www.ispras.ru.

С++TESK Hardware Edition is a part of C++TESK Testing ToolKit, which can be downloaded from the page

http://forge.ispras.ru/projects/cpptesk-toolkit.

The C++TESK Testing ToolKit is distributed under Apache License 2.0 from January 2004. Complete licence can be

found at the following link http://www.apache.org/licenses/.

Please let us know about your proposals and problems while using C++TESK Hardware Edition and C++TESK Testing

ToolKit sending them to cpptesk-support@ispras.ru. The forum http://hw-forum.ispras.ru can be also used for such a

purpose.

С++TESK Hardware Edition: Whitepaper. Version 1.0, 16/09/2011.

http://www.ispras.ru/
http://forge.ispras.ru/projects/cpptesk-toolkit
http://www.apache.org/licenses/
mailto:cpptesk-support@ispras.ru
http://hw-forum.ispras.ru/

С++TESK Hardware Edition: Whitepaper. Version 1.0, 16/09/2011 | © 2011 ISPRAS

3

Introduction

In this paper, the basic facilities of C++TESK, a C++ based toolkit for simulation-based hardware

verification, are described. The toolkit implements the model-based approach to verification of

HDL
1
-models, which means that all verification tasks, like stimulus generation, reaction checking

and coverage tracking, are carried out employing a design model. The key feature of C++TESK is

scalability – the toolkit can handle complex designs by using abstract models and/or parallelizing

verification on computer clusters.

Simulation-based verification is known to be the main means for ensuring functional correctness of

hardware designs of industrial size and complexity. A lot of methods, tools and technologies have

appeared to overcome the ever-growing system complexity and to bring a higher level of

automation to verification. C++TESK developed at ISPRAS is one of them. Like all tools intended

for creating verification environments, so-called testbenches, it provides facilities for defining

stimulus generators, reaction checkers and coverage trackers.

C++TESK is a C++ based toolkit, which implies that testbench components are developed in pure

C++ (the toolkit’s core is an open-source C++ library). In this regard, it is similar to SystemC, but

has a more specialized application domain. The C++ language is used for several reasons. First of

all, most engineers are familiar with it. Second, microprocessor instruction set simulators (ISS) are

usually written in C/C++ (thus, it is possible to reuse ISS components as reference models for

verification). Third, there are many C++ programming tools (compilers, debuggers, profilers, etc.)

and libraries (STL, Boost, etc.) that can be used for free.

Besides the usability achieved by employing C++, the toolkit has many advantages comparing with

the existing solutions. These advantages include hardware modeling at different abstraction levels

(from a functional, untimed level up to a cycle-accurate one), automated generation of stimulus

sequences based on state graph exploration (state enumeration), support for used-defined coverage

criteria including temporal coverage, verification parallelization on computer clusters (using

distributed graph exploration), and some others. The rest of the paper describes the C++TESK

facilities more in detail.

Hardware Modeling and Reaction Checking

The central part of C++TESK is a library of hardware modeling primitives. The library allows

developing reference models of hardware designs at different abstraction levels (untimed, time-

approximate and time-accurate models) and composing complex models from simple ones using

data transmission channels (thus, C++TESK supports transaction-level modeling, TLM). Hardware

component is modeled as a class declaring input and output interfaces and stimulus processing

operations. An example is given below (bold font indicates C++TESK macros).

MODEL(MyModel) {

public:

 DECLARE_INPUT (in_iface); // input interface(s)

 DECLARE_OUTPUT (out_iface); // output interface(s)

 DECLARE_STIMULUS(operation); // operation(s)

 ...

};

Stimulus processing operations are modeled as methods with a fixed signature (an input interface

and a message). Within operations, in addition to common C++ statements, special constructs are

used to model time and reaction dispatching.

DEFINE_STIMULUS(MyModel::operation) {

 START_STIMULUS(); // starts an operation

1
 HDL (Hardware Description Language) — class of languages used for description of hardware designs. Verilog and

VHDL are the most famous among them.

С++TESK Hardware Edition: Whitepaper. Version 1.0, 16/09/2011 | © 2011 ISPRAS

4

 ... // emulates a one-cycle

 CYCLE(); // time delay

 SEND_REACTION(out_iface, out_msg); // produces a model reaction

 STOP_STIMULUS(); // stops an operation

}

Adaptation of a reference model for co-simulation with the design under verification (DUV) is done

in a descendant class (so-called model adapter) by defining input and output interface adapters. An

input interface adapter (being launched in START_STIMULUS) serializes the input message into the

input signals distributed in time. An output interface adapter (being launched in SEND_REACTION)

waits until either the design reaction is detected or time limit is reached and, then, deserializes the

output signals into the output message.

Roughly speaking, reaction checking is done as follows. Every time when a model calls

SEND_REACTION, it puts a model reaction into the reaction queue associated with the corresponding

output interface and returns. When a design reaction is received, it should be associated with one of

the model reactions stored in the reaction queue (if a model is accurate, the reaction queue should

contain exactly one model reaction; for abstract models there can be several reactions though).

Choosing a model reaction corresponding to a design reaction is carried out by the output

interface’s reaction arbiter. As soon as the correspondence is found, the model reaction and design

reactions are compared. If they are not equal, the bug is reported.

Reaction arbitration is a powerful technique that makes it possible to use abstract order-inaccurate

reference models for simulation-based verification. C++TESK has a library of ready-to-use reaction

arbiters covering various verification purposes. The simplest one is a FIFO arbiter, which chooses

the first model reaction stored in the reaction queue.

Scenario Description and Stimulus Generation

Verification scenario in C++TESK is specified as a state machine whose state corresponds to

abstract state of the DUV, while transitions are stimuli. A special component, called engine or

traverser, interprets a scenario and generates a stimulus sequence by exploring the corresponding

state graph (the purpose is to try each transition in each state reachable from initial). Scenario is

described in a separate class; specifications of transitions are grouped into so-called scenario

methods.

SCENARIO(MyScenario) {

 MyStateType get_state(); // scenario state

 bool scenario_method(Context &ctx); // scenario method(s)

 ...

 MyModel &duv; // model adapter

};

Each scenario method should be organized as a co-routine: it iterates stimulus parameters and

applies a stimulus. After each invocation it should return control to the engine. Let us consider a

scenario method example.

bool MyScenario::scenario_method(Context& ctx) {

 IBEGIN // enters an iteration section

 // IVAR(x) accesses iteration variable named x

 for(IVAR(x) = -1; IVAR(x) <= 1; IVAR(x)++) {

 IACTION {

 MyMessage in_msg(x); // applies a stimulus

 duv.start(&MyModel::operation, duv.in_iface, in_msg);

 YIELD(duv.verdict()); // returns a verdict

 }

 }

 IEND // exits an iteration section

}

It should be noticed that C++TESK graph exploration engine supports non-deterministic state

machines, which is especially important when abstract reference models are used (abstraction is a

frequent cause of indeterminacy). Besides the graph-based engine, C++TESK has an engine that

constructs a sequence by applying the randomization techniques.

С++TESK Hardware Edition: Whitepaper. Version 1.0, 16/09/2011 | © 2011 ISPRAS

5

Coverage Definition and Tracking

C++TESK supports user-defined test coverage which is described in a reference model and is

tracked during simulation. The resulting coverage is summarized in verification reports. Coverage

structure is specified using some set of macros. As an example let us consider the sign coverage

having three elements (negative, zero and positive).

DEFINE_ENUMERATED_COVERAGE(SignCoverage, "Sign coverage", (

 (NEGATIVE, "Negative"), // coverage item: an identifier

 (ZERO, "Zero"), // and a human-readable name

 (POSITIVE, "Positive") // used in coverage reports

));

The toolkit implements several operations with coverage structures: aliasing, composition and

partial composition. Aliasing constructs coverage with different type of elements, but the same

coverage elements (i.e. the identifiers and human readable names are the same). Composition builds

Cartesian product of two coverage structures. The composed coverage enumerates elements that are

ordered pairs of the elements of the operand coverage structures. Unreachable elements can be

excluded from the coverage using the partial composition.

C++TESK also supports defining and tracking temporal coverage, which is specified as a set of

temporal sequences. Each sequence defines a pattern of interaction with the DUV (events, their

order and delays between them). If the pattern is recognized, then the corresponding situation is

covered. A temporal sequence example is given below.

// after stimulus S is applied, reactions R1, R2, R1 and R2, should

// appear one after the other with 1-2 cycles delay between them

if_then(S) << any_delay() <<

 (R1 << delay(1, 2) << R2 << delay(1, 2)).repeat(2)

Verification Parallelization

A useful facility implemented in C++TESK is that each testbench can be executed on a computer

cluster in parallel. The approach significantly speeds up verification, shrinks bug detection time and

accelerates the design process in whole. Parallelization is done dynamically without using static

information on a verification scenario. From the perspective of engineers parallelization is fully

transparent – development of a testbench does not depend on how it will be executed (on one

computer, on several computers or on a computer cluster). Moreover, it is not more difficult to

launch a testbench in a distributed environment than on a single computer.

The key idea used for parallelization is distributed graph exploration. All testbench instances

explore the same state graph and share information about traversed parts of the graph. The engine

remains the same, but there are several sources of traversed arcs. Each testbench instance has a

build-in component, called synchronizer, responsible for exchanging information with other

instances. Synchronizers of all instances are interconnected into a virtual communication network,

which allows a state graph’s arc traversed by one instance to be known to all other instances (thus,

they will not traverse it by themselves wasting no time to duplicate work that has been already

done).

Parallelization has been used for simulation-based verification of various hardware designs.

Depending on the design complexity and verification purposes, model graphs included from

thousands to millions of nodes and up to several millions of arcs. Testbench execution has been

performed on 1-150 computers. We have conducted a number of experiments and have measured

the parallelization efficiency T(1)/(n∙T(n)), where T(n) is time of testbench execution on n

computers. The experiments show that if the communication topology is chosen correctly, the

parallelization efficiency always exceeds 0.8 (we used ―ring‖ for 8 or less computers and ―two-

dimensional torus‖ for 9 or more computers).

